Idyom » History » Version 21

Jeremy Gow, 2013-02-27 03:41 PM

1 11 Jeremy Gow
h1. Running IDyOM 
2 1 Marcus Pearce
3 11 Jeremy Gow
{{>toc}}
4 1 Marcus Pearce
5 11 Jeremy Gow
h2. <code>idyom:idyom</code> 
6 1 Marcus Pearce
7 12 Jeremy Gow
The main workhorse function is <code>idyom:idyom</code>, which has three required arguments and a number of optional keyword arguments.
8 1 Marcus Pearce
9 13 Jeremy Gow
h3. Required parameters
10 1 Marcus Pearce
11 12 Jeremy Gow
* dataset-id: a dataset id, e.g. 1.
12 12 Jeremy Gow
* target-viewpoints: a list of basic viewpoints to predict, e.g. '(:cpitch :bioi)
13 12 Jeremy Gow
* source-viewpoints: a list of viewpoints to use in prediction, e.g. '((:cpintfref :cpint) :bioi)
14 12 Jeremy Gow
** Passing <code>:select</code> will trigger viewpoint selection (see further options below)
15 12 Jeremy Gow
16 17 Jeremy Gow
See the [[List of viewpoints]] for a description of the various viewpoints available in IDyOM.  A simple call to IDyOM would be:
17 12 Jeremy Gow
<pre>
18 16 Jeremy Gow
CL-USER> (idyom:idyom 1 '(cpitch) '(cpitch cpint))
19 15 Jeremy Gow
2.2490792
20 15 Jeremy Gow
(1.9049941 2.427845 2.0234334 1.7971386 1.8213106 1.9313766 2.3758402 1.8310248
21 14 Jeremy Gow
...
22 12 Jeremy Gow
</pre>
23 18 Jeremy Gow
This predicts the pitch values in dataset 1, based on previous pitches (cpitch) and pitch intervals (cpint).  IDyOM computes the information content for each note, and by default returns two values: the first is a mean note IC for the dataset, the second a list of mean note ICs for the individual compositions.  The first value is calculated as the mean of the second.
24 2 Marcus Pearce
25 13 Jeremy Gow
h3. Statistical modelling parameters
26 2 Marcus Pearce
27 19 Jeremy Gow
See "Pearce [2005, chapter 6]":http://webprojects.eecs.qmul.ac.uk/marcusp/papers/Pearce2005.pdf for further description and explanation of these parameters.
28 1 Marcus Pearce
29 19 Jeremy Gow
* @models@: the type of IDyOM model to use.  Options are:
30 19 Jeremy Gow
** @:stm@ - short-term model only;
31 19 Jeremy Gow
** @:ltm@ - long-term model only;
32 19 Jeremy Gow
** @:ltm+@ - the long-term model trained incrementally on the test set;
33 19 Jeremy Gow
** @:both@ - a combination of :stm and :ltm;
34 19 Jeremy Gow
** @:both+@ -  a combination of :stm and :ltm+ (this is the default).
35 19 Jeremy Gow
36 21 Jeremy Gow
The LTM and STM can be configured using the @ltmo@ and @stmo@ parameters.  These accept a property list which must define ALL of the following parameters (the default values are used only when no list is supplied):
37 1 Marcus Pearce
* @:order-bound@: an integer indicating the bound on the order of the model, i.e. the number of past events used by the model.  The default is @nil@, no bound.
38 1 Marcus Pearce
* @:mixtures@: whether to use mixtures for the model. (Default @t@).
39 1 Marcus Pearce
* @:update-exclusion@: whether to use update exclusion. (LTM default @nil@, STM default @t@.)
40 1 Marcus Pearce
* @:escape@: the model's escape method.  One of @:a :b :c :d :x@.  (LTM default @:c@, STM default @:x@.)
41 21 Jeremy Gow
42 1 Marcus Pearce
43 20 Jeremy Gow
h3. Training parameters
44 20 Jeremy Gow
45 20 Jeremy Gow
When using IDyOM to estimate note IC for a given dataset, the long-term models can be trained on other datasets (pretraining) and/or on the current dataset, i.e. via resampling (cross-validation).  In the latter case, the dataset is partitioned into a training set (used to train the LTMs) and a test set (for which note IC is computed).  This split is called a fold, and the modelling process can be repeated with a number of different folds in order to model the entire dataset.
46 20 Jeremy Gow
47 20 Jeremy Gow
* @pretraining-ids@: a list of dataset ids used to pretrain the long-term models (done before resampling).
48 20 Jeremy Gow
* @k@: the number of resampling (cross-validation) folds to use.  The default value is 10.
49 20 Jeremy Gow
** @1@ = no resampling, but also no training set unless the models are pretrained; 
50 20 Jeremy Gow
** @:full@ = as many folds as there are compositions in the dataset
51 20 Jeremy Gow
* @resampling-indices@: a list of numbers designating which resampling folds to use, i.e. a subset of @[0, 1, ..., k - 1]@.  By default, all folds are used.
52 2 Marcus Pearce
53 13 Jeremy Gow
h3. Viewpoint selection parameters
54 2 Marcus Pearce
55 2 Marcus Pearce
* dp: the number of decimal places to use when comparing information contents in viewpoint selection
56 2 Marcus Pearce
** full floating point precision is used if this is <code>nil</code> (the default)
57 2 Marcus Pearce
* max-links: the maximum number of links to use when creating linked viewpoints in viewpoint selection
58 2 Marcus Pearce
** the default is 2
59 2 Marcus Pearce
60 13 Jeremy Gow
h3. Output parameters
61 2 Marcus Pearce
62 2 Marcus Pearce
* output-path: a string indicating a directory in which to write the output 
63 3 Marcus Pearce
** output is only written to the console if this is <code>nil</code>
64 2 Marcus Pearce
* detail: an integer which determines how the information content is averaged in the output: 
65 1 Marcus Pearce
** 1: averaged over the entire dataset 
66 1 Marcus Pearce
** 2: and also averaged over each composition 
67 2 Marcus Pearce
** 3: and also for each event in each composition
68 2 Marcus Pearce
69 2 Marcus Pearce
70 13 Jeremy Gow
h2. <code>resampling:idyom-resample</code>
71 7 Marcus Pearce
72 11 Jeremy Gow
The top-level function in turn passes its arguments on to a number of sub-functions which can be used independently. 
73 2 Marcus Pearce
<code>RESAMPLING:DATASET-PREDICTION</code> accepts the following arguments (all but the first three are optional, keyword arguments): 
74 2 Marcus Pearce
75 2 Marcus Pearce
* dataset-id: a dataset id 
76 2 Marcus Pearce
** e.g., 1
77 2 Marcus Pearce
* basic-attributes: a list of basic attributes to predict 
78 2 Marcus Pearce
** e.g., '(cpitch bioi)
79 2 Marcus Pearce
* attributes: a list of attributes to use in prediction
80 2 Marcus Pearce
** e.g., '((cpintfref cpint) bioi)
81 2 Marcus Pearce
* pretraining-ids: a list of dataset-ids to pretrain the long-term models 
82 2 Marcus Pearce
** e.g., '(0 1 7)
83 2 Marcus Pearce
* k: an integer designating the number of cross-validation folds to use 
84 2 Marcus Pearce
** 1 = no cross-validation, but also no training set unless the models are pretrained; 
85 2 Marcus Pearce
** :full = as many folds as there are compositions in the dataset
86 2 Marcus Pearce
** default = 10 
87 2 Marcus Pearce
* resampling-indices: you can limit the modelling to a particular set of resampling folds
88 2 Marcus Pearce
* models: whether to use the short-term or long-term models or both
89 2 Marcus Pearce
** :stm - short-term model only 
90 2 Marcus Pearce
** :ltm - long-term model only 
91 2 Marcus Pearce
** :ltm+ - the long-term model trained incrementally on the test set 
92 2 Marcus Pearce
** :both - :stm + :ltm 
93 2 Marcus Pearce
** :both+ - :stm + :ltm+ (this is the default)
94 2 Marcus Pearce
* ltm-order-bound: the order bound for the long-term model (the default <code>nil</code> means no order bound, otherwise an integer indicates the bound in number of events)
95 2 Marcus Pearce
* ltm-mixtures: whether to use mixtures for the LTM (default <code>t</code>)
96 2 Marcus Pearce
* ltm-update-exclusion: whether to use update exclusion for the LTM (default <code>nil</code>)
97 2 Marcus Pearce
* ltm-escape: the escape method to use for the LTM (<code>:a :b :c :d :x</code> - default <code>:c</code>)
98 2 Marcus Pearce
* stm-order-bound: the order bound to use for the short-term model (default <code>nil</code>)
99 2 Marcus Pearce
* stm-mixtures: whether to use mixtures for the STM (default <code>t</code>)
100 2 Marcus Pearce
* stm-update-exclusion: whether to use update exclusion for the STM (default <code>t</code>)
101 2 Marcus Pearce
* stm-escape: the escape method for the STM (default <code>:x</code>)
102 1 Marcus Pearce
103 1 Marcus Pearce
<code>RESAMPLING:OUTPUT-INFORMATION-CONTENT</code> takes the output of <code>RESAMPLING:DATASET-PREDICTION</code> and returns the average information content. It takes the following arguments:
104 1 Marcus Pearce
105 1 Marcus Pearce
* predictions: the output of <code>RESAMPLING:DATASET-PREDICTION</code>
106 1 Marcus Pearce
* detail: an integer which determines how the information content is averaged (these are returned as multiple values): 
107 1 Marcus Pearce
** 1: averaged over the entire dataset 
108 1 Marcus Pearce
** 2: and also averaged over each composition 
109 1 Marcus Pearce
** 3: and also for each event in each composition
110 1 Marcus Pearce
111 11 Jeremy Gow
h2. <code>resampling:format-information-content</code>
112 11 Jeremy Gow
113 1 Marcus Pearce
<code>RESAMPLING:FORMAT-INFORMATION-CONTENT</code> takes the output of <code>RESAMPLING:DATASET-PREDICTION</code> and writes it to file. It takes the following arguments:
114 1 Marcus Pearce
115 1 Marcus Pearce
* predictions: the output of <code>RESAMPLING:DATASET-PREDICTION</code>
116 1 Marcus Pearce
* file: a string denoting a file
117 1 Marcus Pearce
* dataset-id: an integer reflecting the dataset-id
118 1 Marcus Pearce
* detail: an integer which determines how the information content is averaged (these are returned as multiple values): 
119 1 Marcus Pearce
** 1: averaged over the entire dataset 
120 1 Marcus Pearce
** 2: and also averaged over each composition 
121 1 Marcus Pearce
** 3: and also for each event in each composition
122 1 Marcus Pearce
123 13 Jeremy Gow
h2. Examples
124 1 Marcus Pearce
125 13 Jeremy Gow
h3. Mean melody IC
126 1 Marcus Pearce
127 13 Jeremy Gow
To get mean information contents for each melody of dataset 0 in a list 
128 13 Jeremy Gow
129 1 Marcus Pearce
<pre>
130 1 Marcus Pearce
CL-USER> (resampling:output-information-content 
131 1 Marcus Pearce
          (resampling:dataset-prediction 0 '(cpitch) '(cpintfref cpint))
132 1 Marcus Pearce
          2)
133 1 Marcus Pearce
2.493305
134 1 Marcus Pearce
(2.1368716 2.8534691 2.6938546 2.6491673 2.4993074 2.6098127 2.7728052 2.772861
135 1 Marcus Pearce
 2.5921957 2.905856 2.3591626 2.957503 2.4042292 2.7562473 2.3996017 2.8073587
136 1 Marcus Pearce
 2.114944 1.7434102 2.2310295 2.6374347 2.361792 1.9476132 2.501488 2.5472867
137 1 Marcus Pearce
 2.1056154 2.8225484 2.134257 2.9162033 3.0715692 2.9012227 2.7291088 2.866882
138 1 Marcus Pearce
 2.8795822 2.4571223 2.9277062 2.7861307 2.6623116 2.3304622 2.4217033
139 1 Marcus Pearce
 2.0556943 2.4048684 2.914848 2.7182267 3.0894585 2.873869 1.8821808 2.640174
140 1 Marcus Pearce
 2.8165438 2.5423129 2.3011856 3.1477294 2.655349 2.5216308 2.0667994 3.2579045
141 1 Marcus Pearce
 2.573013 2.6035044 2.202191 2.622113 2.2621205 2.3617425 2.7526956 2.3281655
142 1 Marcus Pearce
 2.9357266 2.3372407 3.1848125 2.67367 2.1906006 2.7835917 2.6332111 3.206142
143 1 Marcus Pearce
 2.1426969 2.194259 2.415167 1.9769101 2.0870917 2.7844474 2.2373738 2.772138
144 1 Marcus Pearce
 2.9702199 1.724408 2.473073 2.2464263 2.2452457 2.688889 2.6299863 2.2223835
145 1 Marcus Pearce
 2.8082614 2.673671 2.7693706 2.3369458 2.5016947 2.3837066 2.3682225 2.795649
146 1 Marcus Pearce
 2.9063463 2.5880773 2.0457468 1.8635312 2.4522712 1.5877498 2.8802161
147 1 Marcus Pearce
 2.7988417 2.3125513 1.7245895 2.2404804 2.1694546 2.365556 1.5905867 1.3827317
148 1 Marcus Pearce
 2.2706041 3.023884 2.2864542 2.1259797 2.713626 2.1967313 2.5721254 2.5812547
149 1 Marcus Pearce
 2.8233812 2.3134546 2.6203637 2.945946 2.601433 2.1920888 2.3732007 2.440137
150 1 Marcus Pearce
 2.4291563 2.3676903 2.734724 3.0283954 2.8076048 2.7796154 2.326931 2.1779459
151 1 Marcus Pearce
 2.2570527 2.2688026 1.3976555 2.030298 2.640235 2.568248 2.6338177 2.157162
152 1 Marcus Pearce
 2.3915367 2.7873137 2.3088667 2.2176988 2.4402564 2.8062992 2.784044 2.4296925
153 1 Marcus Pearce
 2.3520193 2.6146257)
154 1 Marcus Pearce
</pre>
155 1 Marcus Pearce
156 13 Jeremy Gow
h3. Write note IC to file
157 1 Marcus Pearce
158 13 Jeremy Gow
To write the information contents for each note of each melody in dataset 0 to a file 
159 13 Jeremy Gow
160 1 Marcus Pearce
<pre>
161 1 Marcus Pearce
CL-USER> (resampling:format-information-content 
162 1 Marcus Pearce
          (resampling:dataset-prediction 0 '(cpitch) '(cpintfref cpint))
163 1 Marcus Pearce
          "/tmp/foo.dat"
164 1 Marcus Pearce
          0
165 1 Marcus Pearce
          3)
166 1 Marcus Pearce
</pre>
167 1 Marcus Pearce
168 13 Jeremy Gow
h3. Conklin & Witten (1995)
169 13 Jeremy Gow
170 13 Jeremy Gow
To simulate the experiments of Conklin & Witten (1995) 
171 1 Marcus Pearce
172 1 Marcus Pearce
<pre>
173 1 Marcus Pearce
CL-USER> (resampling:conkwit95)
174 1 Marcus Pearce
Simulation of the experiments of Conklin & Witten (1995, Table 4).
175 1 Marcus Pearce
System 1; Mean Information Content: 2.33 
176 1 Marcus Pearce
System 2; Mean Information Content: 2.36 
177 1 Marcus Pearce
System 3; Mean Information Content: 2.09 
178 1 Marcus Pearce
System 4; Mean Information Content: 2.01 
179 1 Marcus Pearce
System 5; Mean Information Content: 2.08 
180 1 Marcus Pearce
System 6; Mean Information Content: 1.90 
181 1 Marcus Pearce
System 7; Mean Information Content: 1.88 
182 1 Marcus Pearce
System 8; Mean Information Content: 1.86 
183 1 Marcus Pearce
NIL
184 1 Marcus Pearce
</pre>
185 1 Marcus Pearce
186 1 Marcus Pearce
Compare with "Conklin & Witten [1995, JNMR, table 4]":http://www.sc.ehu.es/ccwbayes/members/conklin/papers/jnmr95.pdf
187 1 Marcus Pearce
188 11 Jeremy Gow
h2. Viewpoint Selection 
189 1 Marcus Pearce
190 1 Marcus Pearce
Two functions are supplied for searching a space of viewpoints: <code>run-hill-climber</code> and <code>run-best-first</code>, which take 4 arguments:
191 1 Marcus Pearce
192 1 Marcus Pearce
* a list of viewpoints: the algorithm searches through the space of combinations of these viewpoints
193 1 Marcus Pearce
* a start state (usually nil, the empty viewpoint system)
194 1 Marcus Pearce
* an evaluation function returning a numeric performance metric: e.g., the mean information content of the dataset returned by <code>dataset-prediction</code>
195 1 Marcus Pearce
* a symbol describing which way to optimise the metric: <code>:desc</code> mean lower values are better <code>:asc</code> mean greater values are better
196 1 Marcus Pearce
197 1 Marcus Pearce
Here is an example:
198 1 Marcus Pearce
199 1 Marcus Pearce
<pre>
200 1 Marcus Pearce
CL-USER> (viewpoint-selection:run-hill-climber 
201 1 Marcus Pearce
          '(:cpitch :cpintfref :cpint :contour)
202 1 Marcus Pearce
          nil
203 1 Marcus Pearce
          #'(lambda (viewpoints)
204 1 Marcus Pearce
              (utils:round-to-nearest-decimal-place 
205 1 Marcus Pearce
               (resampling:output-information-content 
206 1 Marcus Pearce
                (resampling:dataset-prediction 0 '(cpitch) viewpoints :k 10 :models :both+) 
207 1 Marcus Pearce
                1)
208 1 Marcus Pearce
               2))
209 1 Marcus Pearce
          :desc)
210 1 Marcus Pearce
211 1 Marcus Pearce
 =============================================================================
212 1 Marcus Pearce
   System                                                Score
213 1 Marcus Pearce
 -----------------------------------------------------------------------------
214 1 Marcus Pearce
   NIL                                                   NIL
215 1 Marcus Pearce
   (CPITCH)                                              2.52
216 1 Marcus Pearce
   (CPINT CPITCH)                                        2.43
217 1 Marcus Pearce
   (CPINTFREF CPINT CPITCH)                              2.38
218 1 Marcus Pearce
 =============================================================================
219 1 Marcus Pearce
#S(VIEWPOINT-SELECTION::RECORD :STATE (:CPINTFREF :CPINT :CPITCH) :WEIGHT 2.38)
220 1 Marcus Pearce
</pre>
221 1 Marcus Pearce
222 1 Marcus Pearce
Since this can be quite a time consuming process, there are also functions for caching the results.
223 1 Marcus Pearce
224 1 Marcus Pearce
<pre>
225 1 Marcus Pearce
(initialise-vs-cache)
226 1 Marcus Pearce
(load-vs-cache filename package)
227 1 Marcus Pearce
(store-vs-cache filename package)
228 1 Marcus Pearce
</pre>