annotate src/BTrack.cpp @ 14:18fc3c248436 develop

Added a unit testing project, and did some commenting. Also moved python-module into a modules-and-plug-ins folder
author Adam <adamstark.uk@gmail.com>
date Tue, 21 Jan 2014 10:24:33 +0000
parents 46971d477183
children 2b94d3d2fb9d
rev   line source
adamstark@5 1 //=======================================================================
adamstark@5 2 /** @file BTrack.cpp
adamstark@6 3 * @brief BTrack - a real-time beat tracker
adamstark@5 4 * @author Adam Stark
adamstark@5 5 * @copyright Copyright (C) 2008-2014 Queen Mary University of London
adamstark@5 6 *
adamstark@5 7 * This program is free software: you can redistribute it and/or modify
adamstark@5 8 * it under the terms of the GNU General Public License as published by
adamstark@5 9 * the Free Software Foundation, either version 3 of the License, or
adamstark@5 10 * (at your option) any later version.
adamstark@5 11 *
adamstark@5 12 * This program is distributed in the hope that it will be useful,
adamstark@5 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
adamstark@5 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
adamstark@5 15 * GNU General Public License for more details.
adamstark@5 16 *
adamstark@5 17 * You should have received a copy of the GNU General Public License
adamstark@5 18 * along with this program. If not, see <http://www.gnu.org/licenses/>.
adamstark@5 19 */
adamstark@5 20 //=======================================================================
adamstark@5 21
adamstark@5 22 #include <iostream>
adamstark@5 23 #include <cmath>
adamstark@5 24 #include "BTrack.h"
adamstark@5 25 #include "samplerate.h"
adamstark@5 26 using namespace std;
adamstark@5 27
adamstark@5 28
adamstark@5 29
adamstark@5 30
adamstark@14 31 //=======================================================================
adamstark@5 32 BTrack :: BTrack()
adamstark@5 33 {
adamstark@5 34 float rayparam = 43;
adamstark@5 35 float pi = 3.14159265;
adamstark@5 36
adamstark@5 37
adamstark@5 38 // initialise parameters
adamstark@5 39 tightness = 5;
adamstark@5 40 alpha = 0.9;
adamstark@5 41 tempo = 120;
adamstark@5 42 est_tempo = 120;
adamstark@5 43 p_fact = 60.*44100./512.;
adamstark@5 44
adamstark@5 45 m0 = 10;
adamstark@5 46 beat = -1;
adamstark@5 47
adamstark@5 48 playbeat = 0;
adamstark@5 49
adamstark@5 50
adamstark@5 51
adamstark@5 52
adamstark@5 53 // create rayleigh weighting vector
adamstark@5 54 for (int n = 0;n < 128;n++)
adamstark@5 55 {
adamstark@5 56 wv[n] = ((float) n / pow(rayparam,2)) * exp((-1*pow((float)-n,2)) / (2*pow(rayparam,2)));
adamstark@5 57 }
adamstark@5 58
adamstark@5 59 // initialise prev_delta
adamstark@5 60 for (int i = 0;i < 41;i++)
adamstark@5 61 {
adamstark@5 62 prev_delta[i] = 1;
adamstark@5 63 }
adamstark@5 64
adamstark@5 65 float t_mu = 41/2;
adamstark@5 66 float m_sig;
adamstark@5 67 float x;
adamstark@5 68 // create tempo transition matrix
adamstark@5 69 m_sig = 41/8;
adamstark@5 70 for (int i = 0;i < 41;i++)
adamstark@5 71 {
adamstark@5 72 for (int j = 0;j < 41;j++)
adamstark@5 73 {
adamstark@5 74 x = j+1;
adamstark@5 75 t_mu = i+1;
adamstark@5 76 t_tmat[i][j] = (1 / (m_sig * sqrt(2*pi))) * exp( (-1*pow((x-t_mu),2)) / (2*pow(m_sig,2)) );
adamstark@5 77 }
adamstark@5 78 }
adamstark@5 79
adamstark@5 80 // tempo is not fixed
adamstark@5 81 tempofix = 0;
adamstark@5 82 }
adamstark@5 83
adamstark@14 84 //=======================================================================
adamstark@5 85 BTrack :: ~BTrack()
adamstark@5 86 {
adamstark@5 87
adamstark@5 88 }
adamstark@5 89
adamstark@14 90
adamstark@14 91
adamstark@14 92 //=======================================================================
adamstark@5 93 void BTrack :: initialise(int fsize)
adamstark@5 94 {
adamstark@5 95 framesize = fsize;
adamstark@5 96 dfbuffer_size = (512*512)/fsize; // calculate df buffer size
adamstark@5 97
adamstark@5 98 bperiod = round(60/((((float) fsize)/44100)*tempo));
adamstark@5 99
adamstark@5 100 dfbuffer = new float[dfbuffer_size]; // create df_buffer
adamstark@5 101 cumscore = new float[dfbuffer_size]; // create cumscore
adamstark@5 102
adamstark@5 103
adamstark@5 104 // initialise df_buffer to zeros
adamstark@5 105 for (int i = 0;i < dfbuffer_size;i++)
adamstark@5 106 {
adamstark@5 107 dfbuffer[i] = 0;
adamstark@5 108 cumscore[i] = 0;
adamstark@5 109
adamstark@5 110
adamstark@5 111 if ((i % ((int) round(bperiod))) == 0)
adamstark@5 112 {
adamstark@5 113 dfbuffer[i] = 1;
adamstark@5 114 }
adamstark@5 115 }
adamstark@5 116 }
adamstark@5 117
adamstark@14 118 //=======================================================================
adamstark@5 119 void BTrack :: process(float df_sample)
adamstark@5 120 {
adamstark@5 121 m0--;
adamstark@5 122 beat--;
adamstark@5 123 playbeat = 0;
adamstark@5 124
adamstark@5 125 // move all samples back one step
adamstark@5 126 for (int i=0;i < (dfbuffer_size-1);i++)
adamstark@5 127 {
adamstark@5 128 dfbuffer[i] = dfbuffer[i+1];
adamstark@5 129 }
adamstark@5 130
adamstark@5 131 // add new sample at the end
adamstark@5 132 dfbuffer[dfbuffer_size-1] = df_sample;
adamstark@5 133
adamstark@5 134 // update cumulative score
adamstark@5 135 updatecumscore(df_sample);
adamstark@5 136
adamstark@5 137 // if we are halfway between beats
adamstark@5 138 if (m0 == 0)
adamstark@5 139 {
adamstark@5 140 predictbeat();
adamstark@5 141 }
adamstark@5 142
adamstark@5 143 // if we are at a beat
adamstark@5 144 if (beat == 0)
adamstark@5 145 {
adamstark@5 146 playbeat = 1; // indicate a beat should be output
adamstark@5 147
adamstark@5 148 // recalculate the tempo
adamstark@5 149 dfconvert();
adamstark@5 150 calcTempo();
adamstark@5 151 }
adamstark@5 152 }
adamstark@5 153
adamstark@14 154 //=======================================================================
adamstark@5 155 void BTrack :: settempo(float tempo)
adamstark@5 156 {
adamstark@5 157
adamstark@5 158 /////////// TEMPO INDICATION RESET //////////////////
adamstark@5 159
adamstark@5 160 // firstly make sure tempo is between 80 and 160 bpm..
adamstark@5 161 while (tempo > 160)
adamstark@5 162 {
adamstark@5 163 tempo = tempo/2;
adamstark@5 164 }
adamstark@5 165
adamstark@5 166 while (tempo < 80)
adamstark@5 167 {
adamstark@5 168 tempo = tempo * 2;
adamstark@5 169 }
adamstark@5 170
adamstark@5 171 // convert tempo from bpm value to integer index of tempo probability
adamstark@5 172 int tempo_index = (int) round((tempo - 80)/2);
adamstark@5 173
adamstark@5 174 // now set previous tempo observations to zero
adamstark@5 175 for (int i=0;i < 41;i++)
adamstark@5 176 {
adamstark@5 177 prev_delta[i] = 0;
adamstark@5 178 }
adamstark@5 179
adamstark@5 180 // set desired tempo index to 1
adamstark@5 181 prev_delta[tempo_index] = 1;
adamstark@5 182
adamstark@5 183
adamstark@5 184 /////////// CUMULATIVE SCORE ARTIFICAL TEMPO UPDATE //////////////////
adamstark@5 185
adamstark@5 186 // calculate new beat period
adamstark@5 187 int new_bperiod = (int) round(60/((((float) framesize)/44100)*tempo));
adamstark@5 188
adamstark@5 189 int bcounter = 1;
adamstark@5 190 // initialise df_buffer to zeros
adamstark@5 191 for (int i = (dfbuffer_size-1);i >= 0;i--)
adamstark@5 192 {
adamstark@5 193 if (bcounter == 1)
adamstark@5 194 {
adamstark@5 195 cumscore[i] = 150;
adamstark@5 196 dfbuffer[i] = 150;
adamstark@5 197 }
adamstark@5 198 else
adamstark@5 199 {
adamstark@5 200 cumscore[i] = 10;
adamstark@5 201 dfbuffer[i] = 10;
adamstark@5 202 }
adamstark@5 203
adamstark@5 204 bcounter++;
adamstark@5 205
adamstark@5 206 if (bcounter > new_bperiod)
adamstark@5 207 {
adamstark@5 208 bcounter = 1;
adamstark@5 209 }
adamstark@5 210 }
adamstark@5 211
adamstark@5 212 /////////// INDICATE THAT THIS IS A BEAT //////////////////
adamstark@5 213
adamstark@5 214 // beat is now
adamstark@5 215 beat = 0;
adamstark@5 216
adamstark@5 217 // offbeat is half of new beat period away
adamstark@5 218 m0 = (int) round(((float) new_bperiod)/2);
adamstark@5 219 }
adamstark@5 220
adamstark@14 221 //=======================================================================
adamstark@5 222 void BTrack :: fixtempo(float tempo)
adamstark@5 223 {
adamstark@5 224 // firstly make sure tempo is between 80 and 160 bpm..
adamstark@5 225 while (tempo > 160)
adamstark@5 226 {
adamstark@5 227 tempo = tempo/2;
adamstark@5 228 }
adamstark@5 229
adamstark@5 230 while (tempo < 80)
adamstark@5 231 {
adamstark@5 232 tempo = tempo * 2;
adamstark@5 233 }
adamstark@5 234
adamstark@5 235 // convert tempo from bpm value to integer index of tempo probability
adamstark@5 236 int tempo_index = (int) round((tempo - 80)/2);
adamstark@5 237
adamstark@5 238 // now set previous fixed previous tempo observation values to zero
adamstark@5 239 for (int i=0;i < 41;i++)
adamstark@5 240 {
adamstark@5 241 prev_delta_fix[i] = 0;
adamstark@5 242 }
adamstark@5 243
adamstark@5 244 // set desired tempo index to 1
adamstark@5 245 prev_delta_fix[tempo_index] = 1;
adamstark@5 246
adamstark@5 247 // set the tempo fix flag
adamstark@5 248 tempofix = 1;
adamstark@5 249 }
adamstark@5 250
adamstark@14 251 //=======================================================================
adamstark@5 252 void BTrack :: unfixtempo()
adamstark@5 253 {
adamstark@5 254 // set the tempo fix flag
adamstark@5 255 tempofix = 0;
adamstark@5 256 }
adamstark@5 257
adamstark@14 258 //=======================================================================
adamstark@5 259 void BTrack :: dfconvert()
adamstark@5 260 {
adamstark@5 261 float output[512];
adamstark@5 262
adamstark@5 263 double src_ratio = 512.0/((double) dfbuffer_size);
adamstark@5 264 int BUFFER_LEN = dfbuffer_size;
adamstark@5 265 int output_len;
adamstark@5 266 SRC_DATA src_data ;
adamstark@5 267
adamstark@5 268 //output_len = (int) floor (((double) BUFFER_LEN) * src_ratio) ;
adamstark@5 269 output_len = 512;
adamstark@5 270
adamstark@5 271 src_data.data_in = dfbuffer;
adamstark@5 272 src_data.input_frames = BUFFER_LEN;
adamstark@5 273
adamstark@5 274 src_data.src_ratio = src_ratio;
adamstark@5 275
adamstark@5 276 src_data.data_out = output;
adamstark@5 277 src_data.output_frames = output_len;
adamstark@5 278
adamstark@5 279 src_simple (&src_data, SRC_SINC_BEST_QUALITY, 1);
adamstark@5 280
adamstark@5 281 for (int i = 0;i < output_len;i++)
adamstark@5 282 {
adamstark@5 283 df512[i] = src_data.data_out[i];
adamstark@5 284 }
adamstark@5 285 }
adamstark@5 286
adamstark@14 287 //=======================================================================
adamstark@5 288 void BTrack :: calcTempo()
adamstark@5 289 {
adamstark@5 290 // adaptive threshold on input
adamstark@5 291 adapt_thresh(df512,512);
adamstark@5 292
adamstark@5 293 // calculate auto-correlation function of detection function
adamstark@5 294 acf_bal(df512);
adamstark@5 295
adamstark@5 296 // calculate output of comb filterbank
adamstark@5 297 getrcfoutput();
adamstark@5 298
adamstark@5 299
adamstark@5 300 // adaptive threshold on rcf
adamstark@5 301 adapt_thresh(rcf,128);
adamstark@5 302
adamstark@5 303
adamstark@5 304 int t_index;
adamstark@5 305 int t_index2;
adamstark@5 306 // calculate tempo observation vector from bperiod observation vector
adamstark@5 307 for (int i = 0;i < 41;i++)
adamstark@5 308 {
adamstark@5 309 t_index = (int) round(p_fact / ((float) ((2*i)+80)));
adamstark@5 310 t_index2 = (int) round(p_fact / ((float) ((4*i)+160)));
adamstark@5 311
adamstark@5 312
adamstark@5 313 t_obs[i] = rcf[t_index-1] + rcf[t_index2-1];
adamstark@5 314 }
adamstark@5 315
adamstark@5 316
adamstark@5 317 float maxval;
adamstark@5 318 float maxind;
adamstark@5 319 float curval;
adamstark@5 320
adamstark@5 321 // if tempo is fixed then always use a fixed set of tempi as the previous observation probability function
adamstark@5 322 if (tempofix == 1)
adamstark@5 323 {
adamstark@5 324 for (int k = 0;k < 41;k++)
adamstark@5 325 {
adamstark@5 326 prev_delta[k] = prev_delta_fix[k];
adamstark@5 327 }
adamstark@5 328 }
adamstark@5 329
adamstark@5 330 for (int j=0;j < 41;j++)
adamstark@5 331 {
adamstark@5 332 maxval = -1;
adamstark@5 333 for (int i = 0;i < 41;i++)
adamstark@5 334 {
adamstark@5 335 curval = prev_delta[i]*t_tmat[i][j];
adamstark@5 336
adamstark@5 337 if (curval > maxval)
adamstark@5 338 {
adamstark@5 339 maxval = curval;
adamstark@5 340 }
adamstark@5 341 }
adamstark@5 342
adamstark@5 343 delta[j] = maxval*t_obs[j];
adamstark@5 344 }
adamstark@5 345
adamstark@5 346
adamstark@5 347 normalise(delta,41);
adamstark@5 348
adamstark@5 349 maxind = -1;
adamstark@5 350 maxval = -1;
adamstark@5 351
adamstark@5 352 for (int j=0;j < 41;j++)
adamstark@5 353 {
adamstark@5 354 if (delta[j] > maxval)
adamstark@5 355 {
adamstark@5 356 maxval = delta[j];
adamstark@5 357 maxind = j;
adamstark@5 358 }
adamstark@5 359
adamstark@5 360 prev_delta[j] = delta[j];
adamstark@5 361 }
adamstark@5 362
adamstark@5 363 bperiod = round((60.0*44100.0)/(((2*maxind)+80)*((float) framesize)));
adamstark@5 364
adamstark@5 365 if (bperiod > 0)
adamstark@5 366 {
adamstark@5 367 est_tempo = 60.0/((((float) framesize) / 44100.0)*bperiod);
adamstark@5 368 }
adamstark@5 369
adamstark@5 370 //cout << bperiod << endl;
adamstark@5 371 }
adamstark@5 372
adamstark@14 373 //=======================================================================
adamstark@5 374 void BTrack :: adapt_thresh(float x[],int N)
adamstark@5 375 {
adamstark@5 376 //int N = 512; // length of df
adamstark@5 377 int i = 0;
adamstark@5 378 int k,t = 0;
adamstark@5 379 float x_thresh[N];
adamstark@5 380
adamstark@5 381 int p_post = 7;
adamstark@5 382 int p_pre = 8;
adamstark@5 383
adamstark@5 384 t = min(N,p_post); // what is smaller, p_post of df size. This is to avoid accessing outside of arrays
adamstark@5 385
adamstark@5 386 // find threshold for first 't' samples, where a full average cannot be computed yet
adamstark@5 387 for (i = 0;i <= t;i++)
adamstark@5 388 {
adamstark@5 389 k = min((i+p_pre),N);
adamstark@5 390 x_thresh[i] = mean_array(x,1,k);
adamstark@5 391 }
adamstark@5 392 // find threshold for bulk of samples across a moving average from [i-p_pre,i+p_post]
adamstark@5 393 for (i = t+1;i < N-p_post;i++)
adamstark@5 394 {
adamstark@5 395 x_thresh[i] = mean_array(x,i-p_pre,i+p_post);
adamstark@5 396 }
adamstark@5 397 // for last few samples calculate threshold, again, not enough samples to do as above
adamstark@5 398 for (i = N-p_post;i < N;i++)
adamstark@5 399 {
adamstark@5 400 k = max((i-p_post),1);
adamstark@5 401 x_thresh[i] = mean_array(x,k,N);
adamstark@5 402 }
adamstark@5 403
adamstark@5 404 // subtract the threshold from the detection function and check that it is not less than 0
adamstark@5 405 for (i = 0;i < N;i++)
adamstark@5 406 {
adamstark@5 407 x[i] = x[i] - x_thresh[i];
adamstark@5 408 if (x[i] < 0)
adamstark@5 409 {
adamstark@5 410 x[i] = 0;
adamstark@5 411 }
adamstark@5 412 }
adamstark@5 413 }
adamstark@5 414
adamstark@14 415 //=======================================================================
adamstark@5 416 void BTrack :: getrcfoutput()
adamstark@5 417 {
adamstark@5 418 int numelem;
adamstark@5 419
adamstark@5 420 for (int i = 0;i < 128;i++)
adamstark@5 421 {
adamstark@5 422 rcf[i] = 0;
adamstark@5 423 }
adamstark@5 424
adamstark@5 425 numelem = 4;
adamstark@5 426
adamstark@5 427 for (int i = 2;i <= 127;i++) // max beat period
adamstark@5 428 {
adamstark@5 429 for (int a = 1;a <= numelem;a++) // number of comb elements
adamstark@5 430 {
adamstark@5 431 for (int b = 1-a;b <= a-1;b++) // general state using normalisation of comb elements
adamstark@5 432 {
adamstark@5 433 rcf[i-1] = rcf[i-1] + (acf[(a*i+b)-1]*wv[i-1])/(2*a-1); // calculate value for comb filter row
adamstark@5 434 }
adamstark@5 435 }
adamstark@5 436 }
adamstark@5 437 }
adamstark@5 438
adamstark@14 439 //=======================================================================
adamstark@5 440 void BTrack :: acf_bal(float df_thresh[])
adamstark@5 441 {
adamstark@5 442 int l, n = 0;
adamstark@5 443 float sum, tmp;
adamstark@5 444
adamstark@5 445 // for l lags from 0-511
adamstark@5 446 for (l = 0;l < 512;l++)
adamstark@5 447 {
adamstark@5 448 sum = 0;
adamstark@5 449
adamstark@5 450 // for n samples from 0 - (512-lag)
adamstark@5 451 for (n = 0;n < (512-l);n++)
adamstark@5 452 {
adamstark@5 453 tmp = df_thresh[n] * df_thresh[n+l]; // multiply current sample n by sample (n+l)
adamstark@5 454 sum = sum + tmp; // add to sum
adamstark@5 455 }
adamstark@5 456
adamstark@5 457 acf[l] = sum / (512-l); // weight by number of mults and add to acf buffer
adamstark@5 458 }
adamstark@5 459 }
adamstark@5 460
adamstark@14 461 //=======================================================================
adamstark@5 462 float BTrack :: mean_array(float array[],int start,int end)
adamstark@5 463 {
adamstark@5 464 int i;
adamstark@6 465 double sum = 0;
adamstark@6 466
adamstark@6 467 int length = end - start;
adamstark@5 468
adamstark@5 469 // find sum
adamstark@6 470 for (i = start;i < end;i++)
adamstark@5 471 {
adamstark@5 472 sum = sum + array[i];
adamstark@5 473 }
adamstark@5 474
adamstark@6 475 if (length > 0)
adamstark@6 476 {
adamstark@6 477 return sum / length; // average and return
adamstark@6 478 }
adamstark@6 479 else
adamstark@6 480 {
adamstark@6 481 return 0;
adamstark@6 482 }
adamstark@5 483 }
adamstark@5 484
adamstark@14 485 //=======================================================================
adamstark@5 486 void BTrack :: normalise(float array[],int N)
adamstark@5 487 {
adamstark@5 488 double sum = 0;
adamstark@5 489
adamstark@5 490 for (int i = 0;i < N;i++)
adamstark@5 491 {
adamstark@5 492 if (array[i] > 0)
adamstark@5 493 {
adamstark@5 494 sum = sum + array[i];
adamstark@5 495 }
adamstark@5 496 }
adamstark@5 497
adamstark@5 498 if (sum > 0)
adamstark@5 499 {
adamstark@5 500 for (int i = 0;i < N;i++)
adamstark@5 501 {
adamstark@5 502 array[i] = array[i] / sum;
adamstark@5 503 }
adamstark@5 504 }
adamstark@5 505 }
adamstark@5 506
adamstark@14 507 //=======================================================================
adamstark@5 508 void BTrack :: updatecumscore(float df_sample)
adamstark@5 509 {
adamstark@5 510 int start, end, winsize;
adamstark@5 511 float max;
adamstark@5 512
adamstark@5 513 start = dfbuffer_size - round(2*bperiod);
adamstark@5 514 end = dfbuffer_size - round(bperiod/2);
adamstark@5 515 winsize = end-start+1;
adamstark@5 516
adamstark@5 517 float w1[winsize];
adamstark@5 518 float v = -2*bperiod;
adamstark@5 519 float wcumscore;
adamstark@5 520
adamstark@5 521
adamstark@5 522 // create window
adamstark@5 523 for (int i = 0;i < winsize;i++)
adamstark@5 524 {
adamstark@5 525 w1[i] = exp((-1*pow(tightness*log(-v/bperiod),2))/2);
adamstark@5 526 v = v+1;
adamstark@5 527 }
adamstark@5 528
adamstark@5 529 // calculate new cumulative score value
adamstark@5 530 max = 0;
adamstark@5 531 int n = 0;
adamstark@5 532 for (int i=start;i <= end;i++)
adamstark@5 533 {
adamstark@5 534 wcumscore = cumscore[i]*w1[n];
adamstark@5 535
adamstark@5 536 if (wcumscore > max)
adamstark@5 537 {
adamstark@5 538 max = wcumscore;
adamstark@5 539 }
adamstark@5 540 n++;
adamstark@5 541 }
adamstark@5 542
adamstark@5 543
adamstark@5 544 // shift cumulative score back one
adamstark@5 545 for (int i = 0;i < (dfbuffer_size-1);i++)
adamstark@5 546 {
adamstark@5 547 cumscore[i] = cumscore[i+1];
adamstark@5 548 }
adamstark@5 549
adamstark@5 550 // add new value to cumulative score
adamstark@5 551 cumscore[dfbuffer_size-1] = ((1-alpha)*df_sample) + (alpha*max);
adamstark@5 552
adamstark@5 553 cscoreval = cumscore[dfbuffer_size-1];
adamstark@5 554
adamstark@5 555 //cout << cumscore[dfbuffer_size-1] << endl;
adamstark@5 556
adamstark@5 557 }
adamstark@5 558
adamstark@14 559 //=======================================================================
adamstark@5 560 void BTrack :: predictbeat()
adamstark@5 561 {
adamstark@5 562 int winsize = (int) bperiod;
adamstark@5 563 float fcumscore[dfbuffer_size + winsize];
adamstark@5 564 float w2[winsize];
adamstark@5 565 // copy cumscore to first part of fcumscore
adamstark@5 566 for (int i = 0;i < dfbuffer_size;i++)
adamstark@5 567 {
adamstark@5 568 fcumscore[i] = cumscore[i];
adamstark@5 569 }
adamstark@5 570
adamstark@5 571 // create future window
adamstark@5 572 float v = 1;
adamstark@5 573 for (int i = 0;i < winsize;i++)
adamstark@5 574 {
adamstark@5 575 w2[i] = exp((-1*pow((v - (bperiod/2)),2)) / (2*pow((bperiod/2) ,2)));
adamstark@5 576 v++;
adamstark@5 577 }
adamstark@5 578
adamstark@5 579 // create past window
adamstark@5 580 v = -2*bperiod;
adamstark@5 581 int start = dfbuffer_size - round(2*bperiod);
adamstark@5 582 int end = dfbuffer_size - round(bperiod/2);
adamstark@5 583 int pastwinsize = end-start+1;
adamstark@5 584 float w1[pastwinsize];
adamstark@5 585
adamstark@5 586 for (int i = 0;i < pastwinsize;i++)
adamstark@5 587 {
adamstark@5 588 w1[i] = exp((-1*pow(tightness*log(-v/bperiod),2))/2);
adamstark@5 589 v = v+1;
adamstark@5 590 }
adamstark@5 591
adamstark@5 592
adamstark@5 593
adamstark@5 594 // calculate future cumulative score
adamstark@5 595 float max;
adamstark@5 596 int n;
adamstark@5 597 float wcumscore;
adamstark@5 598 for (int i = dfbuffer_size;i < (dfbuffer_size+winsize);i++)
adamstark@5 599 {
adamstark@5 600 start = i - round(2*bperiod);
adamstark@5 601 end = i - round(bperiod/2);
adamstark@5 602
adamstark@5 603 max = 0;
adamstark@5 604 n = 0;
adamstark@5 605 for (int k=start;k <= end;k++)
adamstark@5 606 {
adamstark@5 607 wcumscore = fcumscore[k]*w1[n];
adamstark@5 608
adamstark@5 609 if (wcumscore > max)
adamstark@5 610 {
adamstark@5 611 max = wcumscore;
adamstark@5 612 }
adamstark@5 613 n++;
adamstark@5 614 }
adamstark@5 615
adamstark@5 616 fcumscore[i] = max;
adamstark@5 617 }
adamstark@5 618
adamstark@5 619
adamstark@5 620 // predict beat
adamstark@5 621 max = 0;
adamstark@5 622 n = 0;
adamstark@5 623
adamstark@5 624 for (int i = dfbuffer_size;i < (dfbuffer_size+winsize);i++)
adamstark@5 625 {
adamstark@5 626 wcumscore = fcumscore[i]*w2[n];
adamstark@5 627
adamstark@5 628 if (wcumscore > max)
adamstark@5 629 {
adamstark@5 630 max = wcumscore;
adamstark@5 631 beat = n;
adamstark@5 632 }
adamstark@5 633
adamstark@5 634 n++;
adamstark@5 635 }
adamstark@5 636
adamstark@5 637
adamstark@5 638 // set beat
adamstark@14 639 //beat = beat;
adamstark@5 640
adamstark@5 641 // set next prediction time
adamstark@5 642 m0 = beat+round(bperiod/2);
adamstark@5 643
adamstark@5 644
adamstark@5 645 }