annotate wavelet.cpp @ 1:6422640a802f

first upload
author Wen X <xue.wen@elec.qmul.ac.uk>
date Tue, 05 Oct 2010 10:45:57 +0100
parents
children fc19d45615d1
rev   line source
xue@1 1 //---------------------------------------------------------------------------
xue@1 2
xue@1 3 #include <math.h>
xue@1 4 #include <mem.h>
xue@1 5 #include "wavelet.h"
xue@1 6 #include "matrix.h"
xue@1 7
xue@1 8 //---------------------------------------------------------------------------
xue@1 9 /*
xue@1 10 function csqrt: real implementation of complex square root z=sqrt(x)
xue@1 11
xue@1 12 In: xr and xi: real and imaginary parts of x
xue@1 13 Out: zr and zi: real and imaginary parts of z=sqrt(x)
xue@1 14
xue@1 15 No return value.
xue@1 16 */
xue@1 17 void csqrt(double& zr, double& zi, double xr, double xi)
xue@1 18 {
xue@1 19 if (xi==0)
xue@1 20 if (xr>=0) zr=sqrt(xr), zi=0;
xue@1 21 else zi=sqrt(-xr), zr=0;
xue@1 22 else
xue@1 23 {
xue@1 24 double xm=sqrt(xr*xr+xi*xi);
xue@1 25 double ri=sqrt((xm-xr)/2);
xue@1 26 zr=xi/2/ri;
xue@1 27 zi=ri;
xue@1 28 }
xue@1 29 }//csqrt
xue@1 30
xue@1 31 /*
xue@1 32 function Daubechies: calculates the Daubechies filter of a given order p
xue@1 33
xue@1 34 In: filter order p
xue@1 35 Out: h[2p]: the 2p FIR coefficients
xue@1 36
xue@1 37 No reutrn value. The calculated filters are minimum phase, which means the energy concentrates at the
xue@1 38 beginning. This is usually used for reconstruction. On the contrary, for wavelet analysis the filter
xue@1 39 is mirrored.
xue@1 40 */
xue@1 41 void Daubechies(int p, double* h)
xue@1 42 {
xue@1 43 //initialize h(z)
xue@1 44 double r01=pow(2, -p-p+1.5);
xue@1 45
xue@1 46 h[0]=1;
xue@1 47 for (int i=1; i<=p; i++)
xue@1 48 {
xue@1 49 h[i]=h[i-1]*(p+1-i)/i;
xue@1 50 }
xue@1 51
xue@1 52 //construct polynomial p
xue@1 53 double *P=new double[p], *rp=new double[p], *ip=new double[p];
xue@1 54
xue@1 55 P[p-1]=1;
xue@1 56 double r02=1;
xue@1 57 for (int i=p-1; i>0; i--)
xue@1 58 {
xue@1 59 double rate=(i+1-1.0)/(p-2.0+i+1);
xue@1 60 P[i-1]=P[i]*rate;
xue@1 61 r02/=rate;
xue@1 62 }
xue@1 63 Roots(p-1, P, rp, ip);
xue@1 64 for (int i=0; i<p-1; i++)
xue@1 65 {
xue@1 66 //current length of h is p+1+i, h[0:p+i]
xue@1 67 if (i<p-2 && rp[i]==rp[i+1] && ip[i]==-ip[i+1])
xue@1 68 {
xue@1 69 double ar=rp[i], ai=ip[i];
xue@1 70 double bkr=-2*ar+1, bki=-2*ai, ckr=4*(ar*ar-ai*ai-ar), cki=4*(2*ar*ai-ai), dlr, dli;
xue@1 71 csqrt(dlr, dli, ckr, cki);
xue@1 72 double akr=bkr+dlr, aki=bki+dli;
xue@1 73 if (akr*akr+aki*aki>1) akr=bkr-dlr, aki=bki-dli;
xue@1 74 double ak1=-2*akr, ak2=akr*akr+aki*aki;
xue@1 75 h[p+2+i]=ak2*h[p+i];
xue@1 76 h[p+1+i]=ak2*h[p-1+i]+ak1*h[p+i];
xue@1 77 for (int j=p+i; j>1; j--) h[j]=h[j]+ak1*h[j-1]+ak2*h[j-2];
xue@1 78 h[1]=h[1]+ak1*h[0];
xue@1 79 r02/=ak2;
xue@1 80 i++;
xue@1 81 }
xue@1 82 else //real root of P
xue@1 83 {
xue@1 84 double ak, bk=-(2*rp[i]-1), delk=4*rp[i]*(rp[i]-1);
xue@1 85 if (bk>0) ak=bk-sqrt(delk);
xue@1 86 else ak=bk+sqrt(delk);
xue@1 87 r02/=ak;
xue@1 88 h[p+1+i]=-ak*h[p+i];
xue@1 89 for (int j=p+i; j>0; j--) h[j]=h[j]-ak*h[j-1];
xue@1 90 }
xue@1 91 }
xue@1 92 delete[] P; delete[] rp; delete[] ip;
xue@1 93 r01=r01*sqrt(r02);
xue@1 94 for (int i=0; i<p*2; i++) h[i]*=r01;
xue@1 95 }//Daubechies
xue@1 96
xue@1 97 /*
xue@1 98 Periodic wavelet decomposition and reconstruction routines
xue@1 99
xue@1 100 The wavelet transform of an N-point sequence is arranged in "interleaved" format
xue@1 101 as another N-point sequance. Level 1 details are found at N/2 points 1, 3, 5, ...,
xue@1 102 N-1; level 2 details are found at N/4 points 2, 6, ..., N-2; level 3 details are
xue@1 103 found at N/8 points 4, 12, ..., N-4; etc.
xue@1 104 */
xue@1 105
xue@1 106 /*
xue@1 107 function dwtpqmf: in this implementation h and g are the same as reconstruction qmf filters. In fact
xue@1 108 the actual filters used are their mirrors and filter origin are aligned to the ends of the real
xue@1 109 filters, which turn out to be the starts of h and g.
xue@1 110
xue@1 111 The inverse transform is idwtp(), the same as inversing dwtp().
xue@1 112
xue@1 113 In: in[Count]: waveform data
xue@1 114 h[M], g[M]: quadratic mirror filter pair
xue@1 115 N: maximal time resolution
xue@1 116 Count=kN, N=2^lN being the reciprocal of the most detailed frequency scale, i.e.
xue@1 117 N=1 for no transforming at all, N=2 for dividing into approx. and detail,
xue@1 118 N=4 for dividing into approx+detail(approx+detial), etc.
xue@1 119 Count*2/N=2k gives the smallest length to be convolved with h and g.
xue@1 120 Out: out[N], the wavelet transform, arranged in interleaved format.
xue@1 121
xue@1 122 Returns maximal atom length (should equal N).
xue@1 123 */
xue@1 124 int dwtpqmf(double* in, int Count, int N, double* h, double* g, int M, double* out)
xue@1 125 {
xue@1 126 double* tmp=new double[Count];
xue@1 127 double *tmpa=tmp, *tmpla=in;
xue@1 128 int C=Count, L=0, n=1;
xue@1 129
xue@1 130 A:
xue@1 131 {
xue@1 132 //C: signal length at current layer
xue@1 133 //L: layer index, 0 being most detailed
xue@1 134 //n: atom length on current layer, equals 2^L.
xue@1 135 //C*n=(C<<L)=Count
xue@1 136 double* tmpd=&tmpa[C/2];
xue@1 137 for (int i=0; i<C; i+=2)
xue@1 138 {
xue@1 139 int i2=i/2;
xue@1 140 tmpa[i2]=tmpla[i]*h[0];
xue@1 141 tmpd[i2]=tmpla[i]*g[0];
xue@1 142 for (int j=1; j<M; j++)
xue@1 143 {
xue@1 144 if (i+j<C)
xue@1 145 {
xue@1 146 tmpa[i2]+=tmpla[i+j]*h[j];
xue@1 147 tmpd[i2]+=tmpla[i+j]*g[j];
xue@1 148 }
xue@1 149 else
xue@1 150 {
xue@1 151 tmpa[i2]+=tmpla[i+j-C]*h[j];
xue@1 152 tmpd[i2]+=tmpla[i+j-C]*g[j];
xue@1 153 }
xue@1 154 }
xue@1 155 }
xue@1 156 for (int i=0; i*2+1<C; i++) out[(2*i+1)<<L]=tmpd[i];
xue@1 157 for (int i=0; i*2<C; i++) out[i<<(L+1)]=tmpa[i];
xue@1 158 n*=2;
xue@1 159 if (n<N)
xue@1 160 {
xue@1 161 tmpla=tmpa;
xue@1 162 tmpa=tmpd;
xue@1 163 L++;
xue@1 164 C/=2;
xue@1 165 goto A;
xue@1 166 }
xue@1 167 }
xue@1 168 delete[] tmp;
xue@1 169 return n;
xue@1 170 }//dwtpqmf
xue@1 171
xue@1 172 /*
xue@1 173 function dwtp: in this implementation h and g can be different from mirrored reconstruction filters,
xue@1 174 i.e. the biorthogonal transform. h[0] and g[0] are aligned at the ends of the filters, i.e. h[-M+1:0],
xue@1 175 g[-M+1:0].
xue@1 176
xue@1 177 In: in[Count]: waveform data
xue@1 178 h[-M+1:0], g[-M+1:0]: quadratic mirror filter pair
xue@1 179 N: maximal time resolution
xue@1 180 Out: out[N], the wavelet transform, arranged in interleaved format.
xue@1 181
xue@1 182 Returns maximal atom length (should equal N).
xue@1 183 */
xue@1 184 int dwtp(double* in, int Count, int N, double* h, double* g, int M, double* out)
xue@1 185 {
xue@1 186 double* tmp=new double[Count];
xue@1 187 double *tmpa=tmp, *tmpla=in;
xue@1 188 int C=Count, L=0, n=1;
xue@1 189
xue@1 190 A:
xue@1 191 {
xue@1 192 double* tmpd=&tmpa[C/2];
xue@1 193 for (int i=0; i<C; i+=2)
xue@1 194 {
xue@1 195 int i2=i/2;
xue@1 196 tmpa[i2]=tmpla[i]*h[0];
xue@1 197 tmpd[i2]=tmpla[i]*g[0];
xue@1 198 for (int j=-1; j>-M; j--)
xue@1 199 {
xue@1 200 if (i-j<C)
xue@1 201 {
xue@1 202 tmpa[i2]+=tmpla[i-j]*h[j];
xue@1 203 tmpd[i2]+=tmpla[i-j]*g[j];
xue@1 204 }
xue@1 205 else
xue@1 206 {
xue@1 207 tmpa[i2]+=tmpla[i-j-C]*h[j];
xue@1 208 tmpd[i2]+=tmpla[i-j-C]*g[j];
xue@1 209 }
xue@1 210 }
xue@1 211 }
xue@1 212 for (int i=0; i*2+1<C; i++) out[(2*i+1)<<L]=tmpd[i];
xue@1 213 for (int i=0; i*2<C; i++) out[i<<(L+1)]=tmpa[i];
xue@1 214 n*=2;
xue@1 215 if (n<N)
xue@1 216 {
xue@1 217 tmpla=tmpa;
xue@1 218 tmpa=tmpd;
xue@1 219 L++;
xue@1 220 C/=2;
xue@1 221 goto A;
xue@1 222 }
xue@1 223 }
xue@1 224 delete[] tmp;
xue@1 225 return n;
xue@1 226 }//dwtp
xue@1 227
xue@1 228 /*
xue@1 229 function dwtp: in this implementation h and g can be different size. h[0] and g[0] are aligned at the
xue@1 230 ends of the filters, i.e. h[-Mh+1:0], g[-Mg+1:0].
xue@1 231
xue@1 232 In: in[Count]: waveform data
xue@1 233 h[-Mh+1:0], g[-Mg+1:0]: quadratic mirror filter pair
xue@1 234 N: maximal time resolution
xue@1 235 Out: out[N], the wavelet transform, arranged in interleaved format.
xue@1 236
xue@1 237 Returns maximal atom length (should equal N).
xue@1 238 */
xue@1 239 int dwtp(double* in, int Count, int N, double* h, int Mh, double* g, int Mg, double* out)
xue@1 240 {
xue@1 241 double* tmp=new double[Count];
xue@1 242 double *tmpa=tmp, *tmpla=in;
xue@1 243 int C=Count, L=0, n=1;
xue@1 244
xue@1 245 A:
xue@1 246 {
xue@1 247 double* tmpd=&tmpa[C/2];
xue@1 248 for (int i=0; i<C; i+=2)
xue@1 249 {
xue@1 250 int i2=i/2;
xue@1 251 tmpa[i2]=tmpla[i]*h[0];
xue@1 252 tmpd[i2]=tmpla[i]*g[0];
xue@1 253 for (int j=-1; j>-Mh; j--)
xue@1 254 {
xue@1 255 if (i-j<C)
xue@1 256 {
xue@1 257 tmpa[i2]+=tmpla[i-j]*h[j];
xue@1 258 }
xue@1 259 else
xue@1 260 {
xue@1 261 tmpa[i2]+=tmpla[i-j-C]*h[j];
xue@1 262 }
xue@1 263 }
xue@1 264 for (int j=-1; j>-Mg; j--)
xue@1 265 {
xue@1 266 if (i-j<C)
xue@1 267 {
xue@1 268 tmpd[i2]+=tmpla[i-j]*g[j];
xue@1 269 }
xue@1 270 else
xue@1 271 {
xue@1 272 tmpd[i2]+=tmpla[i-j-C]*g[j];
xue@1 273 }
xue@1 274 }
xue@1 275 }
xue@1 276 for (int i=0; i*2+1<C; i++) out[(2*i+1)<<L]=tmpd[i];
xue@1 277 for (int i=0; i*2<C; i++) out[i<<(L+1)]=tmpa[i];
xue@1 278 n*=2;
xue@1 279 if (n<N)
xue@1 280 {
xue@1 281 tmpla=tmpa;
xue@1 282 tmpa=tmpd;
xue@1 283 L++;
xue@1 284 C/=2;
xue@1 285 goto A;
xue@1 286 }
xue@1 287 }
xue@1 288 delete[] tmp;
xue@1 289 return n;
xue@1 290 }//dwtp
xue@1 291
xue@1 292 /*
xue@1 293 function dwtp: in this implementation h and g can be arbitrarily located: h from $sh to $eh, g from
xue@1 294 $sg to $eg.
xue@1 295
xue@1 296 In: in[Count]: waveform data
xue@1 297 h[sh:eh-1], g[sg:eg-1]: quadratic mirror filter pair
xue@1 298 N: maximal time resolution
xue@1 299 Out: out[N], the wavelet transform, arranged in interleaved format.
xue@1 300
xue@1 301 Returns maximal atom length (should equal N).
xue@1 302 */
xue@1 303 int dwtp(double* in, int Count, int N, double* h, int sh, int eh, double* g, int sg, int eg, double* out)
xue@1 304 {
xue@1 305 double* tmp=new double[Count];
xue@1 306 double *tmpa=tmp, *tmpla=in;
xue@1 307 int C=Count, L=0, n=1;
xue@1 308
xue@1 309 A:
xue@1 310 {
xue@1 311 double* tmpd=&tmpa[C/2];
xue@1 312 for (int i=0; i<C; i+=2)
xue@1 313 {
xue@1 314 int i2=i/2;
xue@1 315 tmpa[i2]=0;//tmpla[i]*h[0];
xue@1 316 tmpd[i2]=0;//tmpla[i]*g[0];
xue@1 317 for (int j=sh; j<=eh; j++)
xue@1 318 {
xue@1 319 int ind=i-j;
xue@1 320 if (ind>=C) tmpa[i2]+=tmpla[ind-C]*h[j];
xue@1 321 else if (ind<0) tmpa[i2]+=tmpla[ind+C]*h[j];
xue@1 322 else tmpa[i2]+=tmpla[ind]*h[j];
xue@1 323 }
xue@1 324 for (int j=sg; j<=eg; j++)
xue@1 325 {
xue@1 326 int ind=i-j;
xue@1 327 if (ind>=C) tmpd[i2]+=tmpla[i-j-C]*g[j];
xue@1 328 else if (ind<0) tmpd[i2]+=tmpla[i-j+C]*g[j];
xue@1 329 else tmpd[i2]+=tmpla[i-j]*g[j];
xue@1 330 }
xue@1 331 }
xue@1 332 for (int i=0; i*2+1<C; i++) out[(2*i+1)<<L]=tmpd[i];
xue@1 333 for (int i=0; i*2<C; i++) out[i<<(L+1)]=tmpa[i];
xue@1 334 n*=2;
xue@1 335 if (n<N)
xue@1 336 {
xue@1 337 tmpla=tmpa;
xue@1 338 tmpa=tmpd;
xue@1 339 L++;
xue@1 340 C/=2;
xue@1 341 goto A;
xue@1 342 }
xue@1 343 }
xue@1 344 delete[] tmp;
xue@1 345 return n;
xue@1 346 }//dwtp
xue@1 347
xue@1 348 /*
xue@1 349 function idwtp: periodic wavelet reconstruction by qmf
xue@1 350
xue@1 351 In: in[Count]: wavelet transform in interleaved format
xue@1 352 h[M], g[M]: quadratic mirror filter pair
xue@1 353 N: maximal time resolution
xue@1 354 Out: out[N], waveform data (detail level 0).
xue@1 355
xue@1 356 No return value.
xue@1 357 */
xue@1 358 void idwtp(double* in, int Count, int N, double* h, double* g, int M, double* out)
xue@1 359 {
xue@1 360 double* tmp=new double[Count];
xue@1 361 memcpy(out, in, sizeof(double)*Count);
xue@1 362 int n=N, C=Count/N, L=log2(N)-1;
xue@1 363 while (n>1)
xue@1 364 {
xue@1 365 memset(tmp, 0, sizeof(double)*C*2);
xue@1 366 //2k<<L being the approx, (2k+1)<<L being the detail
xue@1 367 for (int i=0; i<C; i++)
xue@1 368 {
xue@1 369 for (int j=0; j<M; j++)
xue@1 370 {
xue@1 371 if (i*2+j<C*2)
xue@1 372 {
xue@1 373 tmp[i*2+j]+=out[(2*i)<<L]*h[j]+out[(2*i+1)<<L]*g[j];
xue@1 374 }
xue@1 375 else
xue@1 376 {
xue@1 377 tmp[i*2+j-C*2]+=out[(2*i)<<L]*h[j]+out[(2*i+1)<<L]*g[j];
xue@1 378 }
xue@1 379 }
xue@1 380 }
xue@1 381 for (int i=0; i<C*2; i++) out[i<<L]=tmp[i];
xue@1 382 n/=2;
xue@1 383 C*=2;
xue@1 384 L--;
xue@1 385 }
xue@1 386 delete[] tmp;
xue@1 387 }//idwtp
xue@1 388
xue@1 389 /*
xue@1 390 function idwtp: in which h and g can have different length.
xue@1 391
xue@1 392 In: in[Count]: wavelet transform in interleaved format
xue@1 393 h[Mh], g[Mg]: quadratic mirror filter pair
xue@1 394 N: maximal time resolution
xue@1 395 Out: out[N], waveform data (detail level 0).
xue@1 396
xue@1 397 No return value.
xue@1 398 */
xue@1 399 void idwtp(double* in, int Count, int N, double* h, int Mh, double* g, int Mg, double* out)
xue@1 400 {
xue@1 401 double* tmp=new double[Count];
xue@1 402 memcpy(out, in, sizeof(double)*Count);
xue@1 403 int n=N, C=Count/N, L=log2(N)-1;
xue@1 404 while (n>1)
xue@1 405 {
xue@1 406 memset(tmp, 0, sizeof(double)*C*2);
xue@1 407 //2k<<L being the approx, (2k+1)<<L being the detail
xue@1 408 for (int i=0; i<C; i++)
xue@1 409 {
xue@1 410 for (int j=0; j<Mh; j++)
xue@1 411 {
xue@1 412 int ind=i*2+j+(Mg-Mh)/2;
xue@1 413 if (ind>=C*2)
xue@1 414 {
xue@1 415 tmp[ind-C*2]+=out[(2*i)<<L]*h[j];
xue@1 416 }
xue@1 417 else if (ind<0)
xue@1 418 {
xue@1 419 tmp[ind+C*2]+=out[(2*i)<<L]*h[j];
xue@1 420 }
xue@1 421 else
xue@1 422 {
xue@1 423 tmp[ind]+=out[(2*i)<<L]*h[j];
xue@1 424 }
xue@1 425 }
xue@1 426 }
xue@1 427 for (int i=0; i<C; i++)
xue@1 428 {
xue@1 429 for (int j=0; j<Mg; j++)
xue@1 430 {
xue@1 431 int ind=i*2+j+(Mh-Mg)/2;
xue@1 432 if (ind>=C*2)
xue@1 433 {
xue@1 434 tmp[ind-C*2]+=out[(2*i+1)<<L]*g[j];
xue@1 435 }
xue@1 436 else if (ind<0)
xue@1 437 {
xue@1 438 tmp[ind+C*2]+=out[(2*i+1)<<L]*g[j];
xue@1 439 }
xue@1 440 else
xue@1 441 {
xue@1 442 tmp[ind]+=out[(2*i+1)<<L]*g[j];
xue@1 443 }
xue@1 444 }
xue@1 445 }
xue@1 446 for (int i=0; i<C*2; i++) out[i<<L]=tmp[i];
xue@1 447 n/=2;
xue@1 448 C*=2;
xue@1 449 L--;
xue@1 450 }
xue@1 451 delete[] tmp;
xue@1 452 }//idwtp
xue@1 453
xue@1 454 /*
xue@1 455 function idwtp: in which h and g can be arbitrarily located: h from $sh to $eh, g from $sg to $eg
xue@1 456
xue@1 457 In: in[Count]: wavelet transform in interleaved format
xue@1 458 h[sh:eh-1], g[sg:eg-1]: quadratic mirror filter pair
xue@1 459 N: maximal time resolution
xue@1 460 Out: out[N], waveform data (detail level 0).
xue@1 461
xue@1 462 No return value.
xue@1 463 */
xue@1 464 void idwtp(double* in, int Count, int N, double* h, int sh, int eh, double* g, int sg, int eg, double* out)
xue@1 465 {
xue@1 466 double* tmp=new double[Count];
xue@1 467 memcpy(out, in, sizeof(double)*Count);
xue@1 468 int n=N, C=Count/N, L=log2(N)-1;
xue@1 469 while (n>1)
xue@1 470 {
xue@1 471 memset(tmp, 0, sizeof(double)*C*2);
xue@1 472 //2k<<L being the approx, (2k+1)<<L being the detail
xue@1 473 for (int i=0; i<C; i++)
xue@1 474 {
xue@1 475 for (int j=sh; j<=eh; j++)
xue@1 476 {
xue@1 477 int ind=i*2+j;
xue@1 478 if (ind>=C*2) tmp[ind-C*2]+=out[(2*i)<<L]*h[j];
xue@1 479 else if (ind<0) tmp[ind+C*2]+=out[(2*i)<<L]*h[j];
xue@1 480 else tmp[ind]+=out[(2*i)<<L]*h[j];
xue@1 481 }
xue@1 482 }
xue@1 483 for (int i=0; i<C; i++)
xue@1 484 {
xue@1 485 for (int j=sg; j<=eg; j++)
xue@1 486 {
xue@1 487 int ind=i*2+j;
xue@1 488 if (ind>=C*2) tmp[ind-C*2]+=out[(2*i+1)<<L]*g[j];
xue@1 489 else if (ind<0) tmp[ind+C*2]+=out[(2*i+1)<<L]*g[j];
xue@1 490 else tmp[ind]+=out[(2*i+1)<<L]*g[j];
xue@1 491 }
xue@1 492 }
xue@1 493 for (int i=0; i<C*2; i++) out[i<<L]=tmp[i];
xue@1 494 n/=2;
xue@1 495 C*=2;
xue@1 496 L--;
xue@1 497 }
xue@1 498 delete[] tmp;
xue@1 499 }//idwtp
xue@1 500
xue@1 501 //---------------------------------------------------------------------------
xue@1 502
xue@1 503 /*
xue@1 504 Spline biorthogonal wavelet routines.
xue@1 505
xue@1 506 Further reading: "Calculation of biorthogonal spline wavelets.pdf"
xue@1 507 */
xue@1 508
xue@1 509 //function Cmb: combination number C(n, k) (n>=k>=0)
xue@1 510 int Cmb(int n, int k)
xue@1 511 {
xue@1 512 if (k>n/2) k=n-k;
xue@1 513 int c=1;
xue@1 514 for (int i=1; i<=k; i++) c=c*(n+1-i)/i;
xue@1 515 return c;
xue@1 516 }
xue@1 517
xue@1 518 /*
xue@1 519 function splinewl: computes spline biorthogonal wavelet filters. This version of splinewl calcualtes
xue@1 520 the positive-time half of h and hm coefficients only.
xue@1 521
xue@1 522 p1 and p2 must have the same parity. If p1 is even, p1 coefficients will be returned in h1; if p1 is
xue@1 523 odd, p1-1 coefficients will be returned in h1.
xue@1 524
xue@1 525 Actual length of h is p1+1, of hm is p1+2p2-1. only a half of each is kept.
xue@1 526 p even: h[0:p1/2] <- [p1/2:p1], hm[0:p1/2+p2-1] <- [p1/2+p2-1:p1+2p2-2]
xue@1 527 p odd: h[0:(p1-1)/2] <- [(p1+1)/2:p1], hm[0:(p1-3)/2+p2] <- [(p1-1)/2+p2:p1+2p2-2]
xue@1 528 i.e. h[0:hp1] <- [p1-hp1:p1], hm[0:hp1+p2-1] <- [p1-hp1-1+p2:p1+2p2-2]
xue@1 529
xue@1 530 In: p1, p2: specify vanishing moments of h and hm
xue@1 531 Out: h[] and hm[] as specified above.
xue@1 532
xue@1 533 No return value.
xue@1 534 */
xue@1 535 void splinewl(int p1, int p2, double* h, double* hm)
xue@1 536 {
xue@1 537 int hp1=p1/2, hp2=p2/2;
xue@1 538 int q=(p1+p2)/2;
xue@1 539 h[hp1]=sqrt(2.0)*pow(2, -p1);
xue@1 540 // h1[hp1]=1;
xue@1 541 for (int i=1, j=hp1-1; i<=hp1; i++, j--)
xue@1 542 {
xue@1 543 h[j]=h[j+1]*(p1+1-i)/i;
xue@1 544 }
xue@1 545
xue@1 546 double *_hh1=new double[p2+1], *_hh2=new double[2*q];
xue@1 547 double *hh1=&_hh1[p2-hp2], *hh2=&_hh2[q];
xue@1 548
xue@1 549 hh1[hp2]=sqrt(2.0)*pow(2, -p2);
xue@1 550 for (int i=1, j=hp2-1; i<=hp2; i++, j--)
xue@1 551 {
xue@1 552 hh1[j]=hh1[j+1]*(p2+1-i)/i;
xue@1 553 }
xue@1 554 if (p2%2) //p2 is odd
xue@1 555 {
xue@1 556 for (int i=0; i<=hp2; i++) hh1[-i-1]=hh1[i];
xue@1 557 }
xue@1 558 else //p2 even
xue@1 559 {
xue@1 560 for (int i=1; i<=hp2; i++) hh1[-i]=hh1[i];
xue@1 561 }
xue@1 562
xue@1 563 memset(_hh2, 0, sizeof(double)*2*q);
xue@1 564 for (int n=1-q; n<=q-1; n++)
xue@1 565 {
xue@1 566 int k=abs(n);
xue@1 567 int CC1=Cmb(q-1+k, k), CC2=Cmb(2*k, k-n); //CC=1.0*C(q-1+k, k)*C(2*k, k-n)
xue@1 568 for (; k<=q-1; k++)
xue@1 569 {
xue@1 570 hh2[n]=hh2[n]+1.0*CC1*CC2*pow(0.25, k);
xue@1 571 CC1=CC1*(q+k)/(k+1);
xue@1 572 CC2=CC2*(2*k+1)*(2*k+2)/((k+1-n)*(k+1+n));
xue@1 573 }
xue@1 574 hh2[n]*=pow(-1, n);
xue@1 575 }
xue@1 576
xue@1 577 //hh1[hp2-p2:hp2], hh2[1-q:q-1]
xue@1 578 //h2=conv(hh1, hh2), but the positive half only
xue@1 579 memset(hm, 0, sizeof(double)*(hp1+p2));
xue@1 580 for (int i=hp2-p2; i<=hp2; i++)
xue@1 581 for (int j=1-q; j<=q-1; j++)
xue@1 582 {
xue@1 583 if (i+j>=0 && i+j<hp1+p2)
xue@1 584 hm[i+j]+=hh1[i]*hh2[j];
xue@1 585 }
xue@1 586
xue@1 587 delete[] _hh1;
xue@1 588 delete[] _hh2;
xue@1 589 }//splinewl
xue@1 590
xue@1 591
xue@1 592 /*
xue@1 593 function splinewl: calculates the analysis and reconstruction filter pairs of spline biorthogonal
xue@1 594 wavelet (h, g) and (hm, gm). h has the size p1+1, hm has the size p1+2p2-1.
xue@1 595
xue@1 596 If p1+1 is odd, then all four filters are symmetric; if not, then h and hm are symmetric, while g and
xue@1 597 gm are anti-symmetric.
xue@1 598
xue@1 599 The concatenation of filters h with hm (or g with gm) introduces a time shift of p1+p2-1, which is the
xue@1 600 return value multiplied by -1.
xue@1 601
xue@1 602 If normmode==1, the results are normalized so that ||h||^2=||g||^2=1;
xue@1 603 if normmode==2, the results are normalized so that ||hm||^2=||gm||^2=1,
xue@1 604 if normmode==3, the results are normalized so that ||h||^2==||g||^2=||hm||^2=||gm||^2.
xue@1 605
xue@1 606 If a *points* buffer is specified, the function returns the starting and ending
xue@1 607 positions (inclusive) of h, hm, g, and gm, in the order of (hs, he, hms, hme,
xue@1 608 gs, ge, gms, gme), as ps[0]~ps[7].
xue@1 609
xue@1 610 In: p1 and p2, specify vanishing moments of h and hm, respectively.
xue@1 611 normmode: mode for normalization
xue@1 612 Out: h[p1+1], g[p1+1], hm[p1+2p2-1], gm[p1+2p2-1], points[8] (optional)
xue@1 613
xue@1 614 Returns -p1-p2+1.
xue@1 615 */
xue@1 616 int splinewl(int p1, int p2, double* h, double* hm, double* g, double* gm, int normmode, int* points)
xue@1 617 {
xue@1 618 int lf=p1+1, lb=p1+2*p2-1;
xue@1 619 int hlf=lf/2, hlb=lb/2;
xue@1 620
xue@1 621 double *h1=&h[hlf], *h2=&hm[hlb];
xue@1 622 int hp1=p1/2, hp2=p2/2;
xue@1 623 int q=(p1+p2)/2;
xue@1 624 h1[hp1]=sqrt(2.0)*pow(2, -p1);
xue@1 625 // h1[hp1]=2*pow(2, -p1);
xue@1 626 for (int i=1, j=hp1-1; i<=hp1; i++, j--) h1[j]=h1[j+1]*(p1+1-i)/i;
xue@1 627
xue@1 628 double *_hh1=new double[p2+1+2*q];
xue@1 629 double *_hh2=&_hh1[p2+1];
xue@1 630 double *hh1=&_hh1[p2-hp2], *hh2=&_hh2[q];
xue@1 631 hh1[hp2]=sqrt(2.0)*pow(2, -p2);
xue@1 632 // hh1[hp2]=pow(2, -p2);
xue@1 633 for (int i=1, j=hp2-1; i<=hp2; i++, j--) hh1[j]=hh1[j+1]*(p2+1-i)/i;
xue@1 634 if (p2%2) for (int i=0; i<=hp2; i++) hh1[-i-1]=hh1[i];
xue@1 635 else for (int i=1; i<=hp2; i++) hh1[-i]=hh1[i];
xue@1 636 memset(_hh2, 0, sizeof(double)*2*q);
xue@1 637 for (int n=1-q; n<=q-1; n++)
xue@1 638 {
xue@1 639 int k=abs(n);
xue@1 640 int CC1=Cmb(q-1+k, k), CC2=Cmb(2*k, k-n); //CC=1.0*C(q-1+k, k)*C(2*k, k-n)
xue@1 641 for (int k=abs(n); k<=q-1; k++)
xue@1 642 {
xue@1 643 hh2[n]=hh2[n]+1.0*CC1*CC2*pow(0.25, k);
xue@1 644 CC1=CC1*(q+k)/(k+1);
xue@1 645 CC2=CC2*(2*k+1)*(2*k+2)/((k+1-n)*(k+1+n));
xue@1 646 }
xue@1 647 hh2[n]*=pow(-1, n);
xue@1 648 }
xue@1 649 //hh1[hp2-p2:hp2], hh2[1-q:q-1]
xue@1 650 //h2=conv(hh1, hh2), but the positive half only
xue@1 651 memset(h2, 0, sizeof(double)*(hp1+p2));
xue@1 652 for (int i=hp2-p2; i<=hp2; i++) for (int j=1-q; j<=q-1; j++)
xue@1 653 if (i+j>=0 && i+j<hp1+p2) h2[i+j]+=hh1[i]*hh2[j];
xue@1 654 delete[] _hh1;
xue@1 655
xue@1 656 int hs, he, hms, hme, gs, ge, gms, gme;
xue@1 657 if (lf%2)
xue@1 658 {
xue@1 659 hs=-hlf, he=hlf, hms=-hlb, hme=hlb;
xue@1 660 gs=-hlb+1, ge=hlb+1, gms=-hlf-1, gme=hlf-1;
xue@1 661 }
xue@1 662 else
xue@1 663 {
xue@1 664 hs=-hlf, he=hlf-1, hms=-hlb+1, hme=hlb;
xue@1 665 gs=-hlb, ge=hlb-1, gms=-hlf+1, gme=hlf;
xue@1 666 }
xue@1 667
xue@1 668 if (lf%2)
xue@1 669 {
xue@1 670 for (int i=1; i<=hlf; i++) h1[-i]=h1[i];
xue@1 671 for (int i=1; i<=hlb; i++) h2[-i]=h2[i];
xue@1 672 double* _g=&g[hlb-1], *_gm=&gm[hlf+1];
xue@1 673 for (int i=gs; i<=ge; i++) _g[i]=(i%2)?h2[1-i]:-h2[1-i];
xue@1 674 for (int i=gms; i<=gme; i++) _gm[i]=(i%2)?h1[-1-i]:-h1[-1-i];
xue@1 675 }
xue@1 676 else
xue@1 677 {
xue@1 678 for (int i=0; i<hlf; i++) h1[-i-1]=h1[i];
xue@1 679 for (int i=0; i<hlb; i++) h2[-i-1]=h2[i];
xue@1 680 h2=&h2[-1];
xue@1 681 double *_g=&g[hlb], *_gm=&gm[hlf-1];
xue@1 682 for (int i=gs; i<=ge; i++) _g[i]=(i%2)?-h2[-i]:h2[-i];
xue@1 683 for (int i=gms; i<=gme; i++) _gm[i]=(i%2)?-h1[-i]:h1[-i];
xue@1 684 }
xue@1 685
xue@1 686 if (normmode)
xue@1 687 {
xue@1 688 double sumh=0; for (int i=0; i<=he-hs; i++) sumh+=h[i]*h[i];
xue@1 689 double sumhm=0; for (int i=0; i<=hme-hms; i++) sumhm+=hm[i]*hm[i];
xue@1 690 if (normmode==1)
xue@1 691 {
xue@1 692 double rr=sqrt(sumh);
xue@1 693 for (int i=0; i<=hme-hms; i++) hm[i]*=rr;
xue@1 694 rr=1.0/rr;
xue@1 695 for (int i=0; i<=he-hs; i++) h[i]*=rr;
xue@1 696 rr=sqrt(sumhm);
xue@1 697 for (int i=0; i<=gme-gms; i++) gm[i]*=rr;
xue@1 698 rr=1.0/rr;
xue@1 699 for (int i=0; i<=ge-gs; i++) g[i]*=rr;
xue@1 700 }
xue@1 701 else if (normmode==2)
xue@1 702 {
xue@1 703 double rr=sqrt(sumh);
xue@1 704 for (int i=0; i<=ge-gs; i++) g[i]*=rr;
xue@1 705 rr=1.0/rr;
xue@1 706 for (int i=0; i<=gme-gms; i++) gm[i]*=rr;
xue@1 707 rr=sqrt(sumhm);
xue@1 708 for (int i=0; i<=he-hs; i++) h[i]*=rr;
xue@1 709 rr=1.0/rr;
xue@1 710 for (int i=0; i<=hme-hms; i++) hm[i]*=rr;
xue@1 711 }
xue@1 712 else if (normmode==3)
xue@1 713 {
xue@1 714 double rr=pow(sumh/sumhm, 0.25);
xue@1 715 for (int i=0; i<=hme-hms; i++) hm[i]*=rr;
xue@1 716 for (int i=0; i<=ge-gs; i++) g[i]*=rr;
xue@1 717 rr=1.0/rr;
xue@1 718 for (int i=0; i<=he-hs; i++) h[i]*=rr;
xue@1 719 for (int i=0; i<=gme-gms; i++) gm[i]*=rr;
xue@1 720 }
xue@1 721 }
xue@1 722
xue@1 723 if (points)
xue@1 724 {
xue@1 725 points[0]=hs, points[1]=he, points[2]=hms, points[3]=hme;
xue@1 726 points[4]=gs, points[5]=ge, points[6]=gms, points[7]=gme;
xue@1 727 }
xue@1 728 return -p1-p2+1;
xue@1 729 }//splinewl
xue@1 730
xue@1 731 //---------------------------------------------------------------------------
xue@1 732 /*
xue@1 733 function wavpacqmf: calculate pseudo local cosine transforms using wavelet packet
xue@1 734
xue@1 735 In: data[Count], Count=fr*WID, waveform data
xue@1 736 WID: largest scale, equals 2^ORDER
xue@1 737 wid: smallest scale, euqals 2^order
xue@1 738 h[M], g[M]: quadratic mirror filter pair, fr>2*M
xue@1 739 Out: spec[0][fr][WID], spec[1][2*fr][WID/2], ..., spec[ORDER-order-1][FR][wid]
xue@1 740
xue@1 741 No return value.
xue@1 742 */
xue@1 743 void wavpacqmf(double*** spec, double* data, int Count, int WID, int wid, int M, double* h, double* g)
xue@1 744 {
xue@1 745 int fr=Count/WID, ORDER=log2(WID), order=log2(wid);
xue@1 746 double* _data1=new double[Count*2];
xue@1 747 double *data1=_data1, *data2=&_data1[Count];
xue@1 748 //the qmf always filters data1 and puts the results to data2
xue@1 749 memcpy(data1, data, sizeof(double)*Count);
xue@1 750 int l=0, C=fr*WID, FR=1;
xue@1 751 double *ldata, *ldataa, *ldatad;
xue@1 752 while (l<ORDER)
xue@1 753 {
xue@1 754 //qmf
xue@1 755 for (int f=0; f<FR; f++)
xue@1 756 {
xue@1 757 ldata=&data1[f*C];
xue@1 758 if (f%2==0)
xue@1 759 ldataa=&data2[f*C], ldatad=&data2[f*C+C/2];
xue@1 760 else
xue@1 761 ldatad=&data2[f*C], ldataa=&data2[f*C+C/2];
xue@1 762
xue@1 763 memset(&data2[f*C], 0, sizeof(double)*C);
xue@1 764 for (int i=0; i<C; i+=2)
xue@1 765 {
xue@1 766 int i2=i/2;
xue@1 767 ldataa[i2]=ldata[i]*h[0];
xue@1 768 ldatad[i2]=ldata[i]*g[0];
xue@1 769 for (int j=1; j<M; j++)
xue@1 770 {
xue@1 771 if (i+j<C)
xue@1 772 {
xue@1 773 ldataa[i2]+=ldata[i+j]*h[j];
xue@1 774 ldatad[i2]+=ldata[i+j]*g[j];
xue@1 775 }
xue@1 776 else
xue@1 777 {
xue@1 778 ldataa[i2]+=ldata[i+j-C]*h[j];
xue@1 779 ldatad[i2]+=ldata[i+j-C]*g[j];
xue@1 780 }
xue@1 781 }
xue@1 782 }
xue@1 783 }
xue@1 784 double *tmp=data2; data2=data1; data1=tmp;
xue@1 785 l++;
xue@1 786 C=(C>>1);
xue@1 787 FR=(FR<<1);
xue@1 788 if (l>=order)
xue@1 789 {
xue@1 790 for (int f=0; f<FR; f++)
xue@1 791 for(int i=0; i<C; i++)
xue@1 792 spec[ORDER-l][i][f]=data1[f*C+i];
xue@1 793 }
xue@1 794 }
xue@1 795
xue@1 796 delete[] _data1;
xue@1 797 }//wavpacqmf
xue@1 798
xue@1 799 /*
xue@1 800 function iwavpacqmf: inverse transform of wavpacqmf
xue@1 801
xue@1 802 In: spec[Fr][Wid], Fr>M*2
xue@1 803 h[M], g[M], quadratic mirror filter pair
xue@1 804 Out: data[Fr*Wid]
xue@1 805
xue@1 806 No return value.
xue@1 807 */
xue@1 808 void iwavpacqmf(double* data, double** spec, int Fr, int Wid, int M, double* h, double* g)
xue@1 809 {
xue@1 810 int Count=Fr*Wid, Order=log2(Wid);
xue@1 811 double* _data1=new double[Count];
xue@1 812 double *data1, *data2, *ldata, *ldataa, *ldatad;
xue@1 813 if (Order%2) data1=_data1, data2=data;
xue@1 814 else data1=data, data2=_data1;
xue@1 815 //data pass to buffer
xue@1 816 for (int i=0, t=0; i<Wid; i++)
xue@1 817 for (int j=0; j<Fr; j++)
xue@1 818 data1[t++]=spec[j][i];
xue@1 819
xue@1 820 int l=Order;
xue@1 821 int C=Fr;
xue@1 822 int K=Wid/2;
xue@1 823 while (l>0)
xue@1 824 {
xue@1 825 memset(data2, 0, sizeof(double)*Count);
xue@1 826 for (int k=0; k<K; k++)
xue@1 827 {
xue@1 828 if (k%2==0) ldataa=&data1[2*k*C], ldatad=&data1[(2*k+1)*C];
xue@1 829 else ldatad=&data1[2*k*C], ldataa=&data1[(2*k+1)*C];
xue@1 830 ldata=&data2[2*k*C];
xue@1 831 //qmf
xue@1 832 for (int i=0; i<C; i++)
xue@1 833 {
xue@1 834 for (int j=0; j<M; j++)
xue@1 835 {
xue@1 836 if (i*2+j<C*2)
xue@1 837 {
xue@1 838 ldata[i*2+j]+=ldataa[i]*h[j]+ldatad[i]*g[j];
xue@1 839 }
xue@1 840 else
xue@1 841 {
xue@1 842 ldata[i*2+j-C*2]+=ldataa[i]*h[j]+ldatad[i]*g[j];
xue@1 843 }
xue@1 844 }
xue@1 845 }
xue@1 846 }
xue@1 847
xue@1 848 double *tmp=data2; data2=data1; data1=tmp;
xue@1 849 l--;
xue@1 850 C=(C<<1);
xue@1 851 K=(K>>1);
xue@1 852 }
xue@1 853 delete[] _data1;
xue@1 854 }//iwavpacqmf
xue@1 855
xue@1 856 /*
xue@1 857 function wavpac: calculate pseudo local cosine transforms using wavelet packet,
xue@1 858
xue@1 859 In: data[Count], Count=fr*WID, waveform data
xue@1 860 WID: largest scale, equals 2^ORDER
xue@1 861 wid: smallest scale, euqals 2^order
xue@1 862 h[hs:he-1], g[gs:ge-1]: filter pair
xue@1 863 Out: spec[0][fr][WID], spec[1][2*fr][WID/2], ..., spec[ORDER-order-1][FR][wid]
xue@1 864
xue@1 865 No return value.
xue@1 866 */
xue@1 867 void wavpac(double*** spec, double* data, int Count, int WID, int wid, double* h, int hs, int he, double* g, int gs, int ge)
xue@1 868 {
xue@1 869 int fr=Count/WID, ORDER=log2(WID), order=log2(wid);
xue@1 870 double* _data1=new double[Count*2];
xue@1 871 double *data1=_data1, *data2=&_data1[Count];
xue@1 872 //the qmf always filters data1 and puts the results to data2
xue@1 873 memcpy(data1, data, sizeof(double)*Count);
xue@1 874 int l=0, C=fr*WID, FR=1;
xue@1 875 double *ldata, *ldataa, *ldatad;
xue@1 876 while (l<ORDER)
xue@1 877 {
xue@1 878 //qmf
xue@1 879 for (int f=0; f<FR; f++)
xue@1 880 {
xue@1 881 ldata=&data1[f*C];
xue@1 882 if (f%2==0)
xue@1 883 ldataa=&data2[f*C], ldatad=&data2[f*C+C/2];
xue@1 884 else
xue@1 885 ldatad=&data2[f*C], ldataa=&data2[f*C+C/2];
xue@1 886
xue@1 887 memset(&data2[f*C], 0, sizeof(double)*C);
xue@1 888 for (int i=0; i<C; i+=2)
xue@1 889 {
xue@1 890 int i2=i/2;
xue@1 891 ldataa[i2]=0;//ldata[i]*h[0];
xue@1 892 ldatad[i2]=0;//ldata[i]*g[0];
xue@1 893 for (int j=hs; j<=he; j++)
xue@1 894 {
xue@1 895 int ind=i-j;
xue@1 896 if (ind>=C)
xue@1 897 {
xue@1 898 ldataa[i2]+=ldata[ind-C]*h[j];
xue@1 899 }
xue@1 900 else if (ind<0)
xue@1 901 {
xue@1 902 ldataa[i2]+=ldata[ind+C]*h[j];
xue@1 903 }
xue@1 904 else
xue@1 905 {
xue@1 906 ldataa[i2]+=ldata[ind]*h[j];
xue@1 907 }
xue@1 908 }
xue@1 909 for (int j=gs; j<=ge; j++)
xue@1 910 {
xue@1 911 int ind=i-j;
xue@1 912 if (ind>=C)
xue@1 913 {
xue@1 914 ldatad[i2]+=ldata[ind-C]*g[j];
xue@1 915 }
xue@1 916 else if (ind<0)
xue@1 917 {
xue@1 918 ldatad[i2]+=ldata[ind+C]*g[j];
xue@1 919 }
xue@1 920 else
xue@1 921 {
xue@1 922 ldatad[i2]+=ldata[ind]*g[j];
xue@1 923 }
xue@1 924 }
xue@1 925 }
xue@1 926 }
xue@1 927 double *tmp=data2; data2=data1; data1=tmp;
xue@1 928 l++;
xue@1 929 C=(C>>1);
xue@1 930 FR=(FR<<1);
xue@1 931 if (l>=order)
xue@1 932 {
xue@1 933 for (int f=0; f<FR; f++)
xue@1 934 for(int i=0; i<C; i++)
xue@1 935 spec[ORDER-l][i][f]=data1[f*C+i];
xue@1 936 }
xue@1 937 }
xue@1 938
xue@1 939 delete[] _data1;
xue@1 940 }//wavpac
xue@1 941
xue@1 942 /*
xue@1 943 function iwavpac: inverse transform of wavpac
xue@1 944
xue@1 945 In: spec[Fr][Wid]
xue@1 946 h[hs:he-1], g[gs:ge-1], reconstruction filter pair
xue@1 947 Out: data[Fr*Wid]
xue@1 948
xue@1 949 No return value.
xue@1 950 */
xue@1 951 void iwavpac(double* data, double** spec, int Fr, int Wid, double* h, int hs, int he, double* g, int gs, int ge)
xue@1 952 {
xue@1 953 int Count=Fr*Wid, Order=log2(Wid);
xue@1 954 double* _data1=new double[Count];
xue@1 955 double *data1, *data2, *ldata, *ldataa, *ldatad;
xue@1 956 if (Order%2) data1=_data1, data2=data;
xue@1 957 else data1=data, data2=_data1;
xue@1 958 //data pass to buffer
xue@1 959 for (int i=0, t=0; i<Wid; i++)
xue@1 960 for (int j=0; j<Fr; j++)
xue@1 961 data1[t++]=spec[j][i];
xue@1 962
xue@1 963 int l=Order;
xue@1 964 int C=Fr;
xue@1 965 int K=Wid/2;
xue@1 966 while (l>0)
xue@1 967 {
xue@1 968 memset(data2, 0, sizeof(double)*Count);
xue@1 969 for (int k=0; k<K; k++)
xue@1 970 {
xue@1 971 if (k%2==0) ldataa=&data1[2*k*C], ldatad=&data1[(2*k+1)*C];
xue@1 972 else ldatad=&data1[2*k*C], ldataa=&data1[(2*k+1)*C];
xue@1 973 ldata=&data2[2*k*C];
xue@1 974 //qmf
xue@1 975 for (int i=0; i<C; i++)
xue@1 976 {
xue@1 977 for (int j=hs; j<=he; j++)
xue@1 978 {
xue@1 979 int ind=i*2+j;
xue@1 980 if (ind>=C*2)
xue@1 981 {
xue@1 982 ldata[ind-C*2]+=ldataa[i]*h[j];
xue@1 983 }
xue@1 984 else if (ind<0)
xue@1 985 {
xue@1 986 ldata[ind+C*2]+=ldataa[i]*h[j];
xue@1 987 }
xue@1 988 else
xue@1 989 {
xue@1 990 ldata[ind]+=ldataa[i]*h[j];
xue@1 991 }
xue@1 992 }
xue@1 993 for (int j=gs; j<=ge; j++)
xue@1 994 {
xue@1 995 int ind=i*2+j;
xue@1 996 if (ind>=C*2)
xue@1 997 {
xue@1 998 ldata[ind-C*2]+=ldatad[i]*g[j];
xue@1 999 }
xue@1 1000 else if (ind<0)
xue@1 1001 {
xue@1 1002 ldata[ind+C*2]+=ldatad[i]*g[j];
xue@1 1003 }
xue@1 1004 else
xue@1 1005 {
xue@1 1006 ldata[ind]+=ldatad[i]*g[j];
xue@1 1007 }
xue@1 1008 }
xue@1 1009 }
xue@1 1010 }
xue@1 1011
xue@1 1012 double *tmp=data2; data2=data1; data1=tmp;
xue@1 1013 l--;
xue@1 1014 C=(C<<1);
xue@1 1015 K=(K>>1);
xue@1 1016 }
xue@1 1017 delete[] _data1;
xue@1 1018 }//iwavpac