xue@1
|
1 //---------------------------------------------------------------------------
|
xue@1
|
2 #include <math.h>
|
Chris@2
|
3 #include <string.h>
|
Chris@2
|
4 #include "windowfunctions.h"
|
xue@1
|
5 #include "align8.h"
|
xue@1
|
6 //---------------------------------------------------------------------------
|
xue@1
|
7
|
xue@1
|
8 /*
|
xue@1
|
9 function I0: Bessel function of order zero
|
xue@1
|
10
|
xue@1
|
11 Returns the Bessel function of x.
|
xue@1
|
12 */
|
xue@1
|
13 double I0(double x)
|
xue@1
|
14 {
|
xue@1
|
15 const double eps=1e-9;
|
xue@1
|
16
|
xue@1
|
17 int n=1;
|
xue@1
|
18 double S=1, D=1, T;
|
xue@1
|
19
|
xue@1
|
20 while (D>eps*S)
|
xue@1
|
21 {
|
xue@1
|
22 T=x/(2*n++);
|
xue@1
|
23 D*=T*T;
|
xue@1
|
24 S+=D;
|
xue@1
|
25 }
|
xue@1
|
26 return S;
|
xue@1
|
27 }//I0
|
xue@1
|
28
|
xue@1
|
29 /*
|
xue@1
|
30 function FillWindow: fills a buffer $Result with a window function.
|
xue@1
|
31
|
xue@1
|
32 In: wt:window type
|
xue@1
|
33 Count: window size
|
xue@1
|
34 ips & ups: extra window specificatin parameters
|
xue@1
|
35 Out: newwindow[Count+1]: the window function.
|
xue@1
|
36
|
xue@1
|
37 No return value. This function is designed assuming Count being even, and Count/2 is the symmetry
|
xue@1
|
38 centre of newwindow. newwindow has physical size Count+1 for compatibility purpose. For all vanishing
|
xue@1
|
39 windows (e.g. Hann) newwindow[0]=newwindow[Count]=0.
|
xue@1
|
40 */
|
xue@1
|
41 void FillWindow(double* Result, WindowType wt, int Count, int* ips, double* dps)
|
xue@1
|
42 {
|
xue@1
|
43 switch(wt)
|
xue@1
|
44 {
|
xue@1
|
45 case wtRectangle:
|
xue@1
|
46 for (int i=0; i<=Count; i++)
|
xue@1
|
47 Result[i]=1;
|
xue@1
|
48 break;
|
xue@1
|
49 case wtTriangular:
|
xue@1
|
50 for (int i=0; i<=Count; i++)
|
xue@1
|
51 Result[i]=1-2*fabs(i-Count/2.0)/Count;
|
xue@1
|
52 break;
|
xue@1
|
53 case wtHamming:
|
xue@1
|
54 for (int i=0; i<=Count; i++)
|
xue@1
|
55 Result[i]=(0.54-0.46*cos(2*M_PI*i/Count));
|
xue@1
|
56 break;
|
xue@1
|
57 case wtBlackman:
|
xue@1
|
58 for (int i=0; i<=Count; i++)
|
xue@1
|
59 Result[i]=0.42-0.5*cos(2*M_PI*i/Count)+0.08*cos(4*M_PI*i/Count);
|
xue@1
|
60 break;
|
xue@1
|
61 case wtGaussian:
|
xue@1
|
62 {
|
xue@1
|
63 double num=*dps*M_PI*M_PI/2/Count/Count;
|
xue@1
|
64 for (int i=0; i<=Count; i++)
|
xue@1
|
65 Result[i]=exp(-(i-Count/2.0)*(i-Count/2.0)*num);
|
xue@1
|
66 break;
|
xue@1
|
67 }
|
xue@1
|
68 case wtKaiser:
|
xue@1
|
69 {
|
xue@1
|
70 double ldps=*dps*M_PI*M_PI/2/Count;
|
xue@1
|
71 double den=I0(0.5*Count*ldps);
|
xue@1
|
72 for (int i=0; i<=Count; i++)
|
xue@1
|
73 Result[i]=I0(ldps*sqrt(0.25*Count*Count-(i-Count*0.5)*(i-Count*0.5)))/den;
|
xue@1
|
74 break;
|
xue@1
|
75 }
|
xue@1
|
76 case wtHalfCosine:
|
xue@1
|
77 {
|
xue@1
|
78 for (int i=0; i<=Count; i++)
|
xue@1
|
79 Result[i]=sin(M_PI*i/Count);
|
xue@1
|
80 break;
|
xue@1
|
81 }
|
xue@1
|
82 case wtHann:
|
xue@1
|
83 {
|
xue@1
|
84 for (int i=0; i<=Count; i++)
|
xue@1
|
85 Result[i]=(0.5-cos(M_PI*2*i/Count)/2);
|
xue@1
|
86 break;
|
xue@1
|
87 }
|
xue@1
|
88 case wtHannSqr:
|
xue@1
|
89 {
|
xue@1
|
90 for (int i=0; i<=Count; i++)
|
xue@1
|
91 Result[i]=(3-4*cos(M_PI*2*i/Count)+cos(M_PI*4*i/Count))/8;
|
xue@1
|
92 break;
|
xue@1
|
93 }
|
xue@1
|
94 case wtHann3sqrt:
|
xue@1
|
95 {
|
xue@1
|
96 for (int i=0; i<=Count; i++)
|
xue@1
|
97 {
|
xue@1
|
98 double tmp=sin(M_PI*i/Count);
|
xue@1
|
99 Result[i]=tmp*tmp*tmp;
|
xue@1
|
100 }
|
xue@1
|
101 break;
|
xue@1
|
102 }
|
xue@1
|
103 }
|
xue@1
|
104 }//FillWindow
|
xue@1
|
105
|
xue@1
|
106 /*
|
xue@1
|
107 function NewWindow: creates a window function.
|
xue@1
|
108
|
xue@1
|
109 In: wt: window type
|
xue@1
|
110 Count: window size
|
xue@1
|
111 ips & ups: extra window specificatin parameters
|
xue@1
|
112 Out: newwindow[Count+1]: the window function.
|
xue@1
|
113
|
xue@1
|
114 Returns pointer to newwindow. newwindow is created anew if newwindow=0 is specified on start.
|
xue@1
|
115 */
|
xue@1
|
116 double* NewWindow(WindowType wt, int Count, int* ips, double* dps, double* newwindow)
|
xue@1
|
117 {
|
xue@1
|
118 double* Result=newwindow; if (!Result) Result=new double[Count+1];
|
xue@1
|
119 FillWindow(Result, wt, Count, ips, dps);
|
xue@1
|
120 return Result;
|
xue@1
|
121 }//NewWindow
|
xue@1
|
122
|
xue@1
|
123 /*
|
xue@1
|
124 function NewWindow8: 8-byte aligned version of NewWindow.
|
xue@1
|
125
|
xue@1
|
126 In: wt: window type
|
xue@1
|
127 Count: window size
|
xue@1
|
128 ips & ups: extra window specificatin parameters
|
xue@1
|
129 Out: newwindow[Count+1]: the window function.
|
xue@1
|
130
|
xue@1
|
131 Returns pointer to newwindow. newwindow is created anew and 8-byte aligned if newwindow=0 is
|
xue@1
|
132 specified on start. However, if newwindow is not 8-byte aligned on start, the unaligned buffer is
|
xue@1
|
133 returned.
|
xue@1
|
134 */
|
xue@1
|
135 double* NewWindow8(WindowType wt, int Count, int* ips, double* dps, double* newwindow)
|
xue@1
|
136 {
|
xue@1
|
137 double* Result=newwindow; if (!Result) Result=(double*)malloc8(sizeof(double)*(Count+1));
|
xue@1
|
138 FillWindow(Result, wt, Count, ips, dps);
|
xue@1
|
139 return Result;
|
xue@1
|
140 }//NewWindow8
|
xue@1
|
141
|
xue@1
|
142 /*
|
xue@1
|
143 function NewdWindow: computes the derivative of a window function.
|
xue@1
|
144
|
xue@1
|
145 In: wt: window type
|
xue@1
|
146 Count: window size
|
xue@1
|
147 ips & ups: extra window specificatin parameters
|
xue@1
|
148 Out: newdwindow[Count+1]: the derivative window function.
|
xue@1
|
149
|
xue@1
|
150 Returns pointer to newdwindow. newdwindow is created anew if newdwindow=0 is specified on start.
|
xue@1
|
151 */
|
xue@1
|
152 double* NewdWindow(WindowType wt, int Count, int* ips, double* dps, double* newdwindow)
|
xue@1
|
153 {
|
xue@1
|
154 double* Result=newdwindow; if (!Result) Result=new double[Count+1];
|
xue@1
|
155 double piiCount=M_PI/Count;
|
xue@1
|
156 switch(wt)
|
xue@1
|
157 {
|
xue@1
|
158 case wtRectangle:
|
xue@1
|
159 memset(Result, 0, sizeof(double)*(Count+1));
|
xue@1
|
160 break;
|
xue@1
|
161 case wtTriangular:
|
xue@1
|
162 throw("Trying to differentiate triangular window.");
|
xue@1
|
163 break;
|
xue@1
|
164 case wtHamming:
|
xue@1
|
165 for (int i=0; i<=Count; i++)
|
xue@1
|
166 Result[i]=0.92*piiCount*sin(2*piiCount*i);
|
xue@1
|
167 break;
|
xue@1
|
168 case wtBlackman:
|
xue@1
|
169 for (int i=0; i<=Count; i++)
|
xue@1
|
170 Result[i]=piiCount*sin(2*piiCount*i)-0.32*piiCount*sin(4*piiCount*i);
|
xue@1
|
171 break;
|
xue@1
|
172 case wtGaussian:
|
xue@1
|
173 throw("Trying to differentiate Gaussian window.");
|
xue@1
|
174 break;
|
xue@1
|
175 case wtKaiser:
|
xue@1
|
176 throw("Trying to differentiate Kaiser window.");
|
xue@1
|
177 break;
|
xue@1
|
178 case wtHalfCosine:
|
xue@1
|
179 {
|
xue@1
|
180 for (int i=0; i<=Count; i++)
|
xue@1
|
181 Result[i]=piiCount*cos(piiCount*i);
|
xue@1
|
182 break;
|
xue@1
|
183 }
|
xue@1
|
184 case wtHann:
|
xue@1
|
185 {
|
xue@1
|
186 for (int i=0; i<=Count; i++)
|
xue@1
|
187 Result[i]=piiCount*sin(2*piiCount*i);
|
xue@1
|
188 break;
|
xue@1
|
189 }
|
xue@1
|
190 case wtHannSqr:
|
xue@1
|
191 {
|
xue@1
|
192 for (int i=0; i<=Count; i++)
|
xue@1
|
193 Result[i]=piiCount*sin(2*piiCount*i)-0.5*piiCount*sin(4*piiCount*i);
|
xue@1
|
194 break;
|
xue@1
|
195 }
|
xue@1
|
196 case wtHann3sqrt:
|
xue@1
|
197 {
|
xue@1
|
198 for (int i=0; i<=Count; i++)
|
xue@1
|
199 {
|
xue@1
|
200 double s=sin(M_PI*i/Count), c=cos(M_PI*i/Count);
|
xue@1
|
201 Result[i]=3*piiCount*s*s*c;
|
xue@1
|
202 }
|
xue@1
|
203 }
|
xue@1
|
204 }
|
xue@1
|
205 return Result;
|
xue@1
|
206 }//NewdWindow
|
xue@1
|
207
|
xue@1
|
208 /*
|
xue@1
|
209 function NewddWindow: computes the 2nd-order derivative of a window function.
|
xue@1
|
210
|
xue@1
|
211 In: wt: window type
|
xue@1
|
212 Count: window size
|
xue@1
|
213 ips & ups: extra window specificatin parameters
|
xue@1
|
214 Out: newddwindow[Count+1]: the 2nd-order derivative window function.
|
xue@1
|
215
|
xue@1
|
216 Returns pointer to newddwindow. newddwindow is created anew if newddwindow=0 is specified on start.
|
xue@1
|
217 */
|
xue@1
|
218 double* NewddWindow(WindowType wt, int Count, int* ips, double* dps, double* newddwindow)
|
xue@1
|
219 {
|
xue@1
|
220 double* Result=newddwindow; if (!Result) Result=new double[Count+1];
|
xue@1
|
221 double piiCount=M_PI/Count;
|
xue@1
|
222 double piC2=piiCount*piiCount;
|
xue@1
|
223 switch(wt)
|
xue@1
|
224 {
|
xue@1
|
225 case wtRectangle:
|
xue@1
|
226 memset(Result, 0, sizeof(double)*(Count+1));
|
xue@1
|
227 break;
|
xue@1
|
228 case wtTriangular:
|
xue@1
|
229 throw("Trying to double-differentiate triangular window.");
|
xue@1
|
230 break;
|
xue@1
|
231 case wtHamming:
|
xue@1
|
232 for (int i=0; i<=Count; i++)
|
xue@1
|
233 Result[i]=1.84*piC2*cos(2*piiCount*i);
|
xue@1
|
234 break;
|
xue@1
|
235 case wtBlackman:
|
xue@1
|
236 for (int i=0; i<=Count; i++)
|
xue@1
|
237 Result[i]=2*piC2*cos(2*piiCount*i)-1.28*piC2*cos(4*piiCount*i);
|
xue@1
|
238 break;
|
xue@1
|
239 case wtGaussian:
|
xue@1
|
240 throw("Trying to double-differentiate Gaussian window.");
|
xue@1
|
241 break;
|
xue@1
|
242 case wtKaiser:
|
xue@1
|
243 throw("Trying to double-differentiate Kaiser window.");
|
xue@1
|
244 break;
|
xue@1
|
245 case wtHalfCosine:
|
xue@1
|
246 {
|
xue@1
|
247 for (int i=0; i<=Count; i++)
|
xue@1
|
248 Result[i]=-piC2*sin(piiCount*i);
|
xue@1
|
249 break;
|
xue@1
|
250 }
|
xue@1
|
251 case wtHann:
|
xue@1
|
252 {
|
xue@1
|
253 for (int i=0; i<=Count; i++)
|
xue@1
|
254 Result[i]=2*piC2*cos(2*piiCount*i);
|
xue@1
|
255 break;
|
xue@1
|
256 }
|
xue@1
|
257 case wtHannSqr:
|
xue@1
|
258 {
|
xue@1
|
259 for (int i=0; i<=Count; i++)
|
xue@1
|
260 Result[i]=2*piC2*cos(2*piiCount*i)-2*piC2*cos(4*piiCount*i);
|
xue@1
|
261 break;
|
xue@1
|
262 }
|
xue@1
|
263 case wtHann3sqrt:
|
xue@1
|
264 {
|
xue@1
|
265 for (int i=0; i<=Count; i++)
|
xue@1
|
266 {
|
xue@1
|
267 double s=sin(M_PI*i/Count), c=cos(M_PI*i/Count);
|
xue@1
|
268 Result[i]=3*piC2*(2*c*c-s*s)*s;
|
xue@1
|
269 }
|
xue@1
|
270 break;
|
xue@1
|
271 }
|
xue@1
|
272 }
|
xue@1
|
273 return Result;
|
xue@1
|
274 }//NewddWindow
|
xue@1
|
275
|
xue@1
|
276 /*
|
xue@1
|
277 function NewdddWindow: computes the 3rd-order derivative of a window function.
|
xue@1
|
278 In: wt: window type
|
xue@1
|
279 Count: window size
|
xue@1
|
280 ips & ups: extra window specificatin parameters
|
xue@1
|
281 Out: newdddwindow[Count+1]: the 3rd-order derivative window function.
|
xue@1
|
282
|
xue@1
|
283 Returns pointer to newdddwindow. newdddwindow is created anew if newdddwindow=0 is specified on start.
|
xue@1
|
284 */
|
xue@1
|
285 double* NewdddWindow(WindowType wt, int Count, int* ips, double* dps, double* newdddwindow)
|
xue@1
|
286 {
|
xue@1
|
287 double* Result=newdddwindow; if (!Result) Result=new double[Count+1];
|
xue@1
|
288 double piiCount=M_PI/Count;
|
xue@1
|
289 double piC2=piiCount*piiCount;
|
xue@1
|
290 double piC3=piiCount*piC2;
|
xue@1
|
291 switch(wt)
|
xue@1
|
292 {
|
xue@1
|
293 case wtRectangle:
|
xue@1
|
294 memset(Result, 0, sizeof(double)*(Count+1));
|
xue@1
|
295 break;
|
xue@1
|
296 case wtTriangular:
|
xue@1
|
297 throw("Trying to triple-differentiate triangular window.");
|
xue@1
|
298 break;
|
xue@1
|
299 case wtHamming:
|
xue@1
|
300 for (int i=0; i<=Count; i++)
|
xue@1
|
301 Result[i]=-3.68*piC3*sin(2*piiCount*i);
|
xue@1
|
302 break;
|
xue@1
|
303 case wtBlackman:
|
xue@1
|
304 for (int i=0; i<=Count; i++)
|
xue@1
|
305 Result[i]=-4*piC3*sin(2*piiCount*i)+5.12*piC3*sin(4*piiCount*i);
|
xue@1
|
306 break;
|
xue@1
|
307 case wtGaussian:
|
xue@1
|
308 throw("Trying to triple-differentiate Gaussian window.");
|
xue@1
|
309 break;
|
xue@1
|
310 case wtKaiser:
|
xue@1
|
311 throw("Trying to triple-differentiate Kaiser window.");
|
xue@1
|
312 break;
|
xue@1
|
313 case wtHalfCosine:
|
xue@1
|
314 {
|
xue@1
|
315 for (int i=0; i<=Count; i++)
|
xue@1
|
316 Result[i]=-piC3*cos(piiCount*i);
|
xue@1
|
317 break;
|
xue@1
|
318 }
|
xue@1
|
319 case wtHann:
|
xue@1
|
320 {
|
xue@1
|
321 for (int i=0; i<=Count; i++)
|
xue@1
|
322 Result[i]=-4*piC3*sin(2*piiCount*i);
|
xue@1
|
323 break;
|
xue@1
|
324 }
|
xue@1
|
325 case wtHannSqr:
|
xue@1
|
326 {
|
xue@1
|
327 for (int i=0; i<=Count; i++)
|
xue@1
|
328 Result[i]=-4*piC3*sin(2*piiCount*i)+8*piC3*sin(4*piiCount*i);
|
xue@1
|
329 break;
|
xue@1
|
330 }
|
xue@1
|
331 case wtHann3sqrt:
|
xue@1
|
332 throw("Trying to triple-differentiate Hann^1.5 window.");
|
xue@1
|
333 break;
|
xue@1
|
334 }
|
xue@1
|
335 return Result;
|
xue@1
|
336 }//NewdddWindow
|
xue@1
|
337
|
xue@1
|
338 //---------------------------------------------------------------------------
|
xue@1
|
339 /*
|
xue@1
|
340 function windowspec: computes a few descriptors of a cosine family window. A window function in the
|
xue@1
|
341 cosine window family is the linear combination of a few cosine functions, therefore has a cosine
|
xue@1
|
342 decomposition.
|
xue@1
|
343
|
xue@1
|
344 In: wt: window type
|
xue@1
|
345 N: window size
|
xue@1
|
346 Out: c[M+1], coefficients of cosine decomposition
|
xue@1
|
347 iH2: reciprocal of square of L2 norm,
|
xue@1
|
348 d[2M+1]: self-convolution of c[], optional
|
xue@1
|
349
|
xue@1
|
350 No return value.
|
xue@1
|
351 */
|
xue@1
|
352 void windowspec(WindowType wt, int N, int* M, double* c, double* iH2, double* d)
|
xue@1
|
353 {
|
xue@1
|
354 switch(wt)
|
xue@1
|
355 {
|
xue@1
|
356 case wtRectangle:
|
xue@1
|
357 M[0]=0, c[0]=1, iH2[0]=1.0/N/N;
|
xue@1
|
358 if (d) d[0]=1;
|
xue@1
|
359 break;
|
xue@1
|
360 case wtHamming:
|
xue@1
|
361 M[0]=1, c[0]=0.54, c[1]=0.23, iH2[0]=1.0/(0.3974*N*N);
|
xue@1
|
362 if (d) d[0]=0.3974, d[1]=0.2484, d[2]=0.0529;
|
xue@1
|
363 break;
|
xue@1
|
364 case wtBlackman:
|
xue@1
|
365 M[0]=2, c[0]=0.42, c[1]=0.25, c[2]=0.04, iH2[0]=1.0/(0.3046*N*N);
|
xue@1
|
366 if (d) d[0]=0.3046, d[1]=0.23, d[2]=0.0961, d[4]=0.02, d[5]=0.0016;
|
xue@1
|
367 break;
|
xue@1
|
368 case wtHann:
|
xue@1
|
369 M[0]=1, c[0]=0.5, c[1]=0.25, iH2[0]=1.0/(0.375*N*N);
|
xue@1
|
370 if (d) d[0]=0.375, d[1]=0.25, d[2]=0.0625;
|
xue@1
|
371 break;
|
xue@1
|
372 default:
|
xue@1
|
373 M[0]=1, c[0]=0.5, c[1]=0.25, iH2[0]=1.0/(0.375*N*N);
|
xue@1
|
374 if (d) d[0]=0.375, d[1]=0.25, d[2]=0.0625;
|
xue@1
|
375 break;
|
xue@1
|
376 }
|
xue@1
|
377 }//windowspec
|