Mercurial > hg > absrec
view stdparams_exact.py @ 21:d395461b92ae tip
Lots and lots of modifications. Approximate recovery script working.
author | Nic Cleju <nikcleju@gmail.com> |
---|---|
date | Mon, 23 Apr 2012 10:54:57 +0300 |
parents | 4a967f4f18a0 |
children |
line wrap: on
line source
# -*- coding: utf-8 -*- """ Defines standard parameters for exact reconstruction simulation Author: Nicolae Cleju """ __author__ = "Nicolae Cleju" __license__ = "GPL" __email__ = "nikcleju@gmail.com" import numpy # Solver algorithms to run from algos import * # Test parameters paramstest = dict() paramstest['algos'] = exact_gap,exact_sl0,exact_bp,exact_ompeps,exact_tst # tuple of algorithms #paramstest['algos'] = exact_bp_cvxopt, # tuple of algorithms paramstest['d'] = 200.0 paramstest['sigma'] = 1.2 paramstest['deltas'] = numpy.array([0.05, 0.45, 0.95]) paramstest['rhos'] = numpy.array([0.05, 0.45, 0.95]) #deltas = numpy.array([0.6]) #deltas = numpy.arange(0.05,1.,0.05) #rhos = numpy.array([0.05]) paramstest['numvects'] = 10; # Number of vectors to generate paramstest['SNRdb'] = 100.; # This is norm(signal)/norm(noise), so power, not energy paramstest['savedataname'] = 'exact_pt_stdtest.mat' paramstest['saveplotbase'] = 'exact_pt_stdtest_' paramstest['saveplotexts'] = ('png','pdf','eps') # Standard parameters 1 # All algorithms, 100 vectors # d = 200, sigma = 1.2, delta and rho full resolution (0.05 step) # Virtually no noise (100db) params1 = dict() params1['algos'] = exact_gap,exact_sl0,exact_bp_cvxopt,exact_ompeps,exact_tst # tuple of algorithms params1['d'] = 200.0; params1['sigma'] = 1.2 params1['deltas'] = numpy.arange(0.05,1.,0.05) params1['rhos'] = numpy.arange(0.05,1.,0.05) params1['numvects'] = 100; # Number of vectors to generate params1['SNRdb'] = 100.; # This is norm(signal)/norm(noise), so power, not energy params1['savedataname'] = 'exact_pt_std1.mat' params1['saveplotbase'] = 'exact_pt_std1_' params1['saveplotexts'] = ('png','pdf','eps') # Standard parameters 2 # All algorithms, 100 vectors # d = 20, sigma = 10, delta and rho full resolution (0.05 step) # Virtually no noise (100db) params2 = dict() params2['algos'] = exact_gap,exact_sl0,exact_bp_cvxopt,exact_ompeps,exact_tst # tuple of algorithms params2['d'] = 20.0 params2['sigma'] = 10.0 params2['deltas'] = numpy.arange(0.05,1.,0.05) params2['rhos'] = numpy.arange(0.05,1.,0.05) params2['numvects'] = 100; # Number of vectors to generate params2['SNRdb'] = 100.; # This is norm(signal)/norm(noise), so power, not energy params2['savedataname'] = 'exact_pt_std2.mat' params2['saveplotbase'] = 'exact_pt_std2_' params2['saveplotexts'] = ('png','pdf','eps')