annotate src/BTrack.cpp @ 19:88c8d3862eee develop

Added some simple unit tests. Removed the destructor from the BTrack class as it was unnecessary.
author Adam <adamstark.uk@gmail.com>
date Thu, 23 Jan 2014 12:17:06 +0000
parents 450c53430540
children baf35f208814
rev   line source
adamstark@5 1 //=======================================================================
adamstark@5 2 /** @file BTrack.cpp
adamstark@6 3 * @brief BTrack - a real-time beat tracker
adamstark@5 4 * @author Adam Stark
adamstark@5 5 * @copyright Copyright (C) 2008-2014 Queen Mary University of London
adamstark@5 6 *
adamstark@5 7 * This program is free software: you can redistribute it and/or modify
adamstark@5 8 * it under the terms of the GNU General Public License as published by
adamstark@5 9 * the Free Software Foundation, either version 3 of the License, or
adamstark@5 10 * (at your option) any later version.
adamstark@5 11 *
adamstark@5 12 * This program is distributed in the hope that it will be useful,
adamstark@5 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
adamstark@5 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
adamstark@5 15 * GNU General Public License for more details.
adamstark@5 16 *
adamstark@5 17 * You should have received a copy of the GNU General Public License
adamstark@5 18 * along with this program. If not, see <http://www.gnu.org/licenses/>.
adamstark@5 19 */
adamstark@5 20 //=======================================================================
adamstark@5 21
adamstark@5 22 #include <cmath>
adamstark@15 23 #include <algorithm>
adamstark@5 24 #include "BTrack.h"
adamstark@5 25 #include "samplerate.h"
adamstark@5 26
adamstark@18 27 //=======================================================================
adamstark@18 28 BTrack::BTrack() : odf(512,1024,6,1)
adamstark@18 29 {
adamstark@18 30 initialise(512, 1024);
adamstark@18 31 }
adamstark@5 32
adamstark@14 33 //=======================================================================
adamstark@18 34 BTrack::BTrack(int hopSize) : odf(hopSize,2*hopSize,6,1)
adamstark@5 35 {
adamstark@18 36 initialise(hopSize, 2*hopSize);
adamstark@18 37 }
adamstark@18 38
adamstark@18 39 //=======================================================================
adamstark@18 40 BTrack::BTrack(int hopSize,int frameSize) : odf(hopSize,frameSize,6,1)
adamstark@18 41 {
adamstark@18 42 initialise(hopSize, frameSize);
adamstark@18 43 }
adamstark@18 44
adamstark@18 45 //=======================================================================
adamstark@18 46 double BTrack::getBeatTimeInSeconds(long frameNumber,int hopSize,int fs)
adamstark@18 47 {
adamstark@18 48 double hop = (double) hopSize;
adamstark@18 49 double samplingFrequency = (double) fs;
adamstark@18 50 double frameNum = (double) frameNumber;
adamstark@18 51
adamstark@18 52 return ((hop / samplingFrequency) * frameNum);
adamstark@18 53 }
adamstark@18 54
adamstark@18 55 //=======================================================================
adamstark@18 56 double BTrack::getBeatTimeInSeconds(int frameNumber,int hopSize,int fs)
adamstark@18 57 {
adamstark@18 58 long frameNum = (long) frameNumber;
adamstark@18 59
adamstark@18 60 return getBeatTimeInSeconds(frameNum, hopSize, fs);
adamstark@18 61 }
adamstark@18 62
adamstark@18 63
adamstark@18 64
adamstark@18 65 //=======================================================================
adamstark@18 66 void BTrack::initialise(int hopSize, int frameSize)
adamstark@18 67 {
adamstark@18 68 double rayparam = 43;
adamstark@17 69 double pi = 3.14159265;
adamstark@5 70
adamstark@5 71
adamstark@5 72 // initialise parameters
adamstark@5 73 tightness = 5;
adamstark@5 74 alpha = 0.9;
adamstark@5 75 tempo = 120;
adamstark@5 76 est_tempo = 120;
adamstark@5 77 p_fact = 60.*44100./512.;
adamstark@5 78
adamstark@5 79 m0 = 10;
adamstark@5 80 beat = -1;
adamstark@5 81
adamstark@5 82 playbeat = 0;
adamstark@5 83
adamstark@5 84
adamstark@5 85
adamstark@5 86
adamstark@5 87 // create rayleigh weighting vector
adamstark@5 88 for (int n = 0;n < 128;n++)
adamstark@5 89 {
adamstark@17 90 wv[n] = ((double) n / pow(rayparam,2)) * exp((-1*pow((double)-n,2)) / (2*pow(rayparam,2)));
adamstark@5 91 }
adamstark@5 92
adamstark@5 93 // initialise prev_delta
adamstark@5 94 for (int i = 0;i < 41;i++)
adamstark@5 95 {
adamstark@5 96 prev_delta[i] = 1;
adamstark@5 97 }
adamstark@5 98
adamstark@17 99 double t_mu = 41/2;
adamstark@17 100 double m_sig;
adamstark@17 101 double x;
adamstark@5 102 // create tempo transition matrix
adamstark@5 103 m_sig = 41/8;
adamstark@5 104 for (int i = 0;i < 41;i++)
adamstark@5 105 {
adamstark@5 106 for (int j = 0;j < 41;j++)
adamstark@5 107 {
adamstark@5 108 x = j+1;
adamstark@5 109 t_mu = i+1;
adamstark@5 110 t_tmat[i][j] = (1 / (m_sig * sqrt(2*pi))) * exp( (-1*pow((x-t_mu),2)) / (2*pow(m_sig,2)) );
adamstark@5 111 }
adamstark@18 112 }
adamstark@5 113
adamstark@5 114 // tempo is not fixed
adamstark@5 115 tempofix = 0;
adamstark@18 116
adamstark@18 117 // initialise algorithm given the hopsize
adamstark@18 118 setHopSize(hopSize);
adamstark@5 119 }
adamstark@5 120
adamstark@14 121 //=======================================================================
adamstark@18 122 void BTrack :: setHopSize(int hopSize)
adamstark@5 123 {
adamstark@18 124 framesize = hopSize;
adamstark@18 125 dfbuffer_size = (512*512)/hopSize; // calculate df buffer size
adamstark@5 126
adamstark@18 127 bperiod = round(60/((((double) hopSize)/44100)*tempo));
adamstark@5 128
adamstark@17 129 dfbuffer = new double[dfbuffer_size]; // create df_buffer
adamstark@17 130 cumscore = new double[dfbuffer_size]; // create cumscore
adamstark@5 131
adamstark@5 132
adamstark@5 133 // initialise df_buffer to zeros
adamstark@5 134 for (int i = 0;i < dfbuffer_size;i++)
adamstark@5 135 {
adamstark@5 136 dfbuffer[i] = 0;
adamstark@5 137 cumscore[i] = 0;
adamstark@5 138
adamstark@5 139
adamstark@5 140 if ((i % ((int) round(bperiod))) == 0)
adamstark@5 141 {
adamstark@5 142 dfbuffer[i] = 1;
adamstark@5 143 }
adamstark@5 144 }
adamstark@5 145 }
adamstark@5 146
adamstark@14 147 //=======================================================================
adamstark@18 148 void BTrack::processAudioFrame(double *frame)
adamstark@18 149 {
adamstark@18 150 // calculate the onset detection function sample for the frame
adamstark@18 151 double sample = odf.getDFsample(frame);
adamstark@18 152
adamstark@19 153
adamstark@18 154
adamstark@18 155 // process the new onset detection function sample in the beat tracking algorithm
adamstark@18 156 processOnsetDetectionFunctionSample(sample);
adamstark@18 157 }
adamstark@18 158
adamstark@18 159 //=======================================================================
adamstark@18 160 void BTrack::processOnsetDetectionFunctionSample(double newSample)
adamstark@19 161 {
adamstark@19 162 // we need to ensure that the onset
adamstark@19 163 // detection function sample is positive
adamstark@19 164 newSample = fabs(newSample);
adamstark@19 165
adamstark@19 166 // add a tiny constant to the sample to stop it from ever going
adamstark@19 167 // to zero. this is to avoid problems further down the line
adamstark@19 168 newSample = newSample + 0.0001;
adamstark@19 169
adamstark@5 170 m0--;
adamstark@5 171 beat--;
adamstark@5 172 playbeat = 0;
adamstark@5 173
adamstark@5 174 // move all samples back one step
adamstark@5 175 for (int i=0;i < (dfbuffer_size-1);i++)
adamstark@5 176 {
adamstark@5 177 dfbuffer[i] = dfbuffer[i+1];
adamstark@5 178 }
adamstark@5 179
adamstark@5 180 // add new sample at the end
adamstark@18 181 dfbuffer[dfbuffer_size-1] = newSample;
adamstark@5 182
adamstark@5 183 // update cumulative score
adamstark@18 184 updatecumscore(newSample);
adamstark@5 185
adamstark@5 186 // if we are halfway between beats
adamstark@5 187 if (m0 == 0)
adamstark@5 188 {
adamstark@5 189 predictbeat();
adamstark@5 190 }
adamstark@5 191
adamstark@5 192 // if we are at a beat
adamstark@5 193 if (beat == 0)
adamstark@5 194 {
adamstark@5 195 playbeat = 1; // indicate a beat should be output
adamstark@5 196
adamstark@5 197 // recalculate the tempo
adamstark@5 198 dfconvert();
adamstark@5 199 calcTempo();
adamstark@5 200 }
adamstark@5 201 }
adamstark@5 202
adamstark@14 203 //=======================================================================
adamstark@17 204 void BTrack :: settempo(double tempo)
adamstark@5 205 {
adamstark@5 206
adamstark@5 207 /////////// TEMPO INDICATION RESET //////////////////
adamstark@5 208
adamstark@5 209 // firstly make sure tempo is between 80 and 160 bpm..
adamstark@5 210 while (tempo > 160)
adamstark@5 211 {
adamstark@5 212 tempo = tempo/2;
adamstark@5 213 }
adamstark@5 214
adamstark@5 215 while (tempo < 80)
adamstark@5 216 {
adamstark@5 217 tempo = tempo * 2;
adamstark@5 218 }
adamstark@5 219
adamstark@5 220 // convert tempo from bpm value to integer index of tempo probability
adamstark@5 221 int tempo_index = (int) round((tempo - 80)/2);
adamstark@5 222
adamstark@5 223 // now set previous tempo observations to zero
adamstark@5 224 for (int i=0;i < 41;i++)
adamstark@5 225 {
adamstark@5 226 prev_delta[i] = 0;
adamstark@5 227 }
adamstark@5 228
adamstark@5 229 // set desired tempo index to 1
adamstark@5 230 prev_delta[tempo_index] = 1;
adamstark@5 231
adamstark@5 232
adamstark@5 233 /////////// CUMULATIVE SCORE ARTIFICAL TEMPO UPDATE //////////////////
adamstark@5 234
adamstark@5 235 // calculate new beat period
adamstark@17 236 int new_bperiod = (int) round(60/((((double) framesize)/44100)*tempo));
adamstark@5 237
adamstark@5 238 int bcounter = 1;
adamstark@5 239 // initialise df_buffer to zeros
adamstark@5 240 for (int i = (dfbuffer_size-1);i >= 0;i--)
adamstark@5 241 {
adamstark@5 242 if (bcounter == 1)
adamstark@5 243 {
adamstark@5 244 cumscore[i] = 150;
adamstark@5 245 dfbuffer[i] = 150;
adamstark@5 246 }
adamstark@5 247 else
adamstark@5 248 {
adamstark@5 249 cumscore[i] = 10;
adamstark@5 250 dfbuffer[i] = 10;
adamstark@5 251 }
adamstark@5 252
adamstark@5 253 bcounter++;
adamstark@5 254
adamstark@5 255 if (bcounter > new_bperiod)
adamstark@5 256 {
adamstark@5 257 bcounter = 1;
adamstark@5 258 }
adamstark@5 259 }
adamstark@5 260
adamstark@5 261 /////////// INDICATE THAT THIS IS A BEAT //////////////////
adamstark@5 262
adamstark@5 263 // beat is now
adamstark@5 264 beat = 0;
adamstark@5 265
adamstark@5 266 // offbeat is half of new beat period away
adamstark@17 267 m0 = (int) round(((double) new_bperiod)/2);
adamstark@5 268 }
adamstark@5 269
adamstark@14 270 //=======================================================================
adamstark@17 271 void BTrack :: fixtempo(double tempo)
adamstark@5 272 {
adamstark@5 273 // firstly make sure tempo is between 80 and 160 bpm..
adamstark@5 274 while (tempo > 160)
adamstark@5 275 {
adamstark@5 276 tempo = tempo/2;
adamstark@5 277 }
adamstark@5 278
adamstark@5 279 while (tempo < 80)
adamstark@5 280 {
adamstark@5 281 tempo = tempo * 2;
adamstark@5 282 }
adamstark@5 283
adamstark@5 284 // convert tempo from bpm value to integer index of tempo probability
adamstark@5 285 int tempo_index = (int) round((tempo - 80)/2);
adamstark@5 286
adamstark@5 287 // now set previous fixed previous tempo observation values to zero
adamstark@5 288 for (int i=0;i < 41;i++)
adamstark@5 289 {
adamstark@5 290 prev_delta_fix[i] = 0;
adamstark@5 291 }
adamstark@5 292
adamstark@5 293 // set desired tempo index to 1
adamstark@5 294 prev_delta_fix[tempo_index] = 1;
adamstark@5 295
adamstark@5 296 // set the tempo fix flag
adamstark@5 297 tempofix = 1;
adamstark@5 298 }
adamstark@5 299
adamstark@14 300 //=======================================================================
adamstark@5 301 void BTrack :: unfixtempo()
adamstark@5 302 {
adamstark@5 303 // set the tempo fix flag
adamstark@5 304 tempofix = 0;
adamstark@5 305 }
adamstark@5 306
adamstark@14 307 //=======================================================================
adamstark@5 308 void BTrack :: dfconvert()
adamstark@5 309 {
adamstark@5 310 float output[512];
adamstark@17 311 float input[dfbuffer_size];
adamstark@17 312
adamstark@17 313 for (int i = 0;i < dfbuffer_size;i++)
adamstark@17 314 {
adamstark@17 315 input[i] = (float) dfbuffer[i];
adamstark@17 316 }
adamstark@5 317
adamstark@5 318 double src_ratio = 512.0/((double) dfbuffer_size);
adamstark@5 319 int BUFFER_LEN = dfbuffer_size;
adamstark@5 320 int output_len;
adamstark@5 321 SRC_DATA src_data ;
adamstark@5 322
adamstark@5 323 //output_len = (int) floor (((double) BUFFER_LEN) * src_ratio) ;
adamstark@5 324 output_len = 512;
adamstark@5 325
adamstark@17 326 src_data.data_in = input;
adamstark@5 327 src_data.input_frames = BUFFER_LEN;
adamstark@5 328
adamstark@5 329 src_data.src_ratio = src_ratio;
adamstark@5 330
adamstark@5 331 src_data.data_out = output;
adamstark@5 332 src_data.output_frames = output_len;
adamstark@5 333
adamstark@5 334 src_simple (&src_data, SRC_SINC_BEST_QUALITY, 1);
adamstark@5 335
adamstark@5 336 for (int i = 0;i < output_len;i++)
adamstark@5 337 {
adamstark@17 338 df512[i] = (double) src_data.data_out[i];
adamstark@5 339 }
adamstark@5 340 }
adamstark@5 341
adamstark@14 342 //=======================================================================
adamstark@5 343 void BTrack :: calcTempo()
adamstark@5 344 {
adamstark@5 345 // adaptive threshold on input
adamstark@5 346 adapt_thresh(df512,512);
adamstark@5 347
adamstark@5 348 // calculate auto-correlation function of detection function
adamstark@5 349 acf_bal(df512);
adamstark@5 350
adamstark@5 351 // calculate output of comb filterbank
adamstark@5 352 getrcfoutput();
adamstark@5 353
adamstark@5 354
adamstark@5 355 // adaptive threshold on rcf
adamstark@5 356 adapt_thresh(rcf,128);
adamstark@5 357
adamstark@5 358
adamstark@5 359 int t_index;
adamstark@5 360 int t_index2;
adamstark@5 361 // calculate tempo observation vector from bperiod observation vector
adamstark@5 362 for (int i = 0;i < 41;i++)
adamstark@5 363 {
adamstark@17 364 t_index = (int) round(p_fact / ((double) ((2*i)+80)));
adamstark@17 365 t_index2 = (int) round(p_fact / ((double) ((4*i)+160)));
adamstark@5 366
adamstark@5 367
adamstark@5 368 t_obs[i] = rcf[t_index-1] + rcf[t_index2-1];
adamstark@5 369 }
adamstark@5 370
adamstark@5 371
adamstark@17 372 double maxval;
adamstark@17 373 double maxind;
adamstark@17 374 double curval;
adamstark@5 375
adamstark@5 376 // if tempo is fixed then always use a fixed set of tempi as the previous observation probability function
adamstark@5 377 if (tempofix == 1)
adamstark@5 378 {
adamstark@5 379 for (int k = 0;k < 41;k++)
adamstark@5 380 {
adamstark@5 381 prev_delta[k] = prev_delta_fix[k];
adamstark@5 382 }
adamstark@5 383 }
adamstark@5 384
adamstark@5 385 for (int j=0;j < 41;j++)
adamstark@5 386 {
adamstark@5 387 maxval = -1;
adamstark@5 388 for (int i = 0;i < 41;i++)
adamstark@5 389 {
adamstark@5 390 curval = prev_delta[i]*t_tmat[i][j];
adamstark@5 391
adamstark@5 392 if (curval > maxval)
adamstark@5 393 {
adamstark@5 394 maxval = curval;
adamstark@5 395 }
adamstark@5 396 }
adamstark@5 397
adamstark@5 398 delta[j] = maxval*t_obs[j];
adamstark@5 399 }
adamstark@5 400
adamstark@5 401
adamstark@5 402 normalise(delta,41);
adamstark@5 403
adamstark@5 404 maxind = -1;
adamstark@5 405 maxval = -1;
adamstark@5 406
adamstark@5 407 for (int j=0;j < 41;j++)
adamstark@5 408 {
adamstark@5 409 if (delta[j] > maxval)
adamstark@5 410 {
adamstark@5 411 maxval = delta[j];
adamstark@5 412 maxind = j;
adamstark@5 413 }
adamstark@5 414
adamstark@5 415 prev_delta[j] = delta[j];
adamstark@5 416 }
adamstark@5 417
adamstark@17 418 bperiod = round((60.0*44100.0)/(((2*maxind)+80)*((double) framesize)));
adamstark@5 419
adamstark@5 420 if (bperiod > 0)
adamstark@5 421 {
adamstark@17 422 est_tempo = 60.0/((((double) framesize) / 44100.0)*bperiod);
adamstark@5 423 }
adamstark@5 424
adamstark@5 425 //cout << bperiod << endl;
adamstark@5 426 }
adamstark@5 427
adamstark@14 428 //=======================================================================
adamstark@17 429 void BTrack :: adapt_thresh(double *x,int N)
adamstark@5 430 {
adamstark@5 431 //int N = 512; // length of df
adamstark@5 432 int i = 0;
adamstark@5 433 int k,t = 0;
adamstark@17 434 double x_thresh[N];
adamstark@5 435
adamstark@5 436 int p_post = 7;
adamstark@5 437 int p_pre = 8;
adamstark@5 438
adamstark@15 439 t = std::min(N,p_post); // what is smaller, p_post of df size. This is to avoid accessing outside of arrays
adamstark@5 440
adamstark@5 441 // find threshold for first 't' samples, where a full average cannot be computed yet
adamstark@5 442 for (i = 0;i <= t;i++)
adamstark@5 443 {
adamstark@15 444 k = std::min((i+p_pre),N);
adamstark@5 445 x_thresh[i] = mean_array(x,1,k);
adamstark@5 446 }
adamstark@5 447 // find threshold for bulk of samples across a moving average from [i-p_pre,i+p_post]
adamstark@5 448 for (i = t+1;i < N-p_post;i++)
adamstark@5 449 {
adamstark@5 450 x_thresh[i] = mean_array(x,i-p_pre,i+p_post);
adamstark@5 451 }
adamstark@5 452 // for last few samples calculate threshold, again, not enough samples to do as above
adamstark@5 453 for (i = N-p_post;i < N;i++)
adamstark@5 454 {
adamstark@15 455 k = std::max((i-p_post),1);
adamstark@5 456 x_thresh[i] = mean_array(x,k,N);
adamstark@5 457 }
adamstark@5 458
adamstark@5 459 // subtract the threshold from the detection function and check that it is not less than 0
adamstark@5 460 for (i = 0;i < N;i++)
adamstark@5 461 {
adamstark@5 462 x[i] = x[i] - x_thresh[i];
adamstark@5 463 if (x[i] < 0)
adamstark@5 464 {
adamstark@5 465 x[i] = 0;
adamstark@5 466 }
adamstark@5 467 }
adamstark@5 468 }
adamstark@5 469
adamstark@14 470 //=======================================================================
adamstark@5 471 void BTrack :: getrcfoutput()
adamstark@5 472 {
adamstark@5 473 int numelem;
adamstark@5 474
adamstark@5 475 for (int i = 0;i < 128;i++)
adamstark@5 476 {
adamstark@5 477 rcf[i] = 0;
adamstark@5 478 }
adamstark@5 479
adamstark@5 480 numelem = 4;
adamstark@5 481
adamstark@5 482 for (int i = 2;i <= 127;i++) // max beat period
adamstark@5 483 {
adamstark@5 484 for (int a = 1;a <= numelem;a++) // number of comb elements
adamstark@5 485 {
adamstark@5 486 for (int b = 1-a;b <= a-1;b++) // general state using normalisation of comb elements
adamstark@5 487 {
adamstark@5 488 rcf[i-1] = rcf[i-1] + (acf[(a*i+b)-1]*wv[i-1])/(2*a-1); // calculate value for comb filter row
adamstark@5 489 }
adamstark@5 490 }
adamstark@5 491 }
adamstark@5 492 }
adamstark@5 493
adamstark@14 494 //=======================================================================
adamstark@17 495 void BTrack :: acf_bal(double *df_thresh)
adamstark@5 496 {
adamstark@5 497 int l, n = 0;
adamstark@17 498 double sum, tmp;
adamstark@5 499
adamstark@5 500 // for l lags from 0-511
adamstark@5 501 for (l = 0;l < 512;l++)
adamstark@5 502 {
adamstark@5 503 sum = 0;
adamstark@5 504
adamstark@5 505 // for n samples from 0 - (512-lag)
adamstark@5 506 for (n = 0;n < (512-l);n++)
adamstark@5 507 {
adamstark@5 508 tmp = df_thresh[n] * df_thresh[n+l]; // multiply current sample n by sample (n+l)
adamstark@5 509 sum = sum + tmp; // add to sum
adamstark@5 510 }
adamstark@5 511
adamstark@5 512 acf[l] = sum / (512-l); // weight by number of mults and add to acf buffer
adamstark@5 513 }
adamstark@5 514 }
adamstark@5 515
adamstark@14 516 //=======================================================================
adamstark@17 517 double BTrack :: mean_array(double *array,int start,int end)
adamstark@5 518 {
adamstark@5 519 int i;
adamstark@6 520 double sum = 0;
adamstark@6 521
adamstark@6 522 int length = end - start;
adamstark@5 523
adamstark@5 524 // find sum
adamstark@6 525 for (i = start;i < end;i++)
adamstark@5 526 {
adamstark@5 527 sum = sum + array[i];
adamstark@5 528 }
adamstark@5 529
adamstark@6 530 if (length > 0)
adamstark@6 531 {
adamstark@6 532 return sum / length; // average and return
adamstark@6 533 }
adamstark@6 534 else
adamstark@6 535 {
adamstark@6 536 return 0;
adamstark@6 537 }
adamstark@5 538 }
adamstark@5 539
adamstark@14 540 //=======================================================================
adamstark@17 541 void BTrack :: normalise(double *array,int N)
adamstark@5 542 {
adamstark@5 543 double sum = 0;
adamstark@5 544
adamstark@5 545 for (int i = 0;i < N;i++)
adamstark@5 546 {
adamstark@5 547 if (array[i] > 0)
adamstark@5 548 {
adamstark@5 549 sum = sum + array[i];
adamstark@5 550 }
adamstark@5 551 }
adamstark@5 552
adamstark@5 553 if (sum > 0)
adamstark@5 554 {
adamstark@5 555 for (int i = 0;i < N;i++)
adamstark@5 556 {
adamstark@5 557 array[i] = array[i] / sum;
adamstark@5 558 }
adamstark@5 559 }
adamstark@5 560 }
adamstark@5 561
adamstark@14 562 //=======================================================================
adamstark@17 563 void BTrack :: updatecumscore(double df_sample)
adamstark@5 564 {
adamstark@5 565 int start, end, winsize;
adamstark@17 566 double max;
adamstark@5 567
adamstark@5 568 start = dfbuffer_size - round(2*bperiod);
adamstark@5 569 end = dfbuffer_size - round(bperiod/2);
adamstark@5 570 winsize = end-start+1;
adamstark@5 571
adamstark@17 572 double w1[winsize];
adamstark@17 573 double v = -2*bperiod;
adamstark@17 574 double wcumscore;
adamstark@5 575
adamstark@5 576
adamstark@5 577 // create window
adamstark@5 578 for (int i = 0;i < winsize;i++)
adamstark@5 579 {
adamstark@5 580 w1[i] = exp((-1*pow(tightness*log(-v/bperiod),2))/2);
adamstark@5 581 v = v+1;
adamstark@5 582 }
adamstark@5 583
adamstark@5 584 // calculate new cumulative score value
adamstark@5 585 max = 0;
adamstark@5 586 int n = 0;
adamstark@5 587 for (int i=start;i <= end;i++)
adamstark@5 588 {
adamstark@5 589 wcumscore = cumscore[i]*w1[n];
adamstark@5 590
adamstark@5 591 if (wcumscore > max)
adamstark@5 592 {
adamstark@5 593 max = wcumscore;
adamstark@5 594 }
adamstark@5 595 n++;
adamstark@5 596 }
adamstark@5 597
adamstark@5 598
adamstark@5 599 // shift cumulative score back one
adamstark@5 600 for (int i = 0;i < (dfbuffer_size-1);i++)
adamstark@5 601 {
adamstark@5 602 cumscore[i] = cumscore[i+1];
adamstark@5 603 }
adamstark@5 604
adamstark@5 605 // add new value to cumulative score
adamstark@5 606 cumscore[dfbuffer_size-1] = ((1-alpha)*df_sample) + (alpha*max);
adamstark@5 607
adamstark@5 608 cscoreval = cumscore[dfbuffer_size-1];
adamstark@5 609
adamstark@5 610 //cout << cumscore[dfbuffer_size-1] << endl;
adamstark@5 611
adamstark@5 612 }
adamstark@5 613
adamstark@14 614 //=======================================================================
adamstark@5 615 void BTrack :: predictbeat()
adamstark@5 616 {
adamstark@5 617 int winsize = (int) bperiod;
adamstark@17 618 double fcumscore[dfbuffer_size + winsize];
adamstark@17 619 double w2[winsize];
adamstark@5 620 // copy cumscore to first part of fcumscore
adamstark@5 621 for (int i = 0;i < dfbuffer_size;i++)
adamstark@5 622 {
adamstark@5 623 fcumscore[i] = cumscore[i];
adamstark@5 624 }
adamstark@5 625
adamstark@5 626 // create future window
adamstark@17 627 double v = 1;
adamstark@5 628 for (int i = 0;i < winsize;i++)
adamstark@5 629 {
adamstark@5 630 w2[i] = exp((-1*pow((v - (bperiod/2)),2)) / (2*pow((bperiod/2) ,2)));
adamstark@5 631 v++;
adamstark@5 632 }
adamstark@5 633
adamstark@5 634 // create past window
adamstark@5 635 v = -2*bperiod;
adamstark@5 636 int start = dfbuffer_size - round(2*bperiod);
adamstark@5 637 int end = dfbuffer_size - round(bperiod/2);
adamstark@5 638 int pastwinsize = end-start+1;
adamstark@17 639 double w1[pastwinsize];
adamstark@5 640
adamstark@5 641 for (int i = 0;i < pastwinsize;i++)
adamstark@5 642 {
adamstark@5 643 w1[i] = exp((-1*pow(tightness*log(-v/bperiod),2))/2);
adamstark@5 644 v = v+1;
adamstark@5 645 }
adamstark@5 646
adamstark@5 647
adamstark@5 648
adamstark@5 649 // calculate future cumulative score
adamstark@17 650 double max;
adamstark@5 651 int n;
adamstark@17 652 double wcumscore;
adamstark@5 653 for (int i = dfbuffer_size;i < (dfbuffer_size+winsize);i++)
adamstark@5 654 {
adamstark@5 655 start = i - round(2*bperiod);
adamstark@5 656 end = i - round(bperiod/2);
adamstark@5 657
adamstark@5 658 max = 0;
adamstark@5 659 n = 0;
adamstark@5 660 for (int k=start;k <= end;k++)
adamstark@5 661 {
adamstark@5 662 wcumscore = fcumscore[k]*w1[n];
adamstark@5 663
adamstark@5 664 if (wcumscore > max)
adamstark@5 665 {
adamstark@5 666 max = wcumscore;
adamstark@5 667 }
adamstark@5 668 n++;
adamstark@5 669 }
adamstark@5 670
adamstark@5 671 fcumscore[i] = max;
adamstark@5 672 }
adamstark@5 673
adamstark@5 674
adamstark@5 675 // predict beat
adamstark@5 676 max = 0;
adamstark@5 677 n = 0;
adamstark@5 678
adamstark@5 679 for (int i = dfbuffer_size;i < (dfbuffer_size+winsize);i++)
adamstark@5 680 {
adamstark@5 681 wcumscore = fcumscore[i]*w2[n];
adamstark@5 682
adamstark@5 683 if (wcumscore > max)
adamstark@5 684 {
adamstark@5 685 max = wcumscore;
adamstark@5 686 beat = n;
adamstark@5 687 }
adamstark@5 688
adamstark@5 689 n++;
adamstark@5 690 }
adamstark@5 691
adamstark@5 692 // set next prediction time
adamstark@5 693 m0 = beat+round(bperiod/2);
adamstark@5 694
adamstark@5 695
adamstark@5 696 }