annotate src/BTrack.cpp @ 53:338f5eb29e41

Small syntax change for array arguments so they are pointers rather than array[]. Just personal preference.
author Adam Stark <adamstark@users.noreply.github.com>
date Wed, 22 Jan 2014 01:34:04 +0000
parents 45231107c9d6
children 9699024bb3d0
rev   line source
adamstark@46 1 //=======================================================================
adamstark@46 2 /** @file BTrack.cpp
adamstark@47 3 * @brief BTrack - a real-time beat tracker
adamstark@46 4 * @author Adam Stark
adamstark@46 5 * @copyright Copyright (C) 2008-2014 Queen Mary University of London
adamstark@46 6 *
adamstark@46 7 * This program is free software: you can redistribute it and/or modify
adamstark@46 8 * it under the terms of the GNU General Public License as published by
adamstark@46 9 * the Free Software Foundation, either version 3 of the License, or
adamstark@46 10 * (at your option) any later version.
adamstark@46 11 *
adamstark@46 12 * This program is distributed in the hope that it will be useful,
adamstark@46 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
adamstark@46 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
adamstark@46 15 * GNU General Public License for more details.
adamstark@46 16 *
adamstark@46 17 * You should have received a copy of the GNU General Public License
adamstark@46 18 * along with this program. If not, see <http://www.gnu.org/licenses/>.
adamstark@46 19 */
adamstark@46 20 //=======================================================================
adamstark@46 21
adamstark@46 22 #include <cmath>
adamstark@52 23 #include <algorithm>
adamstark@46 24 #include "BTrack.h"
adamstark@46 25 #include "samplerate.h"
adamstark@46 26
adamstark@46 27
adamstark@51 28 //=======================================================================
adamstark@46 29 BTrack :: BTrack()
adamstark@46 30 {
adamstark@46 31 float rayparam = 43;
adamstark@46 32 float pi = 3.14159265;
adamstark@46 33
adamstark@46 34
adamstark@46 35 // initialise parameters
adamstark@46 36 tightness = 5;
adamstark@46 37 alpha = 0.9;
adamstark@46 38 tempo = 120;
adamstark@46 39 est_tempo = 120;
adamstark@46 40 p_fact = 60.*44100./512.;
adamstark@46 41
adamstark@46 42 m0 = 10;
adamstark@46 43 beat = -1;
adamstark@46 44
adamstark@46 45 playbeat = 0;
adamstark@46 46
adamstark@46 47
adamstark@46 48
adamstark@46 49
adamstark@46 50 // create rayleigh weighting vector
adamstark@46 51 for (int n = 0;n < 128;n++)
adamstark@46 52 {
adamstark@46 53 wv[n] = ((float) n / pow(rayparam,2)) * exp((-1*pow((float)-n,2)) / (2*pow(rayparam,2)));
adamstark@46 54 }
adamstark@46 55
adamstark@46 56 // initialise prev_delta
adamstark@46 57 for (int i = 0;i < 41;i++)
adamstark@46 58 {
adamstark@46 59 prev_delta[i] = 1;
adamstark@46 60 }
adamstark@46 61
adamstark@46 62 float t_mu = 41/2;
adamstark@46 63 float m_sig;
adamstark@46 64 float x;
adamstark@46 65 // create tempo transition matrix
adamstark@46 66 m_sig = 41/8;
adamstark@46 67 for (int i = 0;i < 41;i++)
adamstark@46 68 {
adamstark@46 69 for (int j = 0;j < 41;j++)
adamstark@46 70 {
adamstark@46 71 x = j+1;
adamstark@46 72 t_mu = i+1;
adamstark@46 73 t_tmat[i][j] = (1 / (m_sig * sqrt(2*pi))) * exp( (-1*pow((x-t_mu),2)) / (2*pow(m_sig,2)) );
adamstark@46 74 }
adamstark@46 75 }
adamstark@46 76
adamstark@46 77 // tempo is not fixed
adamstark@46 78 tempofix = 0;
adamstark@46 79 }
adamstark@46 80
adamstark@51 81 //=======================================================================
adamstark@46 82 BTrack :: ~BTrack()
adamstark@46 83 {
adamstark@46 84
adamstark@46 85 }
adamstark@46 86
adamstark@51 87
adamstark@51 88
adamstark@51 89 //=======================================================================
adamstark@46 90 void BTrack :: initialise(int fsize)
adamstark@46 91 {
adamstark@46 92 framesize = fsize;
adamstark@46 93 dfbuffer_size = (512*512)/fsize; // calculate df buffer size
adamstark@46 94
adamstark@46 95 bperiod = round(60/((((float) fsize)/44100)*tempo));
adamstark@46 96
adamstark@46 97 dfbuffer = new float[dfbuffer_size]; // create df_buffer
adamstark@46 98 cumscore = new float[dfbuffer_size]; // create cumscore
adamstark@46 99
adamstark@46 100
adamstark@46 101 // initialise df_buffer to zeros
adamstark@46 102 for (int i = 0;i < dfbuffer_size;i++)
adamstark@46 103 {
adamstark@46 104 dfbuffer[i] = 0;
adamstark@46 105 cumscore[i] = 0;
adamstark@46 106
adamstark@46 107
adamstark@46 108 if ((i % ((int) round(bperiod))) == 0)
adamstark@46 109 {
adamstark@46 110 dfbuffer[i] = 1;
adamstark@46 111 }
adamstark@46 112 }
adamstark@46 113 }
adamstark@46 114
adamstark@51 115 //=======================================================================
adamstark@46 116 void BTrack :: process(float df_sample)
adamstark@46 117 {
adamstark@46 118 m0--;
adamstark@46 119 beat--;
adamstark@46 120 playbeat = 0;
adamstark@46 121
adamstark@46 122 // move all samples back one step
adamstark@46 123 for (int i=0;i < (dfbuffer_size-1);i++)
adamstark@46 124 {
adamstark@46 125 dfbuffer[i] = dfbuffer[i+1];
adamstark@46 126 }
adamstark@46 127
adamstark@46 128 // add new sample at the end
adamstark@46 129 dfbuffer[dfbuffer_size-1] = df_sample;
adamstark@46 130
adamstark@46 131 // update cumulative score
adamstark@46 132 updatecumscore(df_sample);
adamstark@46 133
adamstark@46 134 // if we are halfway between beats
adamstark@46 135 if (m0 == 0)
adamstark@46 136 {
adamstark@46 137 predictbeat();
adamstark@46 138 }
adamstark@46 139
adamstark@46 140 // if we are at a beat
adamstark@46 141 if (beat == 0)
adamstark@46 142 {
adamstark@46 143 playbeat = 1; // indicate a beat should be output
adamstark@46 144
adamstark@46 145 // recalculate the tempo
adamstark@46 146 dfconvert();
adamstark@46 147 calcTempo();
adamstark@46 148 }
adamstark@46 149 }
adamstark@46 150
adamstark@51 151 //=======================================================================
adamstark@46 152 void BTrack :: settempo(float tempo)
adamstark@46 153 {
adamstark@46 154
adamstark@46 155 /////////// TEMPO INDICATION RESET //////////////////
adamstark@46 156
adamstark@46 157 // firstly make sure tempo is between 80 and 160 bpm..
adamstark@46 158 while (tempo > 160)
adamstark@46 159 {
adamstark@46 160 tempo = tempo/2;
adamstark@46 161 }
adamstark@46 162
adamstark@46 163 while (tempo < 80)
adamstark@46 164 {
adamstark@46 165 tempo = tempo * 2;
adamstark@46 166 }
adamstark@46 167
adamstark@46 168 // convert tempo from bpm value to integer index of tempo probability
adamstark@46 169 int tempo_index = (int) round((tempo - 80)/2);
adamstark@46 170
adamstark@46 171 // now set previous tempo observations to zero
adamstark@46 172 for (int i=0;i < 41;i++)
adamstark@46 173 {
adamstark@46 174 prev_delta[i] = 0;
adamstark@46 175 }
adamstark@46 176
adamstark@46 177 // set desired tempo index to 1
adamstark@46 178 prev_delta[tempo_index] = 1;
adamstark@46 179
adamstark@46 180
adamstark@46 181 /////////// CUMULATIVE SCORE ARTIFICAL TEMPO UPDATE //////////////////
adamstark@46 182
adamstark@46 183 // calculate new beat period
adamstark@46 184 int new_bperiod = (int) round(60/((((float) framesize)/44100)*tempo));
adamstark@46 185
adamstark@46 186 int bcounter = 1;
adamstark@46 187 // initialise df_buffer to zeros
adamstark@46 188 for (int i = (dfbuffer_size-1);i >= 0;i--)
adamstark@46 189 {
adamstark@46 190 if (bcounter == 1)
adamstark@46 191 {
adamstark@46 192 cumscore[i] = 150;
adamstark@46 193 dfbuffer[i] = 150;
adamstark@46 194 }
adamstark@46 195 else
adamstark@46 196 {
adamstark@46 197 cumscore[i] = 10;
adamstark@46 198 dfbuffer[i] = 10;
adamstark@46 199 }
adamstark@46 200
adamstark@46 201 bcounter++;
adamstark@46 202
adamstark@46 203 if (bcounter > new_bperiod)
adamstark@46 204 {
adamstark@46 205 bcounter = 1;
adamstark@46 206 }
adamstark@46 207 }
adamstark@46 208
adamstark@46 209 /////////// INDICATE THAT THIS IS A BEAT //////////////////
adamstark@46 210
adamstark@46 211 // beat is now
adamstark@46 212 beat = 0;
adamstark@46 213
adamstark@46 214 // offbeat is half of new beat period away
adamstark@46 215 m0 = (int) round(((float) new_bperiod)/2);
adamstark@46 216 }
adamstark@46 217
adamstark@51 218 //=======================================================================
adamstark@46 219 void BTrack :: fixtempo(float tempo)
adamstark@46 220 {
adamstark@46 221 // firstly make sure tempo is between 80 and 160 bpm..
adamstark@46 222 while (tempo > 160)
adamstark@46 223 {
adamstark@46 224 tempo = tempo/2;
adamstark@46 225 }
adamstark@46 226
adamstark@46 227 while (tempo < 80)
adamstark@46 228 {
adamstark@46 229 tempo = tempo * 2;
adamstark@46 230 }
adamstark@46 231
adamstark@46 232 // convert tempo from bpm value to integer index of tempo probability
adamstark@46 233 int tempo_index = (int) round((tempo - 80)/2);
adamstark@46 234
adamstark@46 235 // now set previous fixed previous tempo observation values to zero
adamstark@46 236 for (int i=0;i < 41;i++)
adamstark@46 237 {
adamstark@46 238 prev_delta_fix[i] = 0;
adamstark@46 239 }
adamstark@46 240
adamstark@46 241 // set desired tempo index to 1
adamstark@46 242 prev_delta_fix[tempo_index] = 1;
adamstark@46 243
adamstark@46 244 // set the tempo fix flag
adamstark@46 245 tempofix = 1;
adamstark@46 246 }
adamstark@46 247
adamstark@51 248 //=======================================================================
adamstark@46 249 void BTrack :: unfixtempo()
adamstark@46 250 {
adamstark@46 251 // set the tempo fix flag
adamstark@46 252 tempofix = 0;
adamstark@46 253 }
adamstark@46 254
adamstark@51 255 //=======================================================================
adamstark@46 256 void BTrack :: dfconvert()
adamstark@46 257 {
adamstark@46 258 float output[512];
adamstark@46 259
adamstark@46 260 double src_ratio = 512.0/((double) dfbuffer_size);
adamstark@46 261 int BUFFER_LEN = dfbuffer_size;
adamstark@46 262 int output_len;
adamstark@46 263 SRC_DATA src_data ;
adamstark@46 264
adamstark@46 265 //output_len = (int) floor (((double) BUFFER_LEN) * src_ratio) ;
adamstark@46 266 output_len = 512;
adamstark@46 267
adamstark@46 268 src_data.data_in = dfbuffer;
adamstark@46 269 src_data.input_frames = BUFFER_LEN;
adamstark@46 270
adamstark@46 271 src_data.src_ratio = src_ratio;
adamstark@46 272
adamstark@46 273 src_data.data_out = output;
adamstark@46 274 src_data.output_frames = output_len;
adamstark@46 275
adamstark@46 276 src_simple (&src_data, SRC_SINC_BEST_QUALITY, 1);
adamstark@46 277
adamstark@46 278 for (int i = 0;i < output_len;i++)
adamstark@46 279 {
adamstark@46 280 df512[i] = src_data.data_out[i];
adamstark@46 281 }
adamstark@46 282 }
adamstark@46 283
adamstark@51 284 //=======================================================================
adamstark@46 285 void BTrack :: calcTempo()
adamstark@46 286 {
adamstark@46 287 // adaptive threshold on input
adamstark@46 288 adapt_thresh(df512,512);
adamstark@46 289
adamstark@46 290 // calculate auto-correlation function of detection function
adamstark@46 291 acf_bal(df512);
adamstark@46 292
adamstark@46 293 // calculate output of comb filterbank
adamstark@46 294 getrcfoutput();
adamstark@46 295
adamstark@46 296
adamstark@46 297 // adaptive threshold on rcf
adamstark@46 298 adapt_thresh(rcf,128);
adamstark@46 299
adamstark@46 300
adamstark@46 301 int t_index;
adamstark@46 302 int t_index2;
adamstark@46 303 // calculate tempo observation vector from bperiod observation vector
adamstark@46 304 for (int i = 0;i < 41;i++)
adamstark@46 305 {
adamstark@46 306 t_index = (int) round(p_fact / ((float) ((2*i)+80)));
adamstark@46 307 t_index2 = (int) round(p_fact / ((float) ((4*i)+160)));
adamstark@46 308
adamstark@46 309
adamstark@46 310 t_obs[i] = rcf[t_index-1] + rcf[t_index2-1];
adamstark@46 311 }
adamstark@46 312
adamstark@46 313
adamstark@46 314 float maxval;
adamstark@46 315 float maxind;
adamstark@46 316 float curval;
adamstark@46 317
adamstark@46 318 // if tempo is fixed then always use a fixed set of tempi as the previous observation probability function
adamstark@46 319 if (tempofix == 1)
adamstark@46 320 {
adamstark@46 321 for (int k = 0;k < 41;k++)
adamstark@46 322 {
adamstark@46 323 prev_delta[k] = prev_delta_fix[k];
adamstark@46 324 }
adamstark@46 325 }
adamstark@46 326
adamstark@46 327 for (int j=0;j < 41;j++)
adamstark@46 328 {
adamstark@46 329 maxval = -1;
adamstark@46 330 for (int i = 0;i < 41;i++)
adamstark@46 331 {
adamstark@46 332 curval = prev_delta[i]*t_tmat[i][j];
adamstark@46 333
adamstark@46 334 if (curval > maxval)
adamstark@46 335 {
adamstark@46 336 maxval = curval;
adamstark@46 337 }
adamstark@46 338 }
adamstark@46 339
adamstark@46 340 delta[j] = maxval*t_obs[j];
adamstark@46 341 }
adamstark@46 342
adamstark@46 343
adamstark@46 344 normalise(delta,41);
adamstark@46 345
adamstark@46 346 maxind = -1;
adamstark@46 347 maxval = -1;
adamstark@46 348
adamstark@46 349 for (int j=0;j < 41;j++)
adamstark@46 350 {
adamstark@46 351 if (delta[j] > maxval)
adamstark@46 352 {
adamstark@46 353 maxval = delta[j];
adamstark@46 354 maxind = j;
adamstark@46 355 }
adamstark@46 356
adamstark@46 357 prev_delta[j] = delta[j];
adamstark@46 358 }
adamstark@46 359
adamstark@46 360 bperiod = round((60.0*44100.0)/(((2*maxind)+80)*((float) framesize)));
adamstark@46 361
adamstark@46 362 if (bperiod > 0)
adamstark@46 363 {
adamstark@46 364 est_tempo = 60.0/((((float) framesize) / 44100.0)*bperiod);
adamstark@46 365 }
adamstark@46 366
adamstark@46 367 //cout << bperiod << endl;
adamstark@46 368 }
adamstark@46 369
adamstark@51 370 //=======================================================================
adamstark@53 371 void BTrack :: adapt_thresh(float *x,int N)
adamstark@46 372 {
adamstark@46 373 //int N = 512; // length of df
adamstark@46 374 int i = 0;
adamstark@46 375 int k,t = 0;
adamstark@46 376 float x_thresh[N];
adamstark@46 377
adamstark@46 378 int p_post = 7;
adamstark@46 379 int p_pre = 8;
adamstark@46 380
adamstark@52 381 t = std::min(N,p_post); // what is smaller, p_post of df size. This is to avoid accessing outside of arrays
adamstark@46 382
adamstark@46 383 // find threshold for first 't' samples, where a full average cannot be computed yet
adamstark@46 384 for (i = 0;i <= t;i++)
adamstark@46 385 {
adamstark@52 386 k = std::min((i+p_pre),N);
adamstark@46 387 x_thresh[i] = mean_array(x,1,k);
adamstark@46 388 }
adamstark@46 389 // find threshold for bulk of samples across a moving average from [i-p_pre,i+p_post]
adamstark@46 390 for (i = t+1;i < N-p_post;i++)
adamstark@46 391 {
adamstark@46 392 x_thresh[i] = mean_array(x,i-p_pre,i+p_post);
adamstark@46 393 }
adamstark@46 394 // for last few samples calculate threshold, again, not enough samples to do as above
adamstark@46 395 for (i = N-p_post;i < N;i++)
adamstark@46 396 {
adamstark@52 397 k = std::max((i-p_post),1);
adamstark@46 398 x_thresh[i] = mean_array(x,k,N);
adamstark@46 399 }
adamstark@46 400
adamstark@46 401 // subtract the threshold from the detection function and check that it is not less than 0
adamstark@46 402 for (i = 0;i < N;i++)
adamstark@46 403 {
adamstark@46 404 x[i] = x[i] - x_thresh[i];
adamstark@46 405 if (x[i] < 0)
adamstark@46 406 {
adamstark@46 407 x[i] = 0;
adamstark@46 408 }
adamstark@46 409 }
adamstark@46 410 }
adamstark@46 411
adamstark@51 412 //=======================================================================
adamstark@46 413 void BTrack :: getrcfoutput()
adamstark@46 414 {
adamstark@46 415 int numelem;
adamstark@46 416
adamstark@46 417 for (int i = 0;i < 128;i++)
adamstark@46 418 {
adamstark@46 419 rcf[i] = 0;
adamstark@46 420 }
adamstark@46 421
adamstark@46 422 numelem = 4;
adamstark@46 423
adamstark@46 424 for (int i = 2;i <= 127;i++) // max beat period
adamstark@46 425 {
adamstark@46 426 for (int a = 1;a <= numelem;a++) // number of comb elements
adamstark@46 427 {
adamstark@46 428 for (int b = 1-a;b <= a-1;b++) // general state using normalisation of comb elements
adamstark@46 429 {
adamstark@46 430 rcf[i-1] = rcf[i-1] + (acf[(a*i+b)-1]*wv[i-1])/(2*a-1); // calculate value for comb filter row
adamstark@46 431 }
adamstark@46 432 }
adamstark@46 433 }
adamstark@46 434 }
adamstark@46 435
adamstark@51 436 //=======================================================================
adamstark@53 437 void BTrack :: acf_bal(float *df_thresh)
adamstark@46 438 {
adamstark@46 439 int l, n = 0;
adamstark@46 440 float sum, tmp;
adamstark@46 441
adamstark@46 442 // for l lags from 0-511
adamstark@46 443 for (l = 0;l < 512;l++)
adamstark@46 444 {
adamstark@46 445 sum = 0;
adamstark@46 446
adamstark@46 447 // for n samples from 0 - (512-lag)
adamstark@46 448 for (n = 0;n < (512-l);n++)
adamstark@46 449 {
adamstark@46 450 tmp = df_thresh[n] * df_thresh[n+l]; // multiply current sample n by sample (n+l)
adamstark@46 451 sum = sum + tmp; // add to sum
adamstark@46 452 }
adamstark@46 453
adamstark@46 454 acf[l] = sum / (512-l); // weight by number of mults and add to acf buffer
adamstark@46 455 }
adamstark@46 456 }
adamstark@46 457
adamstark@51 458 //=======================================================================
adamstark@53 459 float BTrack :: mean_array(float *array,int start,int end)
adamstark@46 460 {
adamstark@46 461 int i;
adamstark@47 462 double sum = 0;
adamstark@47 463
adamstark@47 464 int length = end - start;
adamstark@46 465
adamstark@46 466 // find sum
adamstark@47 467 for (i = start;i < end;i++)
adamstark@46 468 {
adamstark@46 469 sum = sum + array[i];
adamstark@46 470 }
adamstark@46 471
adamstark@47 472 if (length > 0)
adamstark@47 473 {
adamstark@47 474 return sum / length; // average and return
adamstark@47 475 }
adamstark@47 476 else
adamstark@47 477 {
adamstark@47 478 return 0;
adamstark@47 479 }
adamstark@46 480 }
adamstark@46 481
adamstark@51 482 //=======================================================================
adamstark@53 483 void BTrack :: normalise(float *array,int N)
adamstark@46 484 {
adamstark@46 485 double sum = 0;
adamstark@46 486
adamstark@46 487 for (int i = 0;i < N;i++)
adamstark@46 488 {
adamstark@46 489 if (array[i] > 0)
adamstark@46 490 {
adamstark@46 491 sum = sum + array[i];
adamstark@46 492 }
adamstark@46 493 }
adamstark@46 494
adamstark@46 495 if (sum > 0)
adamstark@46 496 {
adamstark@46 497 for (int i = 0;i < N;i++)
adamstark@46 498 {
adamstark@46 499 array[i] = array[i] / sum;
adamstark@46 500 }
adamstark@46 501 }
adamstark@46 502 }
adamstark@46 503
adamstark@51 504 //=======================================================================
adamstark@46 505 void BTrack :: updatecumscore(float df_sample)
adamstark@46 506 {
adamstark@46 507 int start, end, winsize;
adamstark@46 508 float max;
adamstark@46 509
adamstark@46 510 start = dfbuffer_size - round(2*bperiod);
adamstark@46 511 end = dfbuffer_size - round(bperiod/2);
adamstark@46 512 winsize = end-start+1;
adamstark@46 513
adamstark@46 514 float w1[winsize];
adamstark@46 515 float v = -2*bperiod;
adamstark@46 516 float wcumscore;
adamstark@46 517
adamstark@46 518
adamstark@46 519 // create window
adamstark@46 520 for (int i = 0;i < winsize;i++)
adamstark@46 521 {
adamstark@46 522 w1[i] = exp((-1*pow(tightness*log(-v/bperiod),2))/2);
adamstark@46 523 v = v+1;
adamstark@46 524 }
adamstark@46 525
adamstark@46 526 // calculate new cumulative score value
adamstark@46 527 max = 0;
adamstark@46 528 int n = 0;
adamstark@46 529 for (int i=start;i <= end;i++)
adamstark@46 530 {
adamstark@46 531 wcumscore = cumscore[i]*w1[n];
adamstark@46 532
adamstark@46 533 if (wcumscore > max)
adamstark@46 534 {
adamstark@46 535 max = wcumscore;
adamstark@46 536 }
adamstark@46 537 n++;
adamstark@46 538 }
adamstark@46 539
adamstark@46 540
adamstark@46 541 // shift cumulative score back one
adamstark@46 542 for (int i = 0;i < (dfbuffer_size-1);i++)
adamstark@46 543 {
adamstark@46 544 cumscore[i] = cumscore[i+1];
adamstark@46 545 }
adamstark@46 546
adamstark@46 547 // add new value to cumulative score
adamstark@46 548 cumscore[dfbuffer_size-1] = ((1-alpha)*df_sample) + (alpha*max);
adamstark@46 549
adamstark@46 550 cscoreval = cumscore[dfbuffer_size-1];
adamstark@46 551
adamstark@46 552 //cout << cumscore[dfbuffer_size-1] << endl;
adamstark@46 553
adamstark@46 554 }
adamstark@46 555
adamstark@51 556 //=======================================================================
adamstark@46 557 void BTrack :: predictbeat()
adamstark@46 558 {
adamstark@46 559 int winsize = (int) bperiod;
adamstark@46 560 float fcumscore[dfbuffer_size + winsize];
adamstark@46 561 float w2[winsize];
adamstark@46 562 // copy cumscore to first part of fcumscore
adamstark@46 563 for (int i = 0;i < dfbuffer_size;i++)
adamstark@46 564 {
adamstark@46 565 fcumscore[i] = cumscore[i];
adamstark@46 566 }
adamstark@46 567
adamstark@46 568 // create future window
adamstark@46 569 float v = 1;
adamstark@46 570 for (int i = 0;i < winsize;i++)
adamstark@46 571 {
adamstark@46 572 w2[i] = exp((-1*pow((v - (bperiod/2)),2)) / (2*pow((bperiod/2) ,2)));
adamstark@46 573 v++;
adamstark@46 574 }
adamstark@46 575
adamstark@46 576 // create past window
adamstark@46 577 v = -2*bperiod;
adamstark@46 578 int start = dfbuffer_size - round(2*bperiod);
adamstark@46 579 int end = dfbuffer_size - round(bperiod/2);
adamstark@46 580 int pastwinsize = end-start+1;
adamstark@46 581 float w1[pastwinsize];
adamstark@46 582
adamstark@46 583 for (int i = 0;i < pastwinsize;i++)
adamstark@46 584 {
adamstark@46 585 w1[i] = exp((-1*pow(tightness*log(-v/bperiod),2))/2);
adamstark@46 586 v = v+1;
adamstark@46 587 }
adamstark@46 588
adamstark@46 589
adamstark@46 590
adamstark@46 591 // calculate future cumulative score
adamstark@46 592 float max;
adamstark@46 593 int n;
adamstark@46 594 float wcumscore;
adamstark@46 595 for (int i = dfbuffer_size;i < (dfbuffer_size+winsize);i++)
adamstark@46 596 {
adamstark@46 597 start = i - round(2*bperiod);
adamstark@46 598 end = i - round(bperiod/2);
adamstark@46 599
adamstark@46 600 max = 0;
adamstark@46 601 n = 0;
adamstark@46 602 for (int k=start;k <= end;k++)
adamstark@46 603 {
adamstark@46 604 wcumscore = fcumscore[k]*w1[n];
adamstark@46 605
adamstark@46 606 if (wcumscore > max)
adamstark@46 607 {
adamstark@46 608 max = wcumscore;
adamstark@46 609 }
adamstark@46 610 n++;
adamstark@46 611 }
adamstark@46 612
adamstark@46 613 fcumscore[i] = max;
adamstark@46 614 }
adamstark@46 615
adamstark@46 616
adamstark@46 617 // predict beat
adamstark@46 618 max = 0;
adamstark@46 619 n = 0;
adamstark@46 620
adamstark@46 621 for (int i = dfbuffer_size;i < (dfbuffer_size+winsize);i++)
adamstark@46 622 {
adamstark@46 623 wcumscore = fcumscore[i]*w2[n];
adamstark@46 624
adamstark@46 625 if (wcumscore > max)
adamstark@46 626 {
adamstark@46 627 max = wcumscore;
adamstark@46 628 beat = n;
adamstark@46 629 }
adamstark@46 630
adamstark@46 631 n++;
adamstark@46 632 }
adamstark@46 633
adamstark@46 634
adamstark@46 635 // set beat
adamstark@51 636 //beat = beat;
adamstark@46 637
adamstark@46 638 // set next prediction time
adamstark@46 639 m0 = beat+round(bperiod/2);
adamstark@46 640
adamstark@46 641
adamstark@46 642 }