Idyom » History » Version 64
Marcus Pearce, 2018-07-13 01:39 PM
1 | 11 | Jeremy Gow | h1. Running IDyOM |
---|---|---|---|
2 | 1 | Marcus Pearce | |
3 | 11 | Jeremy Gow | {{>toc}} |
4 | 1 | Marcus Pearce | |
5 | 44 | Marcus Pearce | h2. <code>*idyom:idyom*</code> |
6 | 1 | Marcus Pearce | |
7 | 54 | Marcus Pearce | The top-level point of entry is <code>idyom:idyom</code>, which has three required arguments and a number of optional keyword arguments. |
8 | 1 | Marcus Pearce | |
9 | 13 | Jeremy Gow | h3. Required parameters |
10 | 1 | Marcus Pearce | |
11 | 54 | Marcus Pearce | * @dataset-id@: a dataset id, (an integer, e.g., 0) |
12 | 54 | Marcus Pearce | * @target-viewpoints@: a list of basic viewpoints to predict, e.g. '(cpitch) or '(cpitch onset) |
13 | 54 | Marcus Pearce | * @source-viewpoints@: a list of viewpoints to use in prediction, e.g. '((cpintfref cpint) ioi) |
14 | 1 | Marcus Pearce | ** Passing <code>:select</code> will trigger viewpoint selection (see further options below) |
15 | 1 | Marcus Pearce | |
16 | 54 | Marcus Pearce | See the [[List of viewpoints]] for a description of the various viewpoints available in IDyOM. |
17 | 54 | Marcus Pearce | |
18 | 54 | Marcus Pearce | A simple call to IDyOM would be: |
19 | 1 | Marcus Pearce | <pre> |
20 | 54 | Marcus Pearce | CL-USER> (idyom:idyom 18 '(cpitch) '(cpitch)) |
21 | 54 | Marcus Pearce | 3.4519181 |
22 | 54 | Marcus Pearce | (3.7459166 3.7913148 3.5499783 3.2027783 3.5338237 3.4903128 3.4759412 2.8252819) |
23 | 54 | Marcus Pearce | ((3.586735 3.8160942 6.8622913 3.3496706 3.3494937 2.0084002 2.4969249 6.04035 |
24 | 54 | Marcus Pearce | 2.5135455 3.611938 5.617945 4.6973023 3.1194212 4.153834 2.328312 2.863982 |
25 | 54 | Marcus Pearce | 3.5802953 2.198141 4.9777308) |
26 | 54 | Marcus Pearce | (3.7181098 6.350471 4.8110385 4.712717 3.4230165 3.5964172 1.7951053 1.3934463 |
27 | 54 | Marcus Pearce | 5.252618 3.8527348 3.8151293 1.9286131 6.499048 4.1175685 1.8474439 |
28 | 54 | Marcus Pearce | 3.5475667) |
29 | 54 | Marcus Pearce | (4.031454 2.9693763 4.0899825 2.9261 1.24961 4.785756 2.1267474 2.8533628 |
30 | 54 | Marcus Pearce | 3.0932114 4.859682 3.4375515 3.6497543 5.485611 5.512378 3.1457896 2.5832813) |
31 | 54 | Marcus Pearce | (3.8783064 4.2615805 3.4476812 3.516016 3.12956 3.3235698 2.8970401 4.3073235 |
32 | 54 | Marcus Pearce | 3.7609475 2.2025976 3.6883376 2.3482933 1.623888 1.1030108 3.648819 |
33 | 54 | Marcus Pearce | 4.1074767) |
34 | 54 | Marcus Pearce | (3.8407595 4.2985744 4.4947147 4.7583337 4.5309863 3.1522655 3.7750213 |
35 | 54 | Marcus Pearce | 5.0408797 3.7760868 3.78026 2.1053405 4.7487717 3.6750562 3.6836185 1.5774668 |
36 | 54 | Marcus Pearce | 4.2355194 2.109648 2.879462 1.1504707 2.2890074 4.3080635) |
37 | 54 | Marcus Pearce | (3.7692716 3.8107364 4.005191 2.9590254 1.5087044 1.722277 4.741388 4.64542 |
38 | 54 | Marcus Pearce | 1.9565314 4.9309998 4.805511 3.6190488 3.2736812 1.834998 3.5858262 5.5998607 |
39 | 54 | Marcus Pearce | 3.7004514 2.1804154 1.924814 4.200107 4.5223045) |
40 | 54 | Marcus Pearce | (3.8725564 4.1996803 3.89821 3.8978398 2.9178553 1.5882304 1.413055 2.2741494 |
41 | 54 | Marcus Pearce | 3.9745965 3.4585989 7.8948627 2.3402674 2.172695 6.2782865 3.0781124 |
42 | 54 | Marcus Pearce | 1.6451169 1.7057719 5.9570546) |
43 | 54 | Marcus Pearce | (3.9283562 1.877443 2.0237117 4.214842 4.316505 2.8062139 2.4793828 2.6004548 |
44 | 54 | Marcus Pearce | 5.554006 2.514725 1.8137112 1.560705 2.7592404 2.4539397 3.0249727 1.2541932 |
45 | 54 | Marcus Pearce | 1.048938 1.128769 6.32025)) |
46 | 53 | Marcus Pearce | </pre> |
47 | 54 | Marcus Pearce | This predicts the pitch values in dataset 18 (containing 8 short melodies), based on previous pitches (i.e., the target and source viewpoints are both <code>cpitch</code>). IDyOM computes the information content (IC) for each note, and by default returns three values: the first is a mean note IC for the whole dataset, the second a list of mean ICs for the individual compositions, the third is a list of lists containing the IC values for each note in each composition. The <code>:detail</code> parameter controls the detail of the output, while the <code>:output-path</code> parameter allows the user to generate a spreadsheet containing detailed model output (see below for further details). |
48 | 13 | Jeremy Gow | |
49 | 2 | Marcus Pearce | h3. Statistical modelling parameters |
50 | 19 | Jeremy Gow | |
51 | 1 | Marcus Pearce | See "Pearce [2005, chapter 6]":http://webprojects.eecs.qmul.ac.uk/marcusp/papers/Pearce2005.pdf for further description and explanation of these parameters. |
52 | 19 | Jeremy Gow | |
53 | 25 | Jeremy Gow | * @models@: the type of IDyOM model to use. Options are: |
54 | 25 | Jeremy Gow | ** @:stm@ - short-term model only, trained on the current composition. |
55 | 25 | Jeremy Gow | ** @:ltm@ - long-term model only, trained on the pretraining and resampling training data. |
56 | 19 | Jeremy Gow | ** @:ltm+@ - the long-term model, with additional incremental training on the test set; |
57 | 19 | Jeremy Gow | ** @:both@ - a combination of :stm and :ltm; |
58 | 19 | Jeremy Gow | ** @:both+@ - a combination of :stm and :ltm+ (this is the default). |
59 | 27 | Jeremy Gow | |
60 | 1 | Marcus Pearce | The LTM and STM can be configured using the @ltmo@ and @stmo@ parameters. These accept a property list with the following properties - the defaults are used if a property is omitted or no parameter list is supplied: |
61 | 1 | Marcus Pearce | * @:order-bound@: an integer indicating the bound on the order of the model, i.e. the number of past events used by the model. The default is @nil@, no bound. |
62 | 1 | Marcus Pearce | * @:mixtures@: whether to use mixtures for the model. (Default @t@). |
63 | 1 | Marcus Pearce | * @:update-exclusion@: whether to use update exclusion. (LTM default @nil@, STM default @t@.) |
64 | 1 | Marcus Pearce | * @:escape@: the model's escape method. One of @:a :b :c :d :x@. (LTM default @:c@, STM default @:x@.) |
65 | 1 | Marcus Pearce | |
66 | 25 | Jeremy Gow | For example, the following command would combine the STM and LTM, without incremental training for the latter and an STM order bound of 4: |
67 | 26 | Jeremy Gow | <pre> |
68 | 25 | Jeremy Gow | CL-USER> (idyom:idyom 1 '(cpitch) '(cpitch) :models :both :stmo '(:order-bound 4)) |
69 | 1 | Marcus Pearce | </pre> |
70 | 20 | Jeremy Gow | |
71 | 20 | Jeremy Gow | h3. Training parameters |
72 | 20 | Jeremy Gow | |
73 | 20 | Jeremy Gow | When using IDyOM to estimate note IC for a given dataset, the long-term models can be trained on other datasets (pretraining) and/or on the current dataset, i.e. via resampling (cross-validation). In the latter case, the dataset is partitioned into a training set (used to train the LTMs) and a test set (for which note IC is computed). This split is called a fold, and the modelling process can be repeated with a number of different folds in order to model the entire dataset. |
74 | 48 | Marcus Pearce | |
75 | 20 | Jeremy Gow | * @pretraining-ids@: a list of dataset ids used to pretrain the long-term models (done before resampling). Note that if pretraining-ids are supplied for an STM (i.e., <code> :models :stm</code>) the pretraining datasets are used to set the viewpoint domains (alphabet) for the models although not for training the models themselves (because they are short-term models). |
76 | 20 | Jeremy Gow | * @k@: the number of resampling (cross-validation) folds to use. The default value is 10. |
77 | 20 | Jeremy Gow | ** @1@ = no resampling, but also no training set unless the models are pretrained; |
78 | 20 | Jeremy Gow | ** @:full@ = as many folds as there are compositions in the dataset |
79 | 2 | Marcus Pearce | * @resampling-indices@: a list of numbers designating which resampling folds to use, i.e. a subset of @[0, 1, ..., k - 1]@. By default, all folds are used. |
80 | 35 | Marcus Pearce | |
81 | 35 | Marcus Pearce | *Note* that cross-validation only applies to the dataset being analysed (i.e., the one specified by the <code>dataset-id</code> argument). If a value of k=1 is supplied, the long-term models are not trained, unless a pretraining set is used. |
82 | 13 | Jeremy Gow | |
83 | 2 | Marcus Pearce | h3. Viewpoint selection parameters |
84 | 24 | Jeremy Gow | |
85 | 57 | Marcus Pearce | These parameters only have an effect when the source viewpoint supplied is <code>:select</code>, triggering viewpoint selection, which searches for an optimal set of viewpoints using a hill-climbing procedure. |
86 | 57 | Marcus Pearce | |
87 | 46 | Marcus Pearce | * @basis@: Identifies a set of viewpoints to be used in viewpoint selection, i.e. it will attempt to find the 'best' viewpoint system combining these, including by linking them. The parameter can be a list or one of the following keywords: |
88 | 46 | Marcus Pearce | ** @:pitch-full@ - The basis is a list of viewpoints useful for predicting pitch in Western music: cpitch, cpitch-class, tessitura, cpint, cpint-size, cpcint, cpcint-size, contour, newcontour, cpintfip, cpintfref, inscale. |
89 | 46 | Marcus Pearce | ** @:pitch-short@ - A shorter version of the above: cpitch, cpitch-class, cpint, cpint-size, contour, newcontour. |
90 | 46 | Marcus Pearce | ** @:bioi@ - For predicting Inter-Onset Interval (IOI): bioi, bioi-ratio, bioi-contour. |
91 | 24 | Jeremy Gow | ** @:onset@ - For predicting onset: onset, ioi, ioi-ratio, ioi-contour, metaccent |
92 | 22 | Jeremy Gow | ** @:auto@ - the basis is chosen to be the set of viewpoints that are defined in terms of one or more of the target viewpoints. This is the default. |
93 | 22 | Jeremy Gow | * @dp@: the number of decimal places to use when comparing information contents in viewpoint selection. Full floating point precision is used if this is @nil@ (the default) |
94 | 2 | Marcus Pearce | * @max-links@: the maximum number of links to use when creating linked viewpoints in viewpoint selection. The default is 2. |
95 | 64 | Marcus Pearce | * @min-links@: the minimum number of links to use when creating linked viewpoints in viewpoint selection. The default is 2. |
96 | 64 | Marcus Pearce | * @viewpoint-selection-output@: a filepath to write output for every viewpoint system considered during viewpoint selection. The default is nil meaning that no files are written. |
97 | 13 | Jeremy Gow | |
98 | 2 | Marcus Pearce | h3. Output parameters |
99 | 2 | Marcus Pearce | |
100 | 55 | Marcus Pearce | * <code>output-path</code>: a string indicating a directory in which to write the output |
101 | 50 | Marcus Pearce | ** see [[IDyOM output]] for an explanation of the output files |
102 | 56 | Marcus Pearce | ** if a value of <code>nil</code> is given, information content (IC) is written to the console (see example below) |
103 | 55 | Marcus Pearce | * <code>detail</code>: an integer which determines how the information content is averaged in the output: |
104 | 1 | Marcus Pearce | ** 1: averaged over the entire dataset |
105 | 28 | Jeremy Gow | ** 2: and also averaged over each composition |
106 | 2 | Marcus Pearce | ** 3: and also with raw IC values for each event in each composition |
107 | 62 | Marcus Pearce | * <code>overwrite</code>: whether to overwrite an existing output file if it exists. Default is not to overwrite (<code>nil</code>), pass |
108 | 62 | Marcus Pearce | <code>t</code> to overwrite output files. |
109 | 63 | Marcus Pearce | |
110 | 62 | Marcus Pearce | * <code>separator</code> a string defining the character to use for delimiting columns in the output file (default is " ", use "," for CSV) |
111 | 13 | Jeremy Gow | |
112 | 58 | Marcus Pearce | h3. Caching parameters |
113 | 58 | Marcus Pearce | |
114 | 58 | Marcus Pearce | * <code>use-resampling-set-cache?</code> a Boolean (t/nil) to specify whether to cache resampling sets |
115 | 58 | Marcus Pearce | ** default: t (so that the random division of the dataset into k-folds is stored and reused) |
116 | 58 | Marcus Pearce | * <code>use-ltms-cache?</code> a Boolean (t/nil) controlling whether long-term models are stored and reused |
117 | 58 | Marcus Pearce | ** default: t |
118 | 58 | Marcus Pearce | |
119 | 1 | Marcus Pearce | h2. Examples |
120 | 13 | Jeremy Gow | |
121 | 1 | Marcus Pearce | h3. Mean melody IC |
122 | 51 | Marcus Pearce | |
123 | 13 | Jeremy Gow | To get mean information contents (IC) for each composition of dataset 0 in a list. The first value represents the average IC for the whole dataset, the second value is a list of average ICs for each composition in the dataset. If <code>:detail 3</code> is specified, then the output would contain a third list, containing lists of ICs for each event in each composition in the database. |
124 | 1 | Marcus Pearce | |
125 | 37 | Marcus Pearce | <pre> |
126 | 1 | Marcus Pearce | CL-USER> (idyom:idyom 0 '(cpitch) '(cpintfref cpint) :detail 2) |
127 | 1 | Marcus Pearce | 2.493305 |
128 | 1 | Marcus Pearce | (2.1368716 2.8534691 2.6938546 2.6491673 2.4993074 2.6098127 2.7728052 2.772861 |
129 | 1 | Marcus Pearce | 2.5921957 2.905856 2.3591626 2.957503 2.4042292 2.7562473 2.3996017 2.8073587 |
130 | 1 | Marcus Pearce | 2.114944 1.7434102 2.2310295 2.6374347 2.361792 1.9476132 2.501488 2.5472867 |
131 | 1 | Marcus Pearce | 2.1056154 2.8225484 2.134257 2.9162033 3.0715692 2.9012227 2.7291088 2.866882 |
132 | 1 | Marcus Pearce | 2.8795822 2.4571223 2.9277062 2.7861307 2.6623116 2.3304622 2.4217033 |
133 | 1 | Marcus Pearce | 2.0556943 2.4048684 2.914848 2.7182267 3.0894585 2.873869 1.8821808 2.640174 |
134 | 1 | Marcus Pearce | 2.8165438 2.5423129 2.3011856 3.1477294 2.655349 2.5216308 2.0667994 3.2579045 |
135 | 1 | Marcus Pearce | 2.573013 2.6035044 2.202191 2.622113 2.2621205 2.3617425 2.7526956 2.3281655 |
136 | 1 | Marcus Pearce | 2.9357266 2.3372407 3.1848125 2.67367 2.1906006 2.7835917 2.6332111 3.206142 |
137 | 1 | Marcus Pearce | 2.1426969 2.194259 2.415167 1.9769101 2.0870917 2.7844474 2.2373738 2.772138 |
138 | 1 | Marcus Pearce | 2.9702199 1.724408 2.473073 2.2464263 2.2452457 2.688889 2.6299863 2.2223835 |
139 | 1 | Marcus Pearce | 2.8082614 2.673671 2.7693706 2.3369458 2.5016947 2.3837066 2.3682225 2.795649 |
140 | 1 | Marcus Pearce | 2.9063463 2.5880773 2.0457468 1.8635312 2.4522712 1.5877498 2.8802161 |
141 | 1 | Marcus Pearce | 2.7988417 2.3125513 1.7245895 2.2404804 2.1694546 2.365556 1.5905867 1.3827317 |
142 | 1 | Marcus Pearce | 2.2706041 3.023884 2.2864542 2.1259797 2.713626 2.1967313 2.5721254 2.5812547 |
143 | 1 | Marcus Pearce | 2.8233812 2.3134546 2.6203637 2.945946 2.601433 2.1920888 2.3732007 2.440137 |
144 | 1 | Marcus Pearce | 2.4291563 2.3676903 2.734724 3.0283954 2.8076048 2.7796154 2.326931 2.1779459 |
145 | 1 | Marcus Pearce | 2.2570527 2.2688026 1.3976555 2.030298 2.640235 2.568248 2.6338177 2.157162 |
146 | 1 | Marcus Pearce | 2.3915367 2.7873137 2.3088667 2.2176988 2.4402564 2.8062992 2.784044 2.4296925 |
147 | 1 | Marcus Pearce | 2.3520193 2.6146257) |
148 | 1 | Marcus Pearce | </pre> |
149 | 13 | Jeremy Gow | |
150 | 1 | Marcus Pearce | h3. Write note IC to file |
151 | 52 | Marcus Pearce | |
152 | 13 | Jeremy Gow | To write the information contents for each note of each melody in dataset 0 to a file: |
153 | 1 | Marcus Pearce | |
154 | 38 | Marcus Pearce | <pre> |
155 | 60 | Marcus Pearce | CL-USER> (idyom:idyom 0 '(cpitch) '((cpintfref cpint)) :detail 3 :output-path "/tmp/") |
156 | 52 | Marcus Pearce | </pre> |
157 | 52 | Marcus Pearce | |
158 | 1 | Marcus Pearce | See [[IDyOM Output]] for a description of the output files. |
159 | 43 | Marcus Pearce | |
160 | 43 | Marcus Pearce | h3. Viewpoint Selection |
161 | 43 | Marcus Pearce | |
162 | 47 | Marcus Pearce | <pre> |
163 | 43 | Marcus Pearce | CL-USER> (idyom:idyom 17 '(cpitch) :select :models :stm :dp 3) |
164 | 43 | Marcus Pearce | Selecting viewpoints for the STM model on dataset 17 predicting viewpoints (CPITCH). |
165 | 43 | Marcus Pearce | Generating candidate viewpoints from: (CPITCH CPITCH-CLASS CPINT |
166 | 43 | Marcus Pearce | CPINT-SIZE CONTOUR NEWCONTOUR) |
167 | 43 | Marcus Pearce | Max. links 2, whitelist (ANY), blacklist NIL |
168 | 43 | Marcus Pearce | Candidate viewpoints: (CPITCH CPITCH-CLASS CPINT CPINT-SIZE CONTOUR |
169 | 43 | Marcus Pearce | NEWCONTOUR (CONTOUR NEWCONTOUR) |
170 | 43 | Marcus Pearce | (CPINT-SIZE NEWCONTOUR) (CPINT-SIZE CONTOUR) |
171 | 43 | Marcus Pearce | (CPINT NEWCONTOUR) (CPINT CONTOUR) |
172 | 43 | Marcus Pearce | (CPINT CPINT-SIZE) (CPITCH-CLASS NEWCONTOUR) |
173 | 43 | Marcus Pearce | (CPITCH-CLASS CONTOUR) (CPITCH-CLASS CPINT-SIZE) |
174 | 43 | Marcus Pearce | (CPITCH-CLASS CPINT) (CPITCH NEWCONTOUR) |
175 | 43 | Marcus Pearce | (CPITCH CONTOUR) (CPITCH CPINT-SIZE) (CPITCH CPINT) |
176 | 43 | Marcus Pearce | (CPITCH CPITCH-CLASS)) |
177 | 43 | Marcus Pearce | |
178 | 43 | Marcus Pearce | Selected system NIL, mean IC = NIL |
179 | 43 | Marcus Pearce | |
180 | 43 | Marcus Pearce | Selected system ((CPITCH-CLASS CONTOUR)), mean IC = 3.0302427 |
181 | 43 | Marcus Pearce | ======================================================================================= |
182 | 43 | Marcus Pearce | The selected viewpoint system with a mean IC of 3.0302427 is ((CPITCH-CLASS |
183 | 43 | Marcus Pearce | CONTOUR)) |
184 | 43 | Marcus Pearce | 3.0302427 |
185 | 43 | Marcus Pearce | (3.169925 3.169925 3.0849624 3.0849624 2.9886398 2.9886398 2.8774438 2.8774438) |
186 | 43 | Marcus Pearce | ((3.169925 3.169925) (3.169925 3.169925) (3.169925 3.0) (3.169925 3.0) |
187 | 43 | Marcus Pearce | (3.169925 2.807355) (3.169925 2.807355) (3.169925 2.5849626) |
188 | 43 | Marcus Pearce | (3.169925 2.5849626)) |
189 | 43 | Marcus Pearce | </pre> |
190 | 43 | Marcus Pearce | |
191 | 13 | Jeremy Gow | |
192 | 13 | Jeremy Gow | h3. Conklin & Witten (1995) |
193 | 13 | Jeremy Gow | |
194 | 1 | Marcus Pearce | To simulate the experiments of Conklin & Witten (1995) |
195 | 1 | Marcus Pearce | |
196 | 45 | Marcus Pearce | <pre> |
197 | 1 | Marcus Pearce | CL-USER> (idyom:conkwit95) |
198 | 1 | Marcus Pearce | Simulation of the experiments of Conklin & Witten (1995, Table 4). |
199 | 1 | Marcus Pearce | System 1; Mean Information Content: 2.33 |
200 | 1 | Marcus Pearce | System 2; Mean Information Content: 2.36 |
201 | 1 | Marcus Pearce | System 3; Mean Information Content: 2.09 |
202 | 1 | Marcus Pearce | System 4; Mean Information Content: 2.01 |
203 | 1 | Marcus Pearce | System 5; Mean Information Content: 2.08 |
204 | 1 | Marcus Pearce | System 6; Mean Information Content: 1.90 |
205 | 1 | Marcus Pearce | System 7; Mean Information Content: 1.88 |
206 | 1 | Marcus Pearce | System 8; Mean Information Content: 1.86 |
207 | 1 | Marcus Pearce | NIL |
208 | 1 | Marcus Pearce | </pre> |
209 | 1 | Marcus Pearce | |
210 | 1 | Marcus Pearce | Compare with "Conklin & Witten [1995, JNMR, table 4]":http://www.sc.ehu.es/ccwbayes/members/conklin/papers/jnmr95.pdf |
211 | 59 | Marcus Pearce | |
212 | 59 | Marcus Pearce | h3. Identifying melodic grouping boundaries (Pearce et al., Perception, 39, 1367-1391. |
213 | 59 | Marcus Pearce | |
214 | 59 | Marcus Pearce | This involves applying a peak-picking algorithm to the output of <code>idyom</code>. For example, |
215 | 59 | Marcus Pearce | |
216 | 59 | Marcus Pearce | <pre> |
217 | 59 | Marcus Pearce | CL-USER> (multiple-value-bind (d1 d2 d3) |
218 | 59 | Marcus Pearce | (idyom:idyom 19 '(cpitch) '(cpitch) :k 6 :pretraining-ids '(3) :models :both+) |
219 | 59 | Marcus Pearce | (declare (ignore d1 d2)) |
220 | 59 | Marcus Pearce | (mapcar #'segmentation:peak-picker d3)) |
221 | 59 | Marcus Pearce | ((0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0) |
222 | 59 | Marcus Pearce | (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 |
223 | 59 | Marcus Pearce | 0 0 0 0 0 0 1 0 0) |
224 | 59 | Marcus Pearce | (0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0) |
225 | 59 | Marcus Pearce | (0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 |
226 | 59 | Marcus Pearce | 0 0 0 0 0 0 0 0 0 0 0 0 0 0) |
227 | 59 | Marcus Pearce | (0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0) |
228 | 59 | Marcus Pearce | (0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0)) |
229 | 59 | Marcus Pearce | CL-USER> |
230 | 59 | Marcus Pearce | </pre> |
231 | 59 | Marcus Pearce | |
232 | 59 | Marcus Pearce | In the output, a one indicates that the event follows a predicted grouping boundary (e.g., the first event in a new phrase) while a zero indicates that this is not the case. |