annotate WindowFunctions.cpp @ 1:6422640a802f

first upload
author Wen X <xue.wen@elec.qmul.ac.uk>
date Tue, 05 Oct 2010 10:45:57 +0100
parents
children
rev   line source
xue@1 1 //---------------------------------------------------------------------------
xue@1 2 #include <math.h>
xue@1 3 #include <mem.h>
xue@1 4 #include "WindowFunctions.h"
xue@1 5 #include "align8.h"
xue@1 6 //---------------------------------------------------------------------------
xue@1 7
xue@1 8 /*
xue@1 9 function I0: Bessel function of order zero
xue@1 10
xue@1 11 Returns the Bessel function of x.
xue@1 12 */
xue@1 13 double I0(double x)
xue@1 14 {
xue@1 15 const double eps=1e-9;
xue@1 16
xue@1 17 int n=1;
xue@1 18 double S=1, D=1, T;
xue@1 19
xue@1 20 while (D>eps*S)
xue@1 21 {
xue@1 22 T=x/(2*n++);
xue@1 23 D*=T*T;
xue@1 24 S+=D;
xue@1 25 }
xue@1 26 return S;
xue@1 27 }//I0
xue@1 28
xue@1 29 /*
xue@1 30 function FillWindow: fills a buffer $Result with a window function.
xue@1 31
xue@1 32 In: wt:window type
xue@1 33 Count: window size
xue@1 34 ips & ups: extra window specificatin parameters
xue@1 35 Out: newwindow[Count+1]: the window function.
xue@1 36
xue@1 37 No return value. This function is designed assuming Count being even, and Count/2 is the symmetry
xue@1 38 centre of newwindow. newwindow has physical size Count+1 for compatibility purpose. For all vanishing
xue@1 39 windows (e.g. Hann) newwindow[0]=newwindow[Count]=0.
xue@1 40 */
xue@1 41 void FillWindow(double* Result, WindowType wt, int Count, int* ips, double* dps)
xue@1 42 {
xue@1 43 switch(wt)
xue@1 44 {
xue@1 45 case wtRectangle:
xue@1 46 for (int i=0; i<=Count; i++)
xue@1 47 Result[i]=1;
xue@1 48 break;
xue@1 49 case wtTriangular:
xue@1 50 for (int i=0; i<=Count; i++)
xue@1 51 Result[i]=1-2*fabs(i-Count/2.0)/Count;
xue@1 52 break;
xue@1 53 case wtHamming:
xue@1 54 for (int i=0; i<=Count; i++)
xue@1 55 Result[i]=(0.54-0.46*cos(2*M_PI*i/Count));
xue@1 56 break;
xue@1 57 case wtBlackman:
xue@1 58 for (int i=0; i<=Count; i++)
xue@1 59 Result[i]=0.42-0.5*cos(2*M_PI*i/Count)+0.08*cos(4*M_PI*i/Count);
xue@1 60 break;
xue@1 61 case wtGaussian:
xue@1 62 {
xue@1 63 double num=*dps*M_PI*M_PI/2/Count/Count;
xue@1 64 for (int i=0; i<=Count; i++)
xue@1 65 Result[i]=exp(-(i-Count/2.0)*(i-Count/2.0)*num);
xue@1 66 break;
xue@1 67 }
xue@1 68 case wtKaiser:
xue@1 69 {
xue@1 70 double ldps=*dps*M_PI*M_PI/2/Count;
xue@1 71 double den=I0(0.5*Count*ldps);
xue@1 72 for (int i=0; i<=Count; i++)
xue@1 73 Result[i]=I0(ldps*sqrt(0.25*Count*Count-(i-Count*0.5)*(i-Count*0.5)))/den;
xue@1 74 break;
xue@1 75 }
xue@1 76 case wtHalfCosine:
xue@1 77 {
xue@1 78 for (int i=0; i<=Count; i++)
xue@1 79 Result[i]=sin(M_PI*i/Count);
xue@1 80 break;
xue@1 81 }
xue@1 82 case wtHann:
xue@1 83 {
xue@1 84 for (int i=0; i<=Count; i++)
xue@1 85 Result[i]=(0.5-cos(M_PI*2*i/Count)/2);
xue@1 86 break;
xue@1 87 }
xue@1 88 case wtHannSqr:
xue@1 89 {
xue@1 90 for (int i=0; i<=Count; i++)
xue@1 91 Result[i]=(3-4*cos(M_PI*2*i/Count)+cos(M_PI*4*i/Count))/8;
xue@1 92 break;
xue@1 93 }
xue@1 94 case wtHann3sqrt:
xue@1 95 {
xue@1 96 for (int i=0; i<=Count; i++)
xue@1 97 {
xue@1 98 double tmp=sin(M_PI*i/Count);
xue@1 99 Result[i]=tmp*tmp*tmp;
xue@1 100 }
xue@1 101 break;
xue@1 102 }
xue@1 103 }
xue@1 104 }//FillWindow
xue@1 105
xue@1 106 /*
xue@1 107 function NewWindow: creates a window function.
xue@1 108
xue@1 109 In: wt: window type
xue@1 110 Count: window size
xue@1 111 ips & ups: extra window specificatin parameters
xue@1 112 Out: newwindow[Count+1]: the window function.
xue@1 113
xue@1 114 Returns pointer to newwindow. newwindow is created anew if newwindow=0 is specified on start.
xue@1 115 */
xue@1 116 double* NewWindow(WindowType wt, int Count, int* ips, double* dps, double* newwindow)
xue@1 117 {
xue@1 118 double* Result=newwindow; if (!Result) Result=new double[Count+1];
xue@1 119 FillWindow(Result, wt, Count, ips, dps);
xue@1 120 return Result;
xue@1 121 }//NewWindow
xue@1 122
xue@1 123 /*
xue@1 124 function NewWindow8: 8-byte aligned version of NewWindow.
xue@1 125
xue@1 126 In: wt: window type
xue@1 127 Count: window size
xue@1 128 ips & ups: extra window specificatin parameters
xue@1 129 Out: newwindow[Count+1]: the window function.
xue@1 130
xue@1 131 Returns pointer to newwindow. newwindow is created anew and 8-byte aligned if newwindow=0 is
xue@1 132 specified on start. However, if newwindow is not 8-byte aligned on start, the unaligned buffer is
xue@1 133 returned.
xue@1 134 */
xue@1 135 double* NewWindow8(WindowType wt, int Count, int* ips, double* dps, double* newwindow)
xue@1 136 {
xue@1 137 double* Result=newwindow; if (!Result) Result=(double*)malloc8(sizeof(double)*(Count+1));
xue@1 138 FillWindow(Result, wt, Count, ips, dps);
xue@1 139 return Result;
xue@1 140 }//NewWindow8
xue@1 141
xue@1 142 /*
xue@1 143 function NewdWindow: computes the derivative of a window function.
xue@1 144
xue@1 145 In: wt: window type
xue@1 146 Count: window size
xue@1 147 ips & ups: extra window specificatin parameters
xue@1 148 Out: newdwindow[Count+1]: the derivative window function.
xue@1 149
xue@1 150 Returns pointer to newdwindow. newdwindow is created anew if newdwindow=0 is specified on start.
xue@1 151 */
xue@1 152 double* NewdWindow(WindowType wt, int Count, int* ips, double* dps, double* newdwindow)
xue@1 153 {
xue@1 154 double* Result=newdwindow; if (!Result) Result=new double[Count+1];
xue@1 155 double piiCount=M_PI/Count;
xue@1 156 switch(wt)
xue@1 157 {
xue@1 158 case wtRectangle:
xue@1 159 memset(Result, 0, sizeof(double)*(Count+1));
xue@1 160 break;
xue@1 161 case wtTriangular:
xue@1 162 throw("Trying to differentiate triangular window.");
xue@1 163 break;
xue@1 164 case wtHamming:
xue@1 165 for (int i=0; i<=Count; i++)
xue@1 166 Result[i]=0.92*piiCount*sin(2*piiCount*i);
xue@1 167 break;
xue@1 168 case wtBlackman:
xue@1 169 for (int i=0; i<=Count; i++)
xue@1 170 Result[i]=piiCount*sin(2*piiCount*i)-0.32*piiCount*sin(4*piiCount*i);
xue@1 171 break;
xue@1 172 case wtGaussian:
xue@1 173 throw("Trying to differentiate Gaussian window.");
xue@1 174 break;
xue@1 175 case wtKaiser:
xue@1 176 throw("Trying to differentiate Kaiser window.");
xue@1 177 break;
xue@1 178 case wtHalfCosine:
xue@1 179 {
xue@1 180 for (int i=0; i<=Count; i++)
xue@1 181 Result[i]=piiCount*cos(piiCount*i);
xue@1 182 break;
xue@1 183 }
xue@1 184 case wtHann:
xue@1 185 {
xue@1 186 for (int i=0; i<=Count; i++)
xue@1 187 Result[i]=piiCount*sin(2*piiCount*i);
xue@1 188 break;
xue@1 189 }
xue@1 190 case wtHannSqr:
xue@1 191 {
xue@1 192 for (int i=0; i<=Count; i++)
xue@1 193 Result[i]=piiCount*sin(2*piiCount*i)-0.5*piiCount*sin(4*piiCount*i);
xue@1 194 break;
xue@1 195 }
xue@1 196 case wtHann3sqrt:
xue@1 197 {
xue@1 198 for (int i=0; i<=Count; i++)
xue@1 199 {
xue@1 200 double s=sin(M_PI*i/Count), c=cos(M_PI*i/Count);
xue@1 201 Result[i]=3*piiCount*s*s*c;
xue@1 202 }
xue@1 203 }
xue@1 204 }
xue@1 205 return Result;
xue@1 206 }//NewdWindow
xue@1 207
xue@1 208 /*
xue@1 209 function NewddWindow: computes the 2nd-order derivative of a window function.
xue@1 210
xue@1 211 In: wt: window type
xue@1 212 Count: window size
xue@1 213 ips & ups: extra window specificatin parameters
xue@1 214 Out: newddwindow[Count+1]: the 2nd-order derivative window function.
xue@1 215
xue@1 216 Returns pointer to newddwindow. newddwindow is created anew if newddwindow=0 is specified on start.
xue@1 217 */
xue@1 218 double* NewddWindow(WindowType wt, int Count, int* ips, double* dps, double* newddwindow)
xue@1 219 {
xue@1 220 double* Result=newddwindow; if (!Result) Result=new double[Count+1];
xue@1 221 double piiCount=M_PI/Count;
xue@1 222 double piC2=piiCount*piiCount;
xue@1 223 switch(wt)
xue@1 224 {
xue@1 225 case wtRectangle:
xue@1 226 memset(Result, 0, sizeof(double)*(Count+1));
xue@1 227 break;
xue@1 228 case wtTriangular:
xue@1 229 throw("Trying to double-differentiate triangular window.");
xue@1 230 break;
xue@1 231 case wtHamming:
xue@1 232 for (int i=0; i<=Count; i++)
xue@1 233 Result[i]=1.84*piC2*cos(2*piiCount*i);
xue@1 234 break;
xue@1 235 case wtBlackman:
xue@1 236 for (int i=0; i<=Count; i++)
xue@1 237 Result[i]=2*piC2*cos(2*piiCount*i)-1.28*piC2*cos(4*piiCount*i);
xue@1 238 break;
xue@1 239 case wtGaussian:
xue@1 240 throw("Trying to double-differentiate Gaussian window.");
xue@1 241 break;
xue@1 242 case wtKaiser:
xue@1 243 throw("Trying to double-differentiate Kaiser window.");
xue@1 244 break;
xue@1 245 case wtHalfCosine:
xue@1 246 {
xue@1 247 for (int i=0; i<=Count; i++)
xue@1 248 Result[i]=-piC2*sin(piiCount*i);
xue@1 249 break;
xue@1 250 }
xue@1 251 case wtHann:
xue@1 252 {
xue@1 253 for (int i=0; i<=Count; i++)
xue@1 254 Result[i]=2*piC2*cos(2*piiCount*i);
xue@1 255 break;
xue@1 256 }
xue@1 257 case wtHannSqr:
xue@1 258 {
xue@1 259 for (int i=0; i<=Count; i++)
xue@1 260 Result[i]=2*piC2*cos(2*piiCount*i)-2*piC2*cos(4*piiCount*i);
xue@1 261 break;
xue@1 262 }
xue@1 263 case wtHann3sqrt:
xue@1 264 {
xue@1 265 for (int i=0; i<=Count; i++)
xue@1 266 {
xue@1 267 double s=sin(M_PI*i/Count), c=cos(M_PI*i/Count);
xue@1 268 Result[i]=3*piC2*(2*c*c-s*s)*s;
xue@1 269 }
xue@1 270 break;
xue@1 271 }
xue@1 272 }
xue@1 273 return Result;
xue@1 274 }//NewddWindow
xue@1 275
xue@1 276 /*
xue@1 277 function NewdddWindow: computes the 3rd-order derivative of a window function.
xue@1 278 In: wt: window type
xue@1 279 Count: window size
xue@1 280 ips & ups: extra window specificatin parameters
xue@1 281 Out: newdddwindow[Count+1]: the 3rd-order derivative window function.
xue@1 282
xue@1 283 Returns pointer to newdddwindow. newdddwindow is created anew if newdddwindow=0 is specified on start.
xue@1 284 */
xue@1 285 double* NewdddWindow(WindowType wt, int Count, int* ips, double* dps, double* newdddwindow)
xue@1 286 {
xue@1 287 double* Result=newdddwindow; if (!Result) Result=new double[Count+1];
xue@1 288 double piiCount=M_PI/Count;
xue@1 289 double piC2=piiCount*piiCount;
xue@1 290 double piC3=piiCount*piC2;
xue@1 291 switch(wt)
xue@1 292 {
xue@1 293 case wtRectangle:
xue@1 294 memset(Result, 0, sizeof(double)*(Count+1));
xue@1 295 break;
xue@1 296 case wtTriangular:
xue@1 297 throw("Trying to triple-differentiate triangular window.");
xue@1 298 break;
xue@1 299 case wtHamming:
xue@1 300 for (int i=0; i<=Count; i++)
xue@1 301 Result[i]=-3.68*piC3*sin(2*piiCount*i);
xue@1 302 break;
xue@1 303 case wtBlackman:
xue@1 304 for (int i=0; i<=Count; i++)
xue@1 305 Result[i]=-4*piC3*sin(2*piiCount*i)+5.12*piC3*sin(4*piiCount*i);
xue@1 306 break;
xue@1 307 case wtGaussian:
xue@1 308 throw("Trying to triple-differentiate Gaussian window.");
xue@1 309 break;
xue@1 310 case wtKaiser:
xue@1 311 throw("Trying to triple-differentiate Kaiser window.");
xue@1 312 break;
xue@1 313 case wtHalfCosine:
xue@1 314 {
xue@1 315 for (int i=0; i<=Count; i++)
xue@1 316 Result[i]=-piC3*cos(piiCount*i);
xue@1 317 break;
xue@1 318 }
xue@1 319 case wtHann:
xue@1 320 {
xue@1 321 for (int i=0; i<=Count; i++)
xue@1 322 Result[i]=-4*piC3*sin(2*piiCount*i);
xue@1 323 break;
xue@1 324 }
xue@1 325 case wtHannSqr:
xue@1 326 {
xue@1 327 for (int i=0; i<=Count; i++)
xue@1 328 Result[i]=-4*piC3*sin(2*piiCount*i)+8*piC3*sin(4*piiCount*i);
xue@1 329 break;
xue@1 330 }
xue@1 331 case wtHann3sqrt:
xue@1 332 throw("Trying to triple-differentiate Hann^1.5 window.");
xue@1 333 break;
xue@1 334 }
xue@1 335 return Result;
xue@1 336 }//NewdddWindow
xue@1 337
xue@1 338 //---------------------------------------------------------------------------
xue@1 339 /*
xue@1 340 function windowspec: computes a few descriptors of a cosine family window. A window function in the
xue@1 341 cosine window family is the linear combination of a few cosine functions, therefore has a cosine
xue@1 342 decomposition.
xue@1 343
xue@1 344 In: wt: window type
xue@1 345 N: window size
xue@1 346 Out: c[M+1], coefficients of cosine decomposition
xue@1 347 iH2: reciprocal of square of L2 norm,
xue@1 348 d[2M+1]: self-convolution of c[], optional
xue@1 349
xue@1 350 No return value.
xue@1 351 */
xue@1 352 void windowspec(WindowType wt, int N, int* M, double* c, double* iH2, double* d)
xue@1 353 {
xue@1 354 switch(wt)
xue@1 355 {
xue@1 356 case wtRectangle:
xue@1 357 M[0]=0, c[0]=1, iH2[0]=1.0/N/N;
xue@1 358 if (d) d[0]=1;
xue@1 359 break;
xue@1 360 case wtHamming:
xue@1 361 M[0]=1, c[0]=0.54, c[1]=0.23, iH2[0]=1.0/(0.3974*N*N);
xue@1 362 if (d) d[0]=0.3974, d[1]=0.2484, d[2]=0.0529;
xue@1 363 break;
xue@1 364 case wtBlackman:
xue@1 365 M[0]=2, c[0]=0.42, c[1]=0.25, c[2]=0.04, iH2[0]=1.0/(0.3046*N*N);
xue@1 366 if (d) d[0]=0.3046, d[1]=0.23, d[2]=0.0961, d[4]=0.02, d[5]=0.0016;
xue@1 367 break;
xue@1 368 case wtHann:
xue@1 369 M[0]=1, c[0]=0.5, c[1]=0.25, iH2[0]=1.0/(0.375*N*N);
xue@1 370 if (d) d[0]=0.375, d[1]=0.25, d[2]=0.0625;
xue@1 371 break;
xue@1 372 default:
xue@1 373 M[0]=1, c[0]=0.5, c[1]=0.25, iH2[0]=1.0/(0.375*N*N);
xue@1 374 if (d) d[0]=0.375, d[1]=0.25, d[2]=0.0625;
xue@1 375 break;
xue@1 376 }
xue@1 377 }//windowspec