Mercurial > hg > absrec
comparison stdparams_exact.py @ 15:a27cfe83fe12
Changing, changing, trying to get a common framework for batch jobs
author | Nic Cleju <nikcleju@gmail.com> |
---|---|
date | Tue, 20 Mar 2012 17:18:23 +0200 |
parents | f2eb027ed101 |
children | 7fdf964f4edd |
comparison
equal
deleted
inserted
replaced
14:f2eb027ed101 | 15:a27cfe83fe12 |
---|---|
6 """ | 6 """ |
7 | 7 |
8 import numpy | 8 import numpy |
9 from algos import * | 9 from algos import * |
10 | 10 |
11 #========================== | 11 paramstest = dict() |
12 # Standard parameters | 12 paramstest['algos'] = exact_gap,exact_sl0,exact_bp,exact_ompeps,exact_tst # tuple of algorithms |
13 #========================== | 13 #paramstest['algos'] = exact_bp_cvxopt, # tuple of algorithms |
14 # Standard parameters for quick testing | 14 paramstest['d'] = 50.0 |
15 # Algorithms: GAP, SL0 and BP | 15 paramstest['sigma'] = 1.2 |
16 # d=50, sigma = 2, delta and rho only 3 x 3, lambdas = 0, 1e-4, 1e-2, 1, 100, 10000 | 16 paramstest['deltas'] = numpy.array([0.05, 0.45, 0.95]) |
17 # Do save data, do save plots, don't show plots | 17 paramstest['rhos'] = numpy.array([0.05, 0.45, 0.95]) |
18 # Useful for short testing | 18 #deltas = numpy.array([0.6]) |
19 def stdtest(): | 19 #deltas = numpy.arange(0.05,1.,0.05) |
20 # Define which algorithms to run | 20 #rhos = numpy.array([0.05]) |
21 #algos = exact_gap,exact_sl0,exact_bp,exact_ompeps,exact_tst # tuple of algorithms | 21 paramstest['numvects'] = 10; # Number of vectors to generate |
22 algos = exact_bp_cvxopt, # tuple of algorithms | 22 paramstest['SNRdb'] = 100.; # This is norm(signal)/norm(noise), so power, not energy |
23 | 23 paramstest['savedataname'] = 'exact_pt_stdtest.mat' |
24 d = 50.0 | 24 paramstest['saveplotbase'] = 'exact_pt_stdtest_' |
25 sigma = 1.2 | 25 paramstest['saveplotexts'] = ('png','pdf','eps') |
26 deltas = numpy.array([0.05, 0.45, 0.95]) | |
27 rhos = numpy.array([0.05, 0.45, 0.95]) | |
28 #deltas = numpy.array([0.6]) | |
29 #deltas = numpy.arange(0.05,1.,0.05) | |
30 #rhos = numpy.array([0.05]) | |
31 numvects = 10; # Number of vectors to generate | |
32 SNRdb = 100.; # This is norm(signal)/norm(noise), so power, not energy | |
33 | |
34 dosavedata = True | |
35 savedataname = 'exact_pt_stdtest.mat' | |
36 doshowplot = False | |
37 dosaveplot = True | |
38 saveplotbase = 'exact_pt_stdtest_' | |
39 saveplotexts = ('png','pdf','eps') | |
40 | |
41 return algos,d,sigma,deltas,rhos,numvects,SNRdb,dosavedata,savedataname,\ | |
42 doshowplot,dosaveplot,saveplotbase,saveplotexts | |
43 | |
44 | 26 |
45 # Standard parameters 1 | 27 # Standard parameters 1 |
46 # All algorithms, 100 vectors | 28 # All algorithms, 100 vectors |
47 # d=50, sigma = 2, delta and rho full resolution (0.05 step), lambdas = 0, 1e-4, 1e-2, 1, 100, 10000 | 29 # d=50, sigma = 2, delta and rho full resolution (0.05 step), lambdas = 0, 1e-4, 1e-2, 1, 100, 10000 |
48 # Do save data, do save plots, don't show plots | 30 # Do save data, do save plots, don't show plots |
49 def std1(): | 31 params1 = dict() |
50 # Define which algorithms to run | 32 params1['algos'] = exact_gap,exact_sl0,exact_bp_cvxopt,exact_ompeps,exact_tst # tuple of algorithms |
51 algos = exact_gap,exact_sl0,exact_bp_cvxopt,exact_ompeps,exact_tst # tuple of algorithms | 33 params1['d'] = 50.0; |
52 | 34 params1['sigma'] = 1.2 |
53 d = 50.0; | 35 params1['deltas'] = numpy.arange(0.05,1.,0.05) |
54 sigma = 1.2 | 36 params1['rhos'] = numpy.arange(0.05,1.,0.05) |
55 deltas = numpy.arange(0.05,1.,0.05) | 37 params1['numvects'] = 100; # Number of vectors to generate |
56 rhos = numpy.arange(0.05,1.,0.05) | 38 params1['SNRdb'] = 100.; # This is norm(signal)/norm(noise), so power, not energy |
57 numvects = 100; # Number of vectors to generate | 39 params1['savedataname'] = 'exact_pt_std1.mat' |
58 SNRdb = 100.; # This is norm(signal)/norm(noise), so power, not energy | 40 params1['saveplotbase'] = 'exact_pt_std1_' |
59 | 41 params1['saveplotexts'] = ('png','pdf','eps') |
60 dosavedata = True | |
61 savedataname = 'exact_pt_std1.mat' | |
62 doshowplot = False | |
63 dosaveplot = True | |
64 saveplotbase = 'exact_pt_std1_' | |
65 saveplotexts = ('png','pdf','eps') | |
66 | 42 |
67 return algos,d,sigma,deltas,rhos,numvects,SNRdb,dosavedata,savedataname,\ | 43 |
68 doshowplot,dosaveplot,saveplotbase,saveplotexts | |
69 | |
70 | |
71 # Standard parameters 2 | 44 # Standard parameters 2 |
72 # All algorithms, 100 vectors | 45 # All algorithms, 100 vectors |
73 # d=20, sigma = 10, delta and rho full resolution (0.05 step), lambdas = 0, 1e-4, 1e-2, 1, 100, 10000 | 46 # d=20, sigma = 10, delta and rho full resolution (0.05 step), lambdas = 0, 1e-4, 1e-2, 1, 100, 10000 |
74 # Do save data, do save plots, don't show plots | 47 # Do save data, do save plots, don't show plots |
75 def std2(): | 48 params2 = dict() |
76 # Define which algorithms to run | 49 params2['algos'] = exact_gap,exact_sl0,exact_bp_cvxopt,exact_ompeps,exact_tst # tuple of algorithms |
77 algos = exact_gap,exact_sl0,exact_bp_cvxopt,exact_ompeps,exact_tst # tuple of algorithms | 50 params2['d'] = 20.0 |
78 | 51 params2['sigma'] = 10.0 |
79 d = 20.0 | 52 params2['deltas'] = numpy.arange(0.05,1.,0.05) |
80 sigma = 10.0 | 53 params2['rhos'] = numpy.arange(0.05,1.,0.05) |
81 deltas = numpy.arange(0.05,1.,0.05) | 54 params2['numvects'] = 100; # Number of vectors to generate |
82 rhos = numpy.arange(0.05,1.,0.05) | 55 params2['SNRdb'] = 100.; # This is norm(signal)/norm(noise), so power, not energy |
83 numvects = 100; # Number of vectors to generate | 56 params2['savedataname'] = 'exact_pt_std2.mat' |
84 SNRdb = 100.; # This is norm(signal)/norm(noise), so power, not energy | 57 params2['saveplotbase'] = 'exact_pt_std2_' |
85 | 58 params2['saveplotexts'] = ('png','pdf','eps') |
86 dosavedata = True | |
87 savedataname = 'exact_pt_std2.mat' | |
88 doshowplot = False | |
89 dosaveplot = True | |
90 saveplotbase = 'exact_pt_std2_' | |
91 saveplotexts = ('png','pdf','eps') | |
92 | |
93 return algos,d,sigma,deltas,rhos,numvects,SNRdb,dosavedata,savedataname,\ | |
94 doshowplot,dosaveplot,saveplotbase,saveplotexts | |
95 | |
96 | |
97 # # Standard parameters 3 | |
98 ## All algorithms, 100 vectors | |
99 ## d=50, sigma = 2, delta and rho full resolution (0.05 step), lambdas = 0, 1e-4, 1e-2, 1, 100, 10000 | |
100 ## Do save data, do save plots, don't show plots | |
101 ## IDENTICAL with 1 but with 10dB SNR noise | |
102 #def std3(): | |
103 # # Define which algorithms to run | |
104 # algos = exact_gap,exact_sl0,exact_bp,exact_ompeps,exact_tst # tuple of algorithms | |
105 # | |
106 # d = 50.0; | |
107 # sigma = 2.0 | |
108 # deltas = numpy.arange(0.05,1.,0.05) | |
109 # rhos = numpy.arange(0.05,1.,0.05) | |
110 # numvects = 100; # Number of vectors to generate | |
111 # SNRdb = 100.; # This is norm(signal)/norm(noise), so power, not energy | |
112 # | |
113 # dosavedata = True | |
114 # savedataname = 'exact_pt_std3.mat' | |
115 # doshowplot = False | |
116 # dosaveplot = True | |
117 # saveplotbase = 'exact_pt_std3_' | |
118 # saveplotexts = ('png','pdf','eps') | |
119 # | |
120 # return algos,d,sigma,deltas,rhos,numvects,SNRdb,dosavedata,savedataname,\ | |
121 # doshowplot,dosaveplot,saveplotbase,saveplotexts | |
122 | |
123 ## Standard parameters 4 | |
124 ## All algorithms, 100 vectors | |
125 ## d=20, sigma = 10, delta and rho full resolution (0.05 step), lambdas = 0, 1e-4, 1e-2, 1, 100, 10000 | |
126 ## Do save data, do save plots, don't show plots | |
127 ## Identical to 2 but with 10dB SNR noise | |
128 #def std4(): | |
129 # # Define which algorithms to run | |
130 # algos = exact_gap,exact_sl0,exact_bp,exact_ompeps,exact_tst # tuple of algorithms | |
131 # | |
132 # d = 20.0 | |
133 # sigma = 10.0 | |
134 # deltas = numpy.arange(0.05,1.,0.05) | |
135 # rhos = numpy.arange(0.05,1.,0.05) | |
136 # numvects = 100; # Number of vectors to generate | |
137 # SNRdb = 10.; # This is norm(signal)/norm(noise), so power, not energy | |
138 # | |
139 # dosavedata = True | |
140 # savedataname = 'exact_pt_std4.mat' | |
141 # doshowplot = False | |
142 # dosaveplot = True | |
143 # saveplotbase = 'exact_pt_std4_' | |
144 # saveplotexts = ('png','pdf','eps') | |
145 # | |
146 # return algos,d,sigma,deltas,rhos,numvects,SNRdb,dosavedata,savedataname,\ | |
147 # doshowplot,dosaveplot,saveplotbase,saveplotexts |