annotate src/BTrack.cpp @ 5:bd2c405d4a06 develop

Added all source code
author Adam <adamstark.uk@gmail.com>
date Tue, 21 Jan 2014 00:10:11 +0000
parents
children 46971d477183
rev   line source
adamstark@5 1 //=======================================================================
adamstark@5 2 /** @file BTrack.cpp
adamstark@5 3 * @brief Implementation file for the BTrack beat tracker
adamstark@5 4 * @author Adam Stark
adamstark@5 5 * @copyright Copyright (C) 2008-2014 Queen Mary University of London
adamstark@5 6 *
adamstark@5 7 * This program is free software: you can redistribute it and/or modify
adamstark@5 8 * it under the terms of the GNU General Public License as published by
adamstark@5 9 * the Free Software Foundation, either version 3 of the License, or
adamstark@5 10 * (at your option) any later version.
adamstark@5 11 *
adamstark@5 12 * This program is distributed in the hope that it will be useful,
adamstark@5 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
adamstark@5 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
adamstark@5 15 * GNU General Public License for more details.
adamstark@5 16 *
adamstark@5 17 * You should have received a copy of the GNU General Public License
adamstark@5 18 * along with this program. If not, see <http://www.gnu.org/licenses/>.
adamstark@5 19 */
adamstark@5 20 //=======================================================================
adamstark@5 21
adamstark@5 22 #include <iostream>
adamstark@5 23 #include <cmath>
adamstark@5 24 #include "BTrack.h"
adamstark@5 25 #include "samplerate.h"
adamstark@5 26 using namespace std;
adamstark@5 27
adamstark@5 28
adamstark@5 29
adamstark@5 30
adamstark@5 31 //-------------------------------------------------------------------------------
adamstark@5 32 // Constructor
adamstark@5 33 BTrack :: BTrack()
adamstark@5 34 {
adamstark@5 35 float rayparam = 43;
adamstark@5 36 float pi = 3.14159265;
adamstark@5 37
adamstark@5 38
adamstark@5 39 // initialise parameters
adamstark@5 40 tightness = 5;
adamstark@5 41 alpha = 0.9;
adamstark@5 42 tempo = 120;
adamstark@5 43 est_tempo = 120;
adamstark@5 44 p_fact = 60.*44100./512.;
adamstark@5 45
adamstark@5 46 m0 = 10;
adamstark@5 47 beat = -1;
adamstark@5 48
adamstark@5 49 playbeat = 0;
adamstark@5 50
adamstark@5 51
adamstark@5 52
adamstark@5 53
adamstark@5 54 // create rayleigh weighting vector
adamstark@5 55 for (int n = 0;n < 128;n++)
adamstark@5 56 {
adamstark@5 57 wv[n] = ((float) n / pow(rayparam,2)) * exp((-1*pow((float)-n,2)) / (2*pow(rayparam,2)));
adamstark@5 58 }
adamstark@5 59
adamstark@5 60 // initialise prev_delta
adamstark@5 61 for (int i = 0;i < 41;i++)
adamstark@5 62 {
adamstark@5 63 prev_delta[i] = 1;
adamstark@5 64 }
adamstark@5 65
adamstark@5 66 float t_mu = 41/2;
adamstark@5 67 float m_sig;
adamstark@5 68 float x;
adamstark@5 69 // create tempo transition matrix
adamstark@5 70 m_sig = 41/8;
adamstark@5 71 for (int i = 0;i < 41;i++)
adamstark@5 72 {
adamstark@5 73 for (int j = 0;j < 41;j++)
adamstark@5 74 {
adamstark@5 75 x = j+1;
adamstark@5 76 t_mu = i+1;
adamstark@5 77 t_tmat[i][j] = (1 / (m_sig * sqrt(2*pi))) * exp( (-1*pow((x-t_mu),2)) / (2*pow(m_sig,2)) );
adamstark@5 78 }
adamstark@5 79 }
adamstark@5 80
adamstark@5 81 // tempo is not fixed
adamstark@5 82 tempofix = 0;
adamstark@5 83 }
adamstark@5 84
adamstark@5 85 //-------------------------------------------------------------------------------
adamstark@5 86 // Destructor
adamstark@5 87 BTrack :: ~BTrack()
adamstark@5 88 {
adamstark@5 89
adamstark@5 90 }
adamstark@5 91
adamstark@5 92 //-------------------------------------------------------------------------------
adamstark@5 93 // Initialise with frame size and set all frame sizes accordingly
adamstark@5 94 void BTrack :: initialise(int fsize)
adamstark@5 95 {
adamstark@5 96 framesize = fsize;
adamstark@5 97 dfbuffer_size = (512*512)/fsize; // calculate df buffer size
adamstark@5 98
adamstark@5 99 bperiod = round(60/((((float) fsize)/44100)*tempo));
adamstark@5 100
adamstark@5 101 dfbuffer = new float[dfbuffer_size]; // create df_buffer
adamstark@5 102 cumscore = new float[dfbuffer_size]; // create cumscore
adamstark@5 103
adamstark@5 104
adamstark@5 105 // initialise df_buffer to zeros
adamstark@5 106 for (int i = 0;i < dfbuffer_size;i++)
adamstark@5 107 {
adamstark@5 108 dfbuffer[i] = 0;
adamstark@5 109 cumscore[i] = 0;
adamstark@5 110
adamstark@5 111
adamstark@5 112 if ((i % ((int) round(bperiod))) == 0)
adamstark@5 113 {
adamstark@5 114 dfbuffer[i] = 1;
adamstark@5 115 }
adamstark@5 116 }
adamstark@5 117 }
adamstark@5 118
adamstark@5 119 //-------------------------------------------------------------------------------
adamstark@5 120 // Add new sample to buffer and apply beat tracking
adamstark@5 121 void BTrack :: process(float df_sample)
adamstark@5 122 {
adamstark@5 123 m0--;
adamstark@5 124 beat--;
adamstark@5 125 playbeat = 0;
adamstark@5 126
adamstark@5 127 // move all samples back one step
adamstark@5 128 for (int i=0;i < (dfbuffer_size-1);i++)
adamstark@5 129 {
adamstark@5 130 dfbuffer[i] = dfbuffer[i+1];
adamstark@5 131 }
adamstark@5 132
adamstark@5 133 // add new sample at the end
adamstark@5 134 dfbuffer[dfbuffer_size-1] = df_sample;
adamstark@5 135
adamstark@5 136 // update cumulative score
adamstark@5 137 updatecumscore(df_sample);
adamstark@5 138
adamstark@5 139 // if we are halfway between beats
adamstark@5 140 if (m0 == 0)
adamstark@5 141 {
adamstark@5 142 predictbeat();
adamstark@5 143 }
adamstark@5 144
adamstark@5 145 // if we are at a beat
adamstark@5 146 if (beat == 0)
adamstark@5 147 {
adamstark@5 148 playbeat = 1; // indicate a beat should be output
adamstark@5 149
adamstark@5 150 // recalculate the tempo
adamstark@5 151 dfconvert();
adamstark@5 152 calcTempo();
adamstark@5 153 }
adamstark@5 154 }
adamstark@5 155
adamstark@5 156 //-------------------------------------------------------------------------------
adamstark@5 157 // Set the tempo of the beat tracker
adamstark@5 158 void BTrack :: settempo(float tempo)
adamstark@5 159 {
adamstark@5 160
adamstark@5 161 /////////// TEMPO INDICATION RESET //////////////////
adamstark@5 162
adamstark@5 163 // firstly make sure tempo is between 80 and 160 bpm..
adamstark@5 164 while (tempo > 160)
adamstark@5 165 {
adamstark@5 166 tempo = tempo/2;
adamstark@5 167 }
adamstark@5 168
adamstark@5 169 while (tempo < 80)
adamstark@5 170 {
adamstark@5 171 tempo = tempo * 2;
adamstark@5 172 }
adamstark@5 173
adamstark@5 174 // convert tempo from bpm value to integer index of tempo probability
adamstark@5 175 int tempo_index = (int) round((tempo - 80)/2);
adamstark@5 176
adamstark@5 177 // now set previous tempo observations to zero
adamstark@5 178 for (int i=0;i < 41;i++)
adamstark@5 179 {
adamstark@5 180 prev_delta[i] = 0;
adamstark@5 181 }
adamstark@5 182
adamstark@5 183 // set desired tempo index to 1
adamstark@5 184 prev_delta[tempo_index] = 1;
adamstark@5 185
adamstark@5 186
adamstark@5 187 /////////// CUMULATIVE SCORE ARTIFICAL TEMPO UPDATE //////////////////
adamstark@5 188
adamstark@5 189 // calculate new beat period
adamstark@5 190 int new_bperiod = (int) round(60/((((float) framesize)/44100)*tempo));
adamstark@5 191
adamstark@5 192 int bcounter = 1;
adamstark@5 193 // initialise df_buffer to zeros
adamstark@5 194 for (int i = (dfbuffer_size-1);i >= 0;i--)
adamstark@5 195 {
adamstark@5 196 if (bcounter == 1)
adamstark@5 197 {
adamstark@5 198 cumscore[i] = 150;
adamstark@5 199 dfbuffer[i] = 150;
adamstark@5 200 }
adamstark@5 201 else
adamstark@5 202 {
adamstark@5 203 cumscore[i] = 10;
adamstark@5 204 dfbuffer[i] = 10;
adamstark@5 205 }
adamstark@5 206
adamstark@5 207 bcounter++;
adamstark@5 208
adamstark@5 209 if (bcounter > new_bperiod)
adamstark@5 210 {
adamstark@5 211 bcounter = 1;
adamstark@5 212 }
adamstark@5 213 }
adamstark@5 214
adamstark@5 215 /////////// INDICATE THAT THIS IS A BEAT //////////////////
adamstark@5 216
adamstark@5 217 // beat is now
adamstark@5 218 beat = 0;
adamstark@5 219
adamstark@5 220 // offbeat is half of new beat period away
adamstark@5 221 m0 = (int) round(((float) new_bperiod)/2);
adamstark@5 222 }
adamstark@5 223
adamstark@5 224
adamstark@5 225 //-------------------------------------------------------------------------------
adamstark@5 226 // fix tempo to roughly around some value
adamstark@5 227 void BTrack :: fixtempo(float tempo)
adamstark@5 228 {
adamstark@5 229 // firstly make sure tempo is between 80 and 160 bpm..
adamstark@5 230 while (tempo > 160)
adamstark@5 231 {
adamstark@5 232 tempo = tempo/2;
adamstark@5 233 }
adamstark@5 234
adamstark@5 235 while (tempo < 80)
adamstark@5 236 {
adamstark@5 237 tempo = tempo * 2;
adamstark@5 238 }
adamstark@5 239
adamstark@5 240 // convert tempo from bpm value to integer index of tempo probability
adamstark@5 241 int tempo_index = (int) round((tempo - 80)/2);
adamstark@5 242
adamstark@5 243 // now set previous fixed previous tempo observation values to zero
adamstark@5 244 for (int i=0;i < 41;i++)
adamstark@5 245 {
adamstark@5 246 prev_delta_fix[i] = 0;
adamstark@5 247 }
adamstark@5 248
adamstark@5 249 // set desired tempo index to 1
adamstark@5 250 prev_delta_fix[tempo_index] = 1;
adamstark@5 251
adamstark@5 252 // set the tempo fix flag
adamstark@5 253 tempofix = 1;
adamstark@5 254 }
adamstark@5 255
adamstark@5 256 //-------------------------------------------------------------------------------
adamstark@5 257 // do not fix the tempo anymore
adamstark@5 258 void BTrack :: unfixtempo()
adamstark@5 259 {
adamstark@5 260 // set the tempo fix flag
adamstark@5 261 tempofix = 0;
adamstark@5 262 }
adamstark@5 263
adamstark@5 264 //-------------------------------------------------------------------------------
adamstark@5 265 // Convert detection function from N samples to 512
adamstark@5 266 void BTrack :: dfconvert()
adamstark@5 267 {
adamstark@5 268 float output[512];
adamstark@5 269
adamstark@5 270 double src_ratio = 512.0/((double) dfbuffer_size);
adamstark@5 271 int BUFFER_LEN = dfbuffer_size;
adamstark@5 272 int output_len;
adamstark@5 273 SRC_DATA src_data ;
adamstark@5 274
adamstark@5 275 //output_len = (int) floor (((double) BUFFER_LEN) * src_ratio) ;
adamstark@5 276 output_len = 512;
adamstark@5 277
adamstark@5 278 src_data.data_in = dfbuffer;
adamstark@5 279 src_data.input_frames = BUFFER_LEN;
adamstark@5 280
adamstark@5 281 src_data.src_ratio = src_ratio;
adamstark@5 282
adamstark@5 283 src_data.data_out = output;
adamstark@5 284 src_data.output_frames = output_len;
adamstark@5 285
adamstark@5 286 src_simple (&src_data, SRC_SINC_BEST_QUALITY, 1);
adamstark@5 287
adamstark@5 288 for (int i = 0;i < output_len;i++)
adamstark@5 289 {
adamstark@5 290 df512[i] = src_data.data_out[i];
adamstark@5 291 }
adamstark@5 292 }
adamstark@5 293
adamstark@5 294 //-------------------------------------------------------------------------------
adamstark@5 295 // To calculate the current tempo expressed as the beat period in detection function samples
adamstark@5 296 void BTrack :: calcTempo()
adamstark@5 297 {
adamstark@5 298 // adaptive threshold on input
adamstark@5 299 adapt_thresh(df512,512);
adamstark@5 300
adamstark@5 301 // calculate auto-correlation function of detection function
adamstark@5 302 acf_bal(df512);
adamstark@5 303
adamstark@5 304 // calculate output of comb filterbank
adamstark@5 305 getrcfoutput();
adamstark@5 306
adamstark@5 307
adamstark@5 308 // adaptive threshold on rcf
adamstark@5 309 adapt_thresh(rcf,128);
adamstark@5 310
adamstark@5 311
adamstark@5 312 int t_index;
adamstark@5 313 int t_index2;
adamstark@5 314 // calculate tempo observation vector from bperiod observation vector
adamstark@5 315 for (int i = 0;i < 41;i++)
adamstark@5 316 {
adamstark@5 317 t_index = (int) round(p_fact / ((float) ((2*i)+80)));
adamstark@5 318 t_index2 = (int) round(p_fact / ((float) ((4*i)+160)));
adamstark@5 319
adamstark@5 320
adamstark@5 321 t_obs[i] = rcf[t_index-1] + rcf[t_index2-1];
adamstark@5 322 }
adamstark@5 323
adamstark@5 324
adamstark@5 325 float maxval;
adamstark@5 326 float maxind;
adamstark@5 327 float curval;
adamstark@5 328
adamstark@5 329 // if tempo is fixed then always use a fixed set of tempi as the previous observation probability function
adamstark@5 330 if (tempofix == 1)
adamstark@5 331 {
adamstark@5 332 for (int k = 0;k < 41;k++)
adamstark@5 333 {
adamstark@5 334 prev_delta[k] = prev_delta_fix[k];
adamstark@5 335 }
adamstark@5 336 }
adamstark@5 337
adamstark@5 338 for (int j=0;j < 41;j++)
adamstark@5 339 {
adamstark@5 340 maxval = -1;
adamstark@5 341 for (int i = 0;i < 41;i++)
adamstark@5 342 {
adamstark@5 343 curval = prev_delta[i]*t_tmat[i][j];
adamstark@5 344
adamstark@5 345 if (curval > maxval)
adamstark@5 346 {
adamstark@5 347 maxval = curval;
adamstark@5 348 }
adamstark@5 349 }
adamstark@5 350
adamstark@5 351 delta[j] = maxval*t_obs[j];
adamstark@5 352 }
adamstark@5 353
adamstark@5 354
adamstark@5 355 normalise(delta,41);
adamstark@5 356
adamstark@5 357 maxind = -1;
adamstark@5 358 maxval = -1;
adamstark@5 359
adamstark@5 360 for (int j=0;j < 41;j++)
adamstark@5 361 {
adamstark@5 362 if (delta[j] > maxval)
adamstark@5 363 {
adamstark@5 364 maxval = delta[j];
adamstark@5 365 maxind = j;
adamstark@5 366 }
adamstark@5 367
adamstark@5 368 prev_delta[j] = delta[j];
adamstark@5 369 }
adamstark@5 370
adamstark@5 371 bperiod = round((60.0*44100.0)/(((2*maxind)+80)*((float) framesize)));
adamstark@5 372
adamstark@5 373 if (bperiod > 0)
adamstark@5 374 {
adamstark@5 375 est_tempo = 60.0/((((float) framesize) / 44100.0)*bperiod);
adamstark@5 376 }
adamstark@5 377
adamstark@5 378 //cout << bperiod << endl;
adamstark@5 379 }
adamstark@5 380
adamstark@5 381 //-------------------------------------------------------------------------------
adamstark@5 382 // calculates an adaptive threshold which is used to remove low level energy from detection function and emphasise peaks
adamstark@5 383 void BTrack :: adapt_thresh(float x[],int N)
adamstark@5 384 {
adamstark@5 385 //int N = 512; // length of df
adamstark@5 386 int i = 0;
adamstark@5 387 int k,t = 0;
adamstark@5 388 float x_thresh[N];
adamstark@5 389
adamstark@5 390 int p_post = 7;
adamstark@5 391 int p_pre = 8;
adamstark@5 392
adamstark@5 393 t = min(N,p_post); // what is smaller, p_post of df size. This is to avoid accessing outside of arrays
adamstark@5 394
adamstark@5 395 // find threshold for first 't' samples, where a full average cannot be computed yet
adamstark@5 396 for (i = 0;i <= t;i++)
adamstark@5 397 {
adamstark@5 398 k = min((i+p_pre),N);
adamstark@5 399 x_thresh[i] = mean_array(x,1,k);
adamstark@5 400 }
adamstark@5 401 // find threshold for bulk of samples across a moving average from [i-p_pre,i+p_post]
adamstark@5 402 for (i = t+1;i < N-p_post;i++)
adamstark@5 403 {
adamstark@5 404 x_thresh[i] = mean_array(x,i-p_pre,i+p_post);
adamstark@5 405 }
adamstark@5 406 // for last few samples calculate threshold, again, not enough samples to do as above
adamstark@5 407 for (i = N-p_post;i < N;i++)
adamstark@5 408 {
adamstark@5 409 k = max((i-p_post),1);
adamstark@5 410 x_thresh[i] = mean_array(x,k,N);
adamstark@5 411 }
adamstark@5 412
adamstark@5 413 // subtract the threshold from the detection function and check that it is not less than 0
adamstark@5 414 for (i = 0;i < N;i++)
adamstark@5 415 {
adamstark@5 416 x[i] = x[i] - x_thresh[i];
adamstark@5 417 if (x[i] < 0)
adamstark@5 418 {
adamstark@5 419 x[i] = 0;
adamstark@5 420 }
adamstark@5 421 }
adamstark@5 422 }
adamstark@5 423
adamstark@5 424 //-------------------------------------------------------------------------------
adamstark@5 425 // returns the output of the comb filter
adamstark@5 426 void BTrack :: getrcfoutput()
adamstark@5 427 {
adamstark@5 428 int numelem;
adamstark@5 429
adamstark@5 430 for (int i = 0;i < 128;i++)
adamstark@5 431 {
adamstark@5 432 rcf[i] = 0;
adamstark@5 433 }
adamstark@5 434
adamstark@5 435 numelem = 4;
adamstark@5 436
adamstark@5 437 for (int i = 2;i <= 127;i++) // max beat period
adamstark@5 438 {
adamstark@5 439 for (int a = 1;a <= numelem;a++) // number of comb elements
adamstark@5 440 {
adamstark@5 441 for (int b = 1-a;b <= a-1;b++) // general state using normalisation of comb elements
adamstark@5 442 {
adamstark@5 443 rcf[i-1] = rcf[i-1] + (acf[(a*i+b)-1]*wv[i-1])/(2*a-1); // calculate value for comb filter row
adamstark@5 444 }
adamstark@5 445 }
adamstark@5 446 }
adamstark@5 447 }
adamstark@5 448
adamstark@5 449 //-------------------------------------------------------------------------------
adamstark@5 450 // calculates the balanced autocorrelation of the smoothed detection function
adamstark@5 451 void BTrack :: acf_bal(float df_thresh[])
adamstark@5 452 {
adamstark@5 453 int l, n = 0;
adamstark@5 454 float sum, tmp;
adamstark@5 455
adamstark@5 456 // for l lags from 0-511
adamstark@5 457 for (l = 0;l < 512;l++)
adamstark@5 458 {
adamstark@5 459 sum = 0;
adamstark@5 460
adamstark@5 461 // for n samples from 0 - (512-lag)
adamstark@5 462 for (n = 0;n < (512-l);n++)
adamstark@5 463 {
adamstark@5 464 tmp = df_thresh[n] * df_thresh[n+l]; // multiply current sample n by sample (n+l)
adamstark@5 465 sum = sum + tmp; // add to sum
adamstark@5 466 }
adamstark@5 467
adamstark@5 468 acf[l] = sum / (512-l); // weight by number of mults and add to acf buffer
adamstark@5 469 }
adamstark@5 470 }
adamstark@5 471
adamstark@5 472
adamstark@5 473 //-------------------------------------------------------------------------------
adamstark@5 474 // calculates the mean of values in an array from index locations [start,end]
adamstark@5 475 float BTrack :: mean_array(float array[],int start,int end)
adamstark@5 476 {
adamstark@5 477 int i;
adamstark@5 478 float sum = 0;
adamstark@5 479 int length = end - start + 1;
adamstark@5 480
adamstark@5 481 // find sum
adamstark@5 482 for (i = start;i < end+1;i++)
adamstark@5 483 {
adamstark@5 484 sum = sum + array[i];
adamstark@5 485 }
adamstark@5 486
adamstark@5 487 return sum / length; // average and return
adamstark@5 488 }
adamstark@5 489
adamstark@5 490 //-------------------------------------------------------------------------------
adamstark@5 491 // normalise the array
adamstark@5 492 void BTrack :: normalise(float array[],int N)
adamstark@5 493 {
adamstark@5 494 double sum = 0;
adamstark@5 495
adamstark@5 496 for (int i = 0;i < N;i++)
adamstark@5 497 {
adamstark@5 498 if (array[i] > 0)
adamstark@5 499 {
adamstark@5 500 sum = sum + array[i];
adamstark@5 501 }
adamstark@5 502 }
adamstark@5 503
adamstark@5 504 if (sum > 0)
adamstark@5 505 {
adamstark@5 506 for (int i = 0;i < N;i++)
adamstark@5 507 {
adamstark@5 508 array[i] = array[i] / sum;
adamstark@5 509 }
adamstark@5 510 }
adamstark@5 511 }
adamstark@5 512
adamstark@5 513 //-------------------------------------------------------------------------------
adamstark@5 514 // plot contents of detection function buffer
adamstark@5 515 void BTrack :: plotdfbuffer()
adamstark@5 516 {
adamstark@5 517 for (int i=0;i < dfbuffer_size;i++)
adamstark@5 518 {
adamstark@5 519 cout << dfbuffer[i] << endl;
adamstark@5 520 }
adamstark@5 521
adamstark@5 522 cout << "--------------------------------" << endl;
adamstark@5 523 }
adamstark@5 524
adamstark@5 525 //-------------------------------------------------------------------------------
adamstark@5 526 // update the cumulative score
adamstark@5 527 void BTrack :: updatecumscore(float df_sample)
adamstark@5 528 {
adamstark@5 529 int start, end, winsize;
adamstark@5 530 float max;
adamstark@5 531
adamstark@5 532 start = dfbuffer_size - round(2*bperiod);
adamstark@5 533 end = dfbuffer_size - round(bperiod/2);
adamstark@5 534 winsize = end-start+1;
adamstark@5 535
adamstark@5 536 float w1[winsize];
adamstark@5 537 float v = -2*bperiod;
adamstark@5 538 float wcumscore;
adamstark@5 539
adamstark@5 540
adamstark@5 541 // create window
adamstark@5 542 for (int i = 0;i < winsize;i++)
adamstark@5 543 {
adamstark@5 544 w1[i] = exp((-1*pow(tightness*log(-v/bperiod),2))/2);
adamstark@5 545 v = v+1;
adamstark@5 546 }
adamstark@5 547
adamstark@5 548 // calculate new cumulative score value
adamstark@5 549 max = 0;
adamstark@5 550 int n = 0;
adamstark@5 551 for (int i=start;i <= end;i++)
adamstark@5 552 {
adamstark@5 553 wcumscore = cumscore[i]*w1[n];
adamstark@5 554
adamstark@5 555 if (wcumscore > max)
adamstark@5 556 {
adamstark@5 557 max = wcumscore;
adamstark@5 558 }
adamstark@5 559 n++;
adamstark@5 560 }
adamstark@5 561
adamstark@5 562
adamstark@5 563 // shift cumulative score back one
adamstark@5 564 for (int i = 0;i < (dfbuffer_size-1);i++)
adamstark@5 565 {
adamstark@5 566 cumscore[i] = cumscore[i+1];
adamstark@5 567 }
adamstark@5 568
adamstark@5 569 // add new value to cumulative score
adamstark@5 570 cumscore[dfbuffer_size-1] = ((1-alpha)*df_sample) + (alpha*max);
adamstark@5 571
adamstark@5 572 cscoreval = cumscore[dfbuffer_size-1];
adamstark@5 573
adamstark@5 574 //cout << cumscore[dfbuffer_size-1] << endl;
adamstark@5 575
adamstark@5 576 }
adamstark@5 577
adamstark@5 578 //-------------------------------------------------------------------------------
adamstark@5 579 // plot contents of detection function buffer
adamstark@5 580 void BTrack :: predictbeat()
adamstark@5 581 {
adamstark@5 582 int winsize = (int) bperiod;
adamstark@5 583 float fcumscore[dfbuffer_size + winsize];
adamstark@5 584 float w2[winsize];
adamstark@5 585 // copy cumscore to first part of fcumscore
adamstark@5 586 for (int i = 0;i < dfbuffer_size;i++)
adamstark@5 587 {
adamstark@5 588 fcumscore[i] = cumscore[i];
adamstark@5 589 }
adamstark@5 590
adamstark@5 591 // create future window
adamstark@5 592 float v = 1;
adamstark@5 593 for (int i = 0;i < winsize;i++)
adamstark@5 594 {
adamstark@5 595 w2[i] = exp((-1*pow((v - (bperiod/2)),2)) / (2*pow((bperiod/2) ,2)));
adamstark@5 596 v++;
adamstark@5 597 }
adamstark@5 598
adamstark@5 599 // create past window
adamstark@5 600 v = -2*bperiod;
adamstark@5 601 int start = dfbuffer_size - round(2*bperiod);
adamstark@5 602 int end = dfbuffer_size - round(bperiod/2);
adamstark@5 603 int pastwinsize = end-start+1;
adamstark@5 604 float w1[pastwinsize];
adamstark@5 605
adamstark@5 606 for (int i = 0;i < pastwinsize;i++)
adamstark@5 607 {
adamstark@5 608 w1[i] = exp((-1*pow(tightness*log(-v/bperiod),2))/2);
adamstark@5 609 v = v+1;
adamstark@5 610 }
adamstark@5 611
adamstark@5 612
adamstark@5 613
adamstark@5 614 // calculate future cumulative score
adamstark@5 615 float max;
adamstark@5 616 int n;
adamstark@5 617 float wcumscore;
adamstark@5 618 for (int i = dfbuffer_size;i < (dfbuffer_size+winsize);i++)
adamstark@5 619 {
adamstark@5 620 start = i - round(2*bperiod);
adamstark@5 621 end = i - round(bperiod/2);
adamstark@5 622
adamstark@5 623 max = 0;
adamstark@5 624 n = 0;
adamstark@5 625 for (int k=start;k <= end;k++)
adamstark@5 626 {
adamstark@5 627 wcumscore = fcumscore[k]*w1[n];
adamstark@5 628
adamstark@5 629 if (wcumscore > max)
adamstark@5 630 {
adamstark@5 631 max = wcumscore;
adamstark@5 632 }
adamstark@5 633 n++;
adamstark@5 634 }
adamstark@5 635
adamstark@5 636 fcumscore[i] = max;
adamstark@5 637 }
adamstark@5 638
adamstark@5 639
adamstark@5 640 // predict beat
adamstark@5 641 max = 0;
adamstark@5 642 n = 0;
adamstark@5 643
adamstark@5 644 for (int i = dfbuffer_size;i < (dfbuffer_size+winsize);i++)
adamstark@5 645 {
adamstark@5 646 wcumscore = fcumscore[i]*w2[n];
adamstark@5 647
adamstark@5 648 if (wcumscore > max)
adamstark@5 649 {
adamstark@5 650 max = wcumscore;
adamstark@5 651 beat = n;
adamstark@5 652 }
adamstark@5 653
adamstark@5 654 n++;
adamstark@5 655 }
adamstark@5 656
adamstark@5 657
adamstark@5 658 // set beat
adamstark@5 659 beat = beat;
adamstark@5 660
adamstark@5 661 // set next prediction time
adamstark@5 662 m0 = beat+round(bperiod/2);
adamstark@5 663
adamstark@5 664
adamstark@5 665 }