Mercurial > hg > absrec
view stdparams_exact.py @ 14:f2eb027ed101
test_exact.py working. Added bp_cvxopt(). Commented the code that made the operator Omega more coherent.
author | Nic Cleju <nikcleju@gmail.com> |
---|---|
date | Fri, 16 Mar 2012 13:42:31 +0200 |
parents | |
children | a27cfe83fe12 |
line wrap: on
line source
# -*- coding: utf-8 -*- """ Created on Wed Dec 07 14:04:40 2011 @author: ncleju """ import numpy from algos import * #========================== # Standard parameters #========================== # Standard parameters for quick testing # Algorithms: GAP, SL0 and BP # d=50, sigma = 2, delta and rho only 3 x 3, lambdas = 0, 1e-4, 1e-2, 1, 100, 10000 # Do save data, do save plots, don't show plots # Useful for short testing def stdtest(): # Define which algorithms to run #algos = exact_gap,exact_sl0,exact_bp,exact_ompeps,exact_tst # tuple of algorithms algos = exact_bp_cvxopt, # tuple of algorithms d = 50.0 sigma = 1.2 deltas = numpy.array([0.05, 0.45, 0.95]) rhos = numpy.array([0.05, 0.45, 0.95]) #deltas = numpy.array([0.6]) #deltas = numpy.arange(0.05,1.,0.05) #rhos = numpy.array([0.05]) numvects = 10; # Number of vectors to generate SNRdb = 100.; # This is norm(signal)/norm(noise), so power, not energy dosavedata = True savedataname = 'exact_pt_stdtest.mat' doshowplot = False dosaveplot = True saveplotbase = 'exact_pt_stdtest_' saveplotexts = ('png','pdf','eps') return algos,d,sigma,deltas,rhos,numvects,SNRdb,dosavedata,savedataname,\ doshowplot,dosaveplot,saveplotbase,saveplotexts # Standard parameters 1 # All algorithms, 100 vectors # d=50, sigma = 2, delta and rho full resolution (0.05 step), lambdas = 0, 1e-4, 1e-2, 1, 100, 10000 # Do save data, do save plots, don't show plots def std1(): # Define which algorithms to run algos = exact_gap,exact_sl0,exact_bp_cvxopt,exact_ompeps,exact_tst # tuple of algorithms d = 50.0; sigma = 1.2 deltas = numpy.arange(0.05,1.,0.05) rhos = numpy.arange(0.05,1.,0.05) numvects = 100; # Number of vectors to generate SNRdb = 100.; # This is norm(signal)/norm(noise), so power, not energy dosavedata = True savedataname = 'exact_pt_std1.mat' doshowplot = False dosaveplot = True saveplotbase = 'exact_pt_std1_' saveplotexts = ('png','pdf','eps') return algos,d,sigma,deltas,rhos,numvects,SNRdb,dosavedata,savedataname,\ doshowplot,dosaveplot,saveplotbase,saveplotexts # Standard parameters 2 # All algorithms, 100 vectors # d=20, sigma = 10, delta and rho full resolution (0.05 step), lambdas = 0, 1e-4, 1e-2, 1, 100, 10000 # Do save data, do save plots, don't show plots def std2(): # Define which algorithms to run algos = exact_gap,exact_sl0,exact_bp_cvxopt,exact_ompeps,exact_tst # tuple of algorithms d = 20.0 sigma = 10.0 deltas = numpy.arange(0.05,1.,0.05) rhos = numpy.arange(0.05,1.,0.05) numvects = 100; # Number of vectors to generate SNRdb = 100.; # This is norm(signal)/norm(noise), so power, not energy dosavedata = True savedataname = 'exact_pt_std2.mat' doshowplot = False dosaveplot = True saveplotbase = 'exact_pt_std2_' saveplotexts = ('png','pdf','eps') return algos,d,sigma,deltas,rhos,numvects,SNRdb,dosavedata,savedataname,\ doshowplot,dosaveplot,saveplotbase,saveplotexts # # Standard parameters 3 ## All algorithms, 100 vectors ## d=50, sigma = 2, delta and rho full resolution (0.05 step), lambdas = 0, 1e-4, 1e-2, 1, 100, 10000 ## Do save data, do save plots, don't show plots ## IDENTICAL with 1 but with 10dB SNR noise #def std3(): # # Define which algorithms to run # algos = exact_gap,exact_sl0,exact_bp,exact_ompeps,exact_tst # tuple of algorithms # # d = 50.0; # sigma = 2.0 # deltas = numpy.arange(0.05,1.,0.05) # rhos = numpy.arange(0.05,1.,0.05) # numvects = 100; # Number of vectors to generate # SNRdb = 100.; # This is norm(signal)/norm(noise), so power, not energy # # dosavedata = True # savedataname = 'exact_pt_std3.mat' # doshowplot = False # dosaveplot = True # saveplotbase = 'exact_pt_std3_' # saveplotexts = ('png','pdf','eps') # # return algos,d,sigma,deltas,rhos,numvects,SNRdb,dosavedata,savedataname,\ # doshowplot,dosaveplot,saveplotbase,saveplotexts ## Standard parameters 4 ## All algorithms, 100 vectors ## d=20, sigma = 10, delta and rho full resolution (0.05 step), lambdas = 0, 1e-4, 1e-2, 1, 100, 10000 ## Do save data, do save plots, don't show plots ## Identical to 2 but with 10dB SNR noise #def std4(): # # Define which algorithms to run # algos = exact_gap,exact_sl0,exact_bp,exact_ompeps,exact_tst # tuple of algorithms # # d = 20.0 # sigma = 10.0 # deltas = numpy.arange(0.05,1.,0.05) # rhos = numpy.arange(0.05,1.,0.05) # numvects = 100; # Number of vectors to generate # SNRdb = 10.; # This is norm(signal)/norm(noise), so power, not energy # # dosavedata = True # savedataname = 'exact_pt_std4.mat' # doshowplot = False # dosaveplot = True # saveplotbase = 'exact_pt_std4_' # saveplotexts = ('png','pdf','eps') # # return algos,d,sigma,deltas,rhos,numvects,SNRdb,dosavedata,savedataname,\ # doshowplot,dosaveplot,saveplotbase,saveplotexts