Mercurial > hg > absrec
diff stdparams_exact.py @ 15:a27cfe83fe12
Changing, changing, trying to get a common framework for batch jobs
author | Nic Cleju <nikcleju@gmail.com> |
---|---|
date | Tue, 20 Mar 2012 17:18:23 +0200 |
parents | f2eb027ed101 |
children | 7fdf964f4edd |
line wrap: on
line diff
--- a/stdparams_exact.py Fri Mar 16 13:42:31 2012 +0200 +++ b/stdparams_exact.py Tue Mar 20 17:18:23 2012 +0200 @@ -8,140 +8,51 @@ import numpy from algos import * -#========================== -# Standard parameters -#========================== -# Standard parameters for quick testing -# Algorithms: GAP, SL0 and BP -# d=50, sigma = 2, delta and rho only 3 x 3, lambdas = 0, 1e-4, 1e-2, 1, 100, 10000 -# Do save data, do save plots, don't show plots -# Useful for short testing -def stdtest(): - # Define which algorithms to run - #algos = exact_gap,exact_sl0,exact_bp,exact_ompeps,exact_tst # tuple of algorithms - algos = exact_bp_cvxopt, # tuple of algorithms - - d = 50.0 - sigma = 1.2 - deltas = numpy.array([0.05, 0.45, 0.95]) - rhos = numpy.array([0.05, 0.45, 0.95]) - #deltas = numpy.array([0.6]) - #deltas = numpy.arange(0.05,1.,0.05) - #rhos = numpy.array([0.05]) - numvects = 10; # Number of vectors to generate - SNRdb = 100.; # This is norm(signal)/norm(noise), so power, not energy - - dosavedata = True - savedataname = 'exact_pt_stdtest.mat' - doshowplot = False - dosaveplot = True - saveplotbase = 'exact_pt_stdtest_' - saveplotexts = ('png','pdf','eps') - - return algos,d,sigma,deltas,rhos,numvects,SNRdb,dosavedata,savedataname,\ - doshowplot,dosaveplot,saveplotbase,saveplotexts - +paramstest = dict() +paramstest['algos'] = exact_gap,exact_sl0,exact_bp,exact_ompeps,exact_tst # tuple of algorithms +#paramstest['algos'] = exact_bp_cvxopt, # tuple of algorithms +paramstest['d'] = 50.0 +paramstest['sigma'] = 1.2 +paramstest['deltas'] = numpy.array([0.05, 0.45, 0.95]) +paramstest['rhos'] = numpy.array([0.05, 0.45, 0.95]) +#deltas = numpy.array([0.6]) +#deltas = numpy.arange(0.05,1.,0.05) +#rhos = numpy.array([0.05]) +paramstest['numvects'] = 10; # Number of vectors to generate +paramstest['SNRdb'] = 100.; # This is norm(signal)/norm(noise), so power, not energy +paramstest['savedataname'] = 'exact_pt_stdtest.mat' +paramstest['saveplotbase'] = 'exact_pt_stdtest_' +paramstest['saveplotexts'] = ('png','pdf','eps') # Standard parameters 1 # All algorithms, 100 vectors # d=50, sigma = 2, delta and rho full resolution (0.05 step), lambdas = 0, 1e-4, 1e-2, 1, 100, 10000 # Do save data, do save plots, don't show plots -def std1(): - # Define which algorithms to run - algos = exact_gap,exact_sl0,exact_bp_cvxopt,exact_ompeps,exact_tst # tuple of algorithms - - d = 50.0; - sigma = 1.2 - deltas = numpy.arange(0.05,1.,0.05) - rhos = numpy.arange(0.05,1.,0.05) - numvects = 100; # Number of vectors to generate - SNRdb = 100.; # This is norm(signal)/norm(noise), so power, not energy - - dosavedata = True - savedataname = 'exact_pt_std1.mat' - doshowplot = False - dosaveplot = True - saveplotbase = 'exact_pt_std1_' - saveplotexts = ('png','pdf','eps') +params1 = dict() +params1['algos'] = exact_gap,exact_sl0,exact_bp_cvxopt,exact_ompeps,exact_tst # tuple of algorithms +params1['d'] = 50.0; +params1['sigma'] = 1.2 +params1['deltas'] = numpy.arange(0.05,1.,0.05) +params1['rhos'] = numpy.arange(0.05,1.,0.05) +params1['numvects'] = 100; # Number of vectors to generate +params1['SNRdb'] = 100.; # This is norm(signal)/norm(noise), so power, not energy +params1['savedataname'] = 'exact_pt_std1.mat' +params1['saveplotbase'] = 'exact_pt_std1_' +params1['saveplotexts'] = ('png','pdf','eps') - return algos,d,sigma,deltas,rhos,numvects,SNRdb,dosavedata,savedataname,\ - doshowplot,dosaveplot,saveplotbase,saveplotexts - - + # Standard parameters 2 # All algorithms, 100 vectors # d=20, sigma = 10, delta and rho full resolution (0.05 step), lambdas = 0, 1e-4, 1e-2, 1, 100, 10000 # Do save data, do save plots, don't show plots -def std2(): - # Define which algorithms to run - algos = exact_gap,exact_sl0,exact_bp_cvxopt,exact_ompeps,exact_tst # tuple of algorithms - - d = 20.0 - sigma = 10.0 - deltas = numpy.arange(0.05,1.,0.05) - rhos = numpy.arange(0.05,1.,0.05) - numvects = 100; # Number of vectors to generate - SNRdb = 100.; # This is norm(signal)/norm(noise), so power, not energy - - dosavedata = True - savedataname = 'exact_pt_std2.mat' - doshowplot = False - dosaveplot = True - saveplotbase = 'exact_pt_std2_' - saveplotexts = ('png','pdf','eps') - - return algos,d,sigma,deltas,rhos,numvects,SNRdb,dosavedata,savedataname,\ - doshowplot,dosaveplot,saveplotbase,saveplotexts - - -# # Standard parameters 3 -## All algorithms, 100 vectors -## d=50, sigma = 2, delta and rho full resolution (0.05 step), lambdas = 0, 1e-4, 1e-2, 1, 100, 10000 -## Do save data, do save plots, don't show plots -## IDENTICAL with 1 but with 10dB SNR noise -#def std3(): -# # Define which algorithms to run -# algos = exact_gap,exact_sl0,exact_bp,exact_ompeps,exact_tst # tuple of algorithms -# -# d = 50.0; -# sigma = 2.0 -# deltas = numpy.arange(0.05,1.,0.05) -# rhos = numpy.arange(0.05,1.,0.05) -# numvects = 100; # Number of vectors to generate -# SNRdb = 100.; # This is norm(signal)/norm(noise), so power, not energy -# -# dosavedata = True -# savedataname = 'exact_pt_std3.mat' -# doshowplot = False -# dosaveplot = True -# saveplotbase = 'exact_pt_std3_' -# saveplotexts = ('png','pdf','eps') -# -# return algos,d,sigma,deltas,rhos,numvects,SNRdb,dosavedata,savedataname,\ -# doshowplot,dosaveplot,saveplotbase,saveplotexts - -## Standard parameters 4 -## All algorithms, 100 vectors -## d=20, sigma = 10, delta and rho full resolution (0.05 step), lambdas = 0, 1e-4, 1e-2, 1, 100, 10000 -## Do save data, do save plots, don't show plots -## Identical to 2 but with 10dB SNR noise -#def std4(): -# # Define which algorithms to run -# algos = exact_gap,exact_sl0,exact_bp,exact_ompeps,exact_tst # tuple of algorithms -# -# d = 20.0 -# sigma = 10.0 -# deltas = numpy.arange(0.05,1.,0.05) -# rhos = numpy.arange(0.05,1.,0.05) -# numvects = 100; # Number of vectors to generate -# SNRdb = 10.; # This is norm(signal)/norm(noise), so power, not energy -# -# dosavedata = True -# savedataname = 'exact_pt_std4.mat' -# doshowplot = False -# dosaveplot = True -# saveplotbase = 'exact_pt_std4_' -# saveplotexts = ('png','pdf','eps') -# -# return algos,d,sigma,deltas,rhos,numvects,SNRdb,dosavedata,savedataname,\ -# doshowplot,dosaveplot,saveplotbase,saveplotexts +params2 = dict() +params2['algos'] = exact_gap,exact_sl0,exact_bp_cvxopt,exact_ompeps,exact_tst # tuple of algorithms +params2['d'] = 20.0 +params2['sigma'] = 10.0 +params2['deltas'] = numpy.arange(0.05,1.,0.05) +params2['rhos'] = numpy.arange(0.05,1.,0.05) +params2['numvects'] = 100; # Number of vectors to generate +params2['SNRdb'] = 100.; # This is norm(signal)/norm(noise), so power, not energy +params2['savedataname'] = 'exact_pt_std2.mat' +params2['saveplotbase'] = 'exact_pt_std2_' +params2['saveplotexts'] = ('png','pdf','eps') \ No newline at end of file