Idyom » History » Version 31

Jeremy Gow, 2013-04-09 11:45 AM

1 11 Jeremy Gow
h1. Running IDyOM 
2 1 Marcus Pearce
3 11 Jeremy Gow
{{>toc}}
4 1 Marcus Pearce
5 11 Jeremy Gow
h2. <code>idyom:idyom</code> 
6 1 Marcus Pearce
7 12 Jeremy Gow
The main workhorse function is <code>idyom:idyom</code>, which has three required arguments and a number of optional keyword arguments.
8 1 Marcus Pearce
9 13 Jeremy Gow
h3. Required parameters
10 1 Marcus Pearce
11 23 Jeremy Gow
* @dataset-id@: a dataset id, e.g. 1.
12 23 Jeremy Gow
* @target-viewpoints@: a list of basic viewpoints to predict, e.g. '(:cpitch :bioi)
13 23 Jeremy Gow
* @source-viewpoints@: a list of viewpoints to use in prediction, e.g. '((:cpintfref :cpint) :bioi)
14 12 Jeremy Gow
** Passing <code>:select</code> will trigger viewpoint selection (see further options below)
15 12 Jeremy Gow
16 17 Jeremy Gow
See the [[List of viewpoints]] for a description of the various viewpoints available in IDyOM.  A simple call to IDyOM would be:
17 12 Jeremy Gow
<pre>
18 16 Jeremy Gow
CL-USER> (idyom:idyom 1 '(cpitch) '(cpitch cpint))
19 15 Jeremy Gow
2.2490792
20 15 Jeremy Gow
(1.9049941 2.427845 2.0234334 1.7971386 1.8213106 1.9313766 2.3758402 1.8310248
21 14 Jeremy Gow
...
22 12 Jeremy Gow
</pre>
23 18 Jeremy Gow
This predicts the pitch values in dataset 1, based on previous pitches (cpitch) and pitch intervals (cpint).  IDyOM computes the information content for each note, and by default returns two values: the first is a mean note IC for the dataset, the second a list of mean note ICs for the individual compositions.  The first value is calculated as the mean of the second.
24 2 Marcus Pearce
25 13 Jeremy Gow
h3. Statistical modelling parameters
26 2 Marcus Pearce
27 19 Jeremy Gow
See "Pearce [2005, chapter 6]":http://webprojects.eecs.qmul.ac.uk/marcusp/papers/Pearce2005.pdf for further description and explanation of these parameters.
28 1 Marcus Pearce
29 19 Jeremy Gow
* @models@: the type of IDyOM model to use.  Options are:
30 25 Jeremy Gow
** @:stm@ - short-term model only, trained on the current composition.
31 25 Jeremy Gow
** @:ltm@ - long-term model only, trained on the pretraining and resampling training data.
32 25 Jeremy Gow
** @:ltm+@ - the long-term model, with additional incremental training on the test set;
33 19 Jeremy Gow
** @:both@ - a combination of :stm and :ltm;
34 19 Jeremy Gow
** @:both+@ -  a combination of :stm and :ltm+ (this is the default).
35 19 Jeremy Gow
36 27 Jeremy Gow
The LTM and STM can be configured using the @ltmo@ and @stmo@ parameters.  These accept a property list with the following properties - the defaults are used if a property is omitted or no parameter list is supplied:
37 1 Marcus Pearce
* @:order-bound@: an integer indicating the bound on the order of the model, i.e. the number of past events used by the model.  The default is @nil@, no bound.
38 1 Marcus Pearce
* @:mixtures@: whether to use mixtures for the model. (Default @t@).
39 1 Marcus Pearce
* @:update-exclusion@: whether to use update exclusion. (LTM default @nil@, STM default @t@.)
40 1 Marcus Pearce
* @:escape@: the model's escape method.  One of @:a :b :c :d :x@.  (LTM default @:c@, STM default @:x@.)
41 1 Marcus Pearce
42 1 Marcus Pearce
For example, the following command would combine the STM and LTM, without incremental training for the latter and an STM order bound of 4:
43 25 Jeremy Gow
<pre>
44 26 Jeremy Gow
CL-USER> (idyom:idyom 1 '(cpitch) '(cpitch) :models :both :stmo '(:order-bound 4))
45 25 Jeremy Gow
</pre>
46 1 Marcus Pearce
47 20 Jeremy Gow
h3. Training parameters
48 20 Jeremy Gow
49 20 Jeremy Gow
When using IDyOM to estimate note IC for a given dataset, the long-term models can be trained on other datasets (pretraining) and/or on the current dataset, i.e. via resampling (cross-validation).  In the latter case, the dataset is partitioned into a training set (used to train the LTMs) and a test set (for which note IC is computed).  This split is called a fold, and the modelling process can be repeated with a number of different folds in order to model the entire dataset.
50 20 Jeremy Gow
51 20 Jeremy Gow
* @pretraining-ids@: a list of dataset ids used to pretrain the long-term models (done before resampling).
52 20 Jeremy Gow
* @k@: the number of resampling (cross-validation) folds to use.  The default value is 10.
53 20 Jeremy Gow
** @1@ = no resampling, but also no training set unless the models are pretrained; 
54 20 Jeremy Gow
** @:full@ = as many folds as there are compositions in the dataset
55 20 Jeremy Gow
* @resampling-indices@: a list of numbers designating which resampling folds to use, i.e. a subset of @[0, 1, ..., k - 1]@.  By default, all folds are used.
56 2 Marcus Pearce
57 13 Jeremy Gow
h3. Viewpoint selection parameters
58 2 Marcus Pearce
59 24 Jeremy Gow
* @basis@: Identifies a set of viewpoints to be used in viewpoint selection, i.e. it will attempt to find the 'best' viewpoint system combining these, including by linking them.  The parameter can be a list or one of the following keywords:
60 24 Jeremy Gow
** @:pitch-viewsA@ - The basis is a list of viewpoints useful for predicting pitch in Western music: cpitch, cpitch-class, tessitura, cpint, cpint-size, cpcint, cpcint-size, contour, newcontour, cpintfip, cpintfref, inscale.
61 24 Jeremy Gow
** @:pitch-viewsB@ - A shorter version of the above: cpitch, cpitch-class, cpint, cpint-size, contour, newcontour.
62 24 Jeremy Gow
** @:ioi-views@ - For predicting Inter-Onset Interval (IOI): bioi, bioi-ratio, bioi-contour.
63 24 Jeremy Gow
** @:auto@ - the basis is chosen to be the set of viewpoints that are defined in terms of one or more of the target viewpoints.  This is the default.
64 22 Jeremy Gow
* @dp@: the number of decimal places to use when comparing information contents in viewpoint selection.  Full floating point precision is used if this is @nil@ (the default)
65 22 Jeremy Gow
* @max-links@: the maximum number of links to use when creating linked viewpoints in viewpoint selection.  The default is 2.
66 2 Marcus Pearce
67 13 Jeremy Gow
h3. Output parameters
68 2 Marcus Pearce
69 2 Marcus Pearce
* output-path: a string indicating a directory in which to write the output 
70 3 Marcus Pearce
** output is only written to the console if this is <code>nil</code>
71 2 Marcus Pearce
* detail: an integer which determines how the information content is averaged in the output: 
72 1 Marcus Pearce
** 1: averaged over the entire dataset 
73 1 Marcus Pearce
** 2: and also averaged over each composition 
74 28 Jeremy Gow
** 3: and also with raw IC values for each event in each composition
75 2 Marcus Pearce
76 13 Jeremy Gow
h2. <code>resampling:idyom-resample</code>
77 7 Marcus Pearce
78 30 Jeremy Gow
<code>idyom:idyom</code> uses <code>resampling:idyom-resample</code> to compute the note-by-note IC values, and can be used to obtain these a list.  The function takes a subset of the top-level arguments (see above):
79 2 Marcus Pearce
80 29 Jeremy Gow
* Required: dataset-id, target-viewpoints, source-viewpoints (no viewpoint selection)
81 29 Jeremy Gow
* Model: models, ltmo, stmo
82 29 Jeremy Gow
* Training: pretraining-ids, k, resampling-indices
83 1 Marcus Pearce
84 30 Jeremy Gow
h2. <code>resampling:output-information-content</code> takes the output of <code>resampling:idyom-resample</code> and returns the average information content. It takes the following arguments:
85 1 Marcus Pearce
86 30 Jeremy Gow
* predictions: the output of <code>resampling:idyom-resample</code>
87 1 Marcus Pearce
* detail: an integer which determines how the information content is averaged (these are returned as multiple values): 
88 1 Marcus Pearce
** 1: averaged over the entire dataset 
89 1 Marcus Pearce
** 2: and also averaged over each composition 
90 1 Marcus Pearce
** 3: and also for each event in each composition
91 1 Marcus Pearce
92 11 Jeremy Gow
h2. <code>resampling:format-information-content</code>
93 11 Jeremy Gow
94 31 Jeremy Gow
<code>resampling:format-information-content</code> takes the output of <code>resampling:idyom-resample</code> and writes it to file. It takes the following arguments:
95 1 Marcus Pearce
96 31 Jeremy Gow
* predictions: the output of <code>resampling:idyom-resample</code>
97 1 Marcus Pearce
* file: a string denoting a file
98 1 Marcus Pearce
* dataset-id: an integer reflecting the dataset-id
99 1 Marcus Pearce
* detail: an integer which determines how the information content is averaged (these are returned as multiple values): 
100 1 Marcus Pearce
** 1: averaged over the entire dataset 
101 1 Marcus Pearce
** 2: and also averaged over each composition 
102 1 Marcus Pearce
** 3: and also for each event in each composition
103 1 Marcus Pearce
104 13 Jeremy Gow
h2. Examples
105 1 Marcus Pearce
106 13 Jeremy Gow
h3. Mean melody IC
107 1 Marcus Pearce
108 13 Jeremy Gow
To get mean information contents for each melody of dataset 0 in a list 
109 13 Jeremy Gow
110 1 Marcus Pearce
<pre>
111 1 Marcus Pearce
CL-USER> (resampling:output-information-content 
112 1 Marcus Pearce
          (resampling:dataset-prediction 0 '(cpitch) '(cpintfref cpint))
113 1 Marcus Pearce
          2)
114 1 Marcus Pearce
2.493305
115 1 Marcus Pearce
(2.1368716 2.8534691 2.6938546 2.6491673 2.4993074 2.6098127 2.7728052 2.772861
116 1 Marcus Pearce
 2.5921957 2.905856 2.3591626 2.957503 2.4042292 2.7562473 2.3996017 2.8073587
117 1 Marcus Pearce
 2.114944 1.7434102 2.2310295 2.6374347 2.361792 1.9476132 2.501488 2.5472867
118 1 Marcus Pearce
 2.1056154 2.8225484 2.134257 2.9162033 3.0715692 2.9012227 2.7291088 2.866882
119 1 Marcus Pearce
 2.8795822 2.4571223 2.9277062 2.7861307 2.6623116 2.3304622 2.4217033
120 1 Marcus Pearce
 2.0556943 2.4048684 2.914848 2.7182267 3.0894585 2.873869 1.8821808 2.640174
121 1 Marcus Pearce
 2.8165438 2.5423129 2.3011856 3.1477294 2.655349 2.5216308 2.0667994 3.2579045
122 1 Marcus Pearce
 2.573013 2.6035044 2.202191 2.622113 2.2621205 2.3617425 2.7526956 2.3281655
123 1 Marcus Pearce
 2.9357266 2.3372407 3.1848125 2.67367 2.1906006 2.7835917 2.6332111 3.206142
124 1 Marcus Pearce
 2.1426969 2.194259 2.415167 1.9769101 2.0870917 2.7844474 2.2373738 2.772138
125 1 Marcus Pearce
 2.9702199 1.724408 2.473073 2.2464263 2.2452457 2.688889 2.6299863 2.2223835
126 1 Marcus Pearce
 2.8082614 2.673671 2.7693706 2.3369458 2.5016947 2.3837066 2.3682225 2.795649
127 1 Marcus Pearce
 2.9063463 2.5880773 2.0457468 1.8635312 2.4522712 1.5877498 2.8802161
128 1 Marcus Pearce
 2.7988417 2.3125513 1.7245895 2.2404804 2.1694546 2.365556 1.5905867 1.3827317
129 1 Marcus Pearce
 2.2706041 3.023884 2.2864542 2.1259797 2.713626 2.1967313 2.5721254 2.5812547
130 1 Marcus Pearce
 2.8233812 2.3134546 2.6203637 2.945946 2.601433 2.1920888 2.3732007 2.440137
131 1 Marcus Pearce
 2.4291563 2.3676903 2.734724 3.0283954 2.8076048 2.7796154 2.326931 2.1779459
132 1 Marcus Pearce
 2.2570527 2.2688026 1.3976555 2.030298 2.640235 2.568248 2.6338177 2.157162
133 1 Marcus Pearce
 2.3915367 2.7873137 2.3088667 2.2176988 2.4402564 2.8062992 2.784044 2.4296925
134 1 Marcus Pearce
 2.3520193 2.6146257)
135 1 Marcus Pearce
</pre>
136 1 Marcus Pearce
137 13 Jeremy Gow
h3. Write note IC to file
138 1 Marcus Pearce
139 13 Jeremy Gow
To write the information contents for each note of each melody in dataset 0 to a file 
140 13 Jeremy Gow
141 1 Marcus Pearce
<pre>
142 1 Marcus Pearce
CL-USER> (resampling:format-information-content 
143 1 Marcus Pearce
          (resampling:dataset-prediction 0 '(cpitch) '(cpintfref cpint))
144 1 Marcus Pearce
          "/tmp/foo.dat"
145 1 Marcus Pearce
          0
146 1 Marcus Pearce
          3)
147 1 Marcus Pearce
</pre>
148 1 Marcus Pearce
149 13 Jeremy Gow
h3. Conklin & Witten (1995)
150 13 Jeremy Gow
151 13 Jeremy Gow
To simulate the experiments of Conklin & Witten (1995) 
152 1 Marcus Pearce
153 1 Marcus Pearce
<pre>
154 1 Marcus Pearce
CL-USER> (resampling:conkwit95)
155 1 Marcus Pearce
Simulation of the experiments of Conklin & Witten (1995, Table 4).
156 1 Marcus Pearce
System 1; Mean Information Content: 2.33 
157 1 Marcus Pearce
System 2; Mean Information Content: 2.36 
158 1 Marcus Pearce
System 3; Mean Information Content: 2.09 
159 1 Marcus Pearce
System 4; Mean Information Content: 2.01 
160 1 Marcus Pearce
System 5; Mean Information Content: 2.08 
161 1 Marcus Pearce
System 6; Mean Information Content: 1.90 
162 1 Marcus Pearce
System 7; Mean Information Content: 1.88 
163 1 Marcus Pearce
System 8; Mean Information Content: 1.86 
164 1 Marcus Pearce
NIL
165 1 Marcus Pearce
</pre>
166 1 Marcus Pearce
167 1 Marcus Pearce
Compare with "Conklin & Witten [1995, JNMR, table 4]":http://www.sc.ehu.es/ccwbayes/members/conklin/papers/jnmr95.pdf
168 1 Marcus Pearce
169 11 Jeremy Gow
h2. Viewpoint Selection 
170 1 Marcus Pearce
171 1 Marcus Pearce
Two functions are supplied for searching a space of viewpoints: <code>run-hill-climber</code> and <code>run-best-first</code>, which take 4 arguments:
172 1 Marcus Pearce
173 1 Marcus Pearce
* a list of viewpoints: the algorithm searches through the space of combinations of these viewpoints
174 1 Marcus Pearce
* a start state (usually nil, the empty viewpoint system)
175 1 Marcus Pearce
* an evaluation function returning a numeric performance metric: e.g., the mean information content of the dataset returned by <code>dataset-prediction</code>
176 1 Marcus Pearce
* a symbol describing which way to optimise the metric: <code>:desc</code> mean lower values are better <code>:asc</code> mean greater values are better
177 1 Marcus Pearce
178 1 Marcus Pearce
Here is an example:
179 1 Marcus Pearce
180 1 Marcus Pearce
<pre>
181 1 Marcus Pearce
CL-USER> (viewpoint-selection:run-hill-climber 
182 1 Marcus Pearce
          '(:cpitch :cpintfref :cpint :contour)
183 1 Marcus Pearce
          nil
184 1 Marcus Pearce
          #'(lambda (viewpoints)
185 1 Marcus Pearce
              (utils:round-to-nearest-decimal-place 
186 1 Marcus Pearce
               (resampling:output-information-content 
187 1 Marcus Pearce
                (resampling:dataset-prediction 0 '(cpitch) viewpoints :k 10 :models :both+) 
188 1 Marcus Pearce
                1)
189 1 Marcus Pearce
               2))
190 1 Marcus Pearce
          :desc)
191 1 Marcus Pearce
192 1 Marcus Pearce
 =============================================================================
193 1 Marcus Pearce
   System                                                Score
194 1 Marcus Pearce
 -----------------------------------------------------------------------------
195 1 Marcus Pearce
   NIL                                                   NIL
196 1 Marcus Pearce
   (CPITCH)                                              2.52
197 1 Marcus Pearce
   (CPINT CPITCH)                                        2.43
198 1 Marcus Pearce
   (CPINTFREF CPINT CPITCH)                              2.38
199 1 Marcus Pearce
 =============================================================================
200 1 Marcus Pearce
#S(VIEWPOINT-SELECTION::RECORD :STATE (:CPINTFREF :CPINT :CPITCH) :WEIGHT 2.38)
201 1 Marcus Pearce
</pre>
202 1 Marcus Pearce
203 1 Marcus Pearce
Since this can be quite a time consuming process, there are also functions for caching the results.
204 1 Marcus Pearce
205 1 Marcus Pearce
<pre>
206 1 Marcus Pearce
(initialise-vs-cache)
207 1 Marcus Pearce
(load-vs-cache filename package)
208 1 Marcus Pearce
(store-vs-cache filename package)
209 1 Marcus Pearce
</pre>