Mercurial > hg > x
diff wavelet.cpp @ 1:6422640a802f
first upload
author | Wen X <xue.wen@elec.qmul.ac.uk> |
---|---|
date | Tue, 05 Oct 2010 10:45:57 +0100 |
parents | |
children | fc19d45615d1 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/wavelet.cpp Tue Oct 05 10:45:57 2010 +0100 @@ -0,0 +1,1018 @@ +//--------------------------------------------------------------------------- + +#include <math.h> +#include <mem.h> +#include "wavelet.h" +#include "matrix.h" + +//--------------------------------------------------------------------------- +/* + function csqrt: real implementation of complex square root z=sqrt(x) + + In: xr and xi: real and imaginary parts of x + Out: zr and zi: real and imaginary parts of z=sqrt(x) + + No return value. +*/ +void csqrt(double& zr, double& zi, double xr, double xi) +{ + if (xi==0) + if (xr>=0) zr=sqrt(xr), zi=0; + else zi=sqrt(-xr), zr=0; + else + { + double xm=sqrt(xr*xr+xi*xi); + double ri=sqrt((xm-xr)/2); + zr=xi/2/ri; + zi=ri; + } +}//csqrt + +/* + function Daubechies: calculates the Daubechies filter of a given order p + + In: filter order p + Out: h[2p]: the 2p FIR coefficients + + No reutrn value. The calculated filters are minimum phase, which means the energy concentrates at the + beginning. This is usually used for reconstruction. On the contrary, for wavelet analysis the filter + is mirrored. +*/ +void Daubechies(int p, double* h) +{ +//initialize h(z) + double r01=pow(2, -p-p+1.5); + + h[0]=1; + for (int i=1; i<=p; i++) + { + h[i]=h[i-1]*(p+1-i)/i; + } + + //construct polynomial p + double *P=new double[p], *rp=new double[p], *ip=new double[p]; + + P[p-1]=1; + double r02=1; + for (int i=p-1; i>0; i--) + { + double rate=(i+1-1.0)/(p-2.0+i+1); + P[i-1]=P[i]*rate; + r02/=rate; + } + Roots(p-1, P, rp, ip); + for (int i=0; i<p-1; i++) + { + //current length of h is p+1+i, h[0:p+i] + if (i<p-2 && rp[i]==rp[i+1] && ip[i]==-ip[i+1]) + { + double ar=rp[i], ai=ip[i]; + double bkr=-2*ar+1, bki=-2*ai, ckr=4*(ar*ar-ai*ai-ar), cki=4*(2*ar*ai-ai), dlr, dli; + csqrt(dlr, dli, ckr, cki); + double akr=bkr+dlr, aki=bki+dli; + if (akr*akr+aki*aki>1) akr=bkr-dlr, aki=bki-dli; + double ak1=-2*akr, ak2=akr*akr+aki*aki; + h[p+2+i]=ak2*h[p+i]; + h[p+1+i]=ak2*h[p-1+i]+ak1*h[p+i]; + for (int j=p+i; j>1; j--) h[j]=h[j]+ak1*h[j-1]+ak2*h[j-2]; + h[1]=h[1]+ak1*h[0]; + r02/=ak2; + i++; + } + else //real root of P + { + double ak, bk=-(2*rp[i]-1), delk=4*rp[i]*(rp[i]-1); + if (bk>0) ak=bk-sqrt(delk); + else ak=bk+sqrt(delk); + r02/=ak; + h[p+1+i]=-ak*h[p+i]; + for (int j=p+i; j>0; j--) h[j]=h[j]-ak*h[j-1]; + } + } + delete[] P; delete[] rp; delete[] ip; + r01=r01*sqrt(r02); + for (int i=0; i<p*2; i++) h[i]*=r01; +}//Daubechies + +/* + Periodic wavelet decomposition and reconstruction routines + + The wavelet transform of an N-point sequence is arranged in "interleaved" format + as another N-point sequance. Level 1 details are found at N/2 points 1, 3, 5, ..., + N-1; level 2 details are found at N/4 points 2, 6, ..., N-2; level 3 details are + found at N/8 points 4, 12, ..., N-4; etc. +*/ + +/* + function dwtpqmf: in this implementation h and g are the same as reconstruction qmf filters. In fact + the actual filters used are their mirrors and filter origin are aligned to the ends of the real + filters, which turn out to be the starts of h and g. + + The inverse transform is idwtp(), the same as inversing dwtp(). + + In: in[Count]: waveform data + h[M], g[M]: quadratic mirror filter pair + N: maximal time resolution + Count=kN, N=2^lN being the reciprocal of the most detailed frequency scale, i.e. + N=1 for no transforming at all, N=2 for dividing into approx. and detail, + N=4 for dividing into approx+detail(approx+detial), etc. + Count*2/N=2k gives the smallest length to be convolved with h and g. + Out: out[N], the wavelet transform, arranged in interleaved format. + + Returns maximal atom length (should equal N). +*/ +int dwtpqmf(double* in, int Count, int N, double* h, double* g, int M, double* out) +{ + double* tmp=new double[Count]; + double *tmpa=tmp, *tmpla=in; + int C=Count, L=0, n=1; + +A: + { + //C: signal length at current layer + //L: layer index, 0 being most detailed + //n: atom length on current layer, equals 2^L. + //C*n=(C<<L)=Count + double* tmpd=&tmpa[C/2]; + for (int i=0; i<C; i+=2) + { + int i2=i/2; + tmpa[i2]=tmpla[i]*h[0]; + tmpd[i2]=tmpla[i]*g[0]; + for (int j=1; j<M; j++) + { + if (i+j<C) + { + tmpa[i2]+=tmpla[i+j]*h[j]; + tmpd[i2]+=tmpla[i+j]*g[j]; + } + else + { + tmpa[i2]+=tmpla[i+j-C]*h[j]; + tmpd[i2]+=tmpla[i+j-C]*g[j]; + } + } + } + for (int i=0; i*2+1<C; i++) out[(2*i+1)<<L]=tmpd[i]; + for (int i=0; i*2<C; i++) out[i<<(L+1)]=tmpa[i]; + n*=2; + if (n<N) + { + tmpla=tmpa; + tmpa=tmpd; + L++; + C/=2; + goto A; + } + } + delete[] tmp; + return n; +}//dwtpqmf + +/* + function dwtp: in this implementation h and g can be different from mirrored reconstruction filters, + i.e. the biorthogonal transform. h[0] and g[0] are aligned at the ends of the filters, i.e. h[-M+1:0], + g[-M+1:0]. + + In: in[Count]: waveform data + h[-M+1:0], g[-M+1:0]: quadratic mirror filter pair + N: maximal time resolution + Out: out[N], the wavelet transform, arranged in interleaved format. + + Returns maximal atom length (should equal N). +*/ +int dwtp(double* in, int Count, int N, double* h, double* g, int M, double* out) +{ + double* tmp=new double[Count]; + double *tmpa=tmp, *tmpla=in; + int C=Count, L=0, n=1; + +A: + { + double* tmpd=&tmpa[C/2]; + for (int i=0; i<C; i+=2) + { + int i2=i/2; + tmpa[i2]=tmpla[i]*h[0]; + tmpd[i2]=tmpla[i]*g[0]; + for (int j=-1; j>-M; j--) + { + if (i-j<C) + { + tmpa[i2]+=tmpla[i-j]*h[j]; + tmpd[i2]+=tmpla[i-j]*g[j]; + } + else + { + tmpa[i2]+=tmpla[i-j-C]*h[j]; + tmpd[i2]+=tmpla[i-j-C]*g[j]; + } + } + } + for (int i=0; i*2+1<C; i++) out[(2*i+1)<<L]=tmpd[i]; + for (int i=0; i*2<C; i++) out[i<<(L+1)]=tmpa[i]; + n*=2; + if (n<N) + { + tmpla=tmpa; + tmpa=tmpd; + L++; + C/=2; + goto A; + } + } + delete[] tmp; + return n; +}//dwtp + +/* + function dwtp: in this implementation h and g can be different size. h[0] and g[0] are aligned at the + ends of the filters, i.e. h[-Mh+1:0], g[-Mg+1:0]. + + In: in[Count]: waveform data + h[-Mh+1:0], g[-Mg+1:0]: quadratic mirror filter pair + N: maximal time resolution + Out: out[N], the wavelet transform, arranged in interleaved format. + + Returns maximal atom length (should equal N). +*/ +int dwtp(double* in, int Count, int N, double* h, int Mh, double* g, int Mg, double* out) +{ + double* tmp=new double[Count]; + double *tmpa=tmp, *tmpla=in; + int C=Count, L=0, n=1; + +A: + { + double* tmpd=&tmpa[C/2]; + for (int i=0; i<C; i+=2) + { + int i2=i/2; + tmpa[i2]=tmpla[i]*h[0]; + tmpd[i2]=tmpla[i]*g[0]; + for (int j=-1; j>-Mh; j--) + { + if (i-j<C) + { + tmpa[i2]+=tmpla[i-j]*h[j]; + } + else + { + tmpa[i2]+=tmpla[i-j-C]*h[j]; + } + } + for (int j=-1; j>-Mg; j--) + { + if (i-j<C) + { + tmpd[i2]+=tmpla[i-j]*g[j]; + } + else + { + tmpd[i2]+=tmpla[i-j-C]*g[j]; + } + } + } + for (int i=0; i*2+1<C; i++) out[(2*i+1)<<L]=tmpd[i]; + for (int i=0; i*2<C; i++) out[i<<(L+1)]=tmpa[i]; + n*=2; + if (n<N) + { + tmpla=tmpa; + tmpa=tmpd; + L++; + C/=2; + goto A; + } + } + delete[] tmp; + return n; +}//dwtp + +/* + function dwtp: in this implementation h and g can be arbitrarily located: h from $sh to $eh, g from + $sg to $eg. + + In: in[Count]: waveform data + h[sh:eh-1], g[sg:eg-1]: quadratic mirror filter pair + N: maximal time resolution + Out: out[N], the wavelet transform, arranged in interleaved format. + + Returns maximal atom length (should equal N). +*/ +int dwtp(double* in, int Count, int N, double* h, int sh, int eh, double* g, int sg, int eg, double* out) +{ + double* tmp=new double[Count]; + double *tmpa=tmp, *tmpla=in; + int C=Count, L=0, n=1; + +A: + { + double* tmpd=&tmpa[C/2]; + for (int i=0; i<C; i+=2) + { + int i2=i/2; + tmpa[i2]=0;//tmpla[i]*h[0]; + tmpd[i2]=0;//tmpla[i]*g[0]; + for (int j=sh; j<=eh; j++) + { + int ind=i-j; + if (ind>=C) tmpa[i2]+=tmpla[ind-C]*h[j]; + else if (ind<0) tmpa[i2]+=tmpla[ind+C]*h[j]; + else tmpa[i2]+=tmpla[ind]*h[j]; + } + for (int j=sg; j<=eg; j++) + { + int ind=i-j; + if (ind>=C) tmpd[i2]+=tmpla[i-j-C]*g[j]; + else if (ind<0) tmpd[i2]+=tmpla[i-j+C]*g[j]; + else tmpd[i2]+=tmpla[i-j]*g[j]; + } + } + for (int i=0; i*2+1<C; i++) out[(2*i+1)<<L]=tmpd[i]; + for (int i=0; i*2<C; i++) out[i<<(L+1)]=tmpa[i]; + n*=2; + if (n<N) + { + tmpla=tmpa; + tmpa=tmpd; + L++; + C/=2; + goto A; + } + } + delete[] tmp; + return n; +}//dwtp + +/* + function idwtp: periodic wavelet reconstruction by qmf + + In: in[Count]: wavelet transform in interleaved format + h[M], g[M]: quadratic mirror filter pair + N: maximal time resolution + Out: out[N], waveform data (detail level 0). + + No return value. +*/ +void idwtp(double* in, int Count, int N, double* h, double* g, int M, double* out) +{ + double* tmp=new double[Count]; + memcpy(out, in, sizeof(double)*Count); + int n=N, C=Count/N, L=log2(N)-1; + while (n>1) + { + memset(tmp, 0, sizeof(double)*C*2); + //2k<<L being the approx, (2k+1)<<L being the detail + for (int i=0; i<C; i++) + { + for (int j=0; j<M; j++) + { + if (i*2+j<C*2) + { + tmp[i*2+j]+=out[(2*i)<<L]*h[j]+out[(2*i+1)<<L]*g[j]; + } + else + { + tmp[i*2+j-C*2]+=out[(2*i)<<L]*h[j]+out[(2*i+1)<<L]*g[j]; + } + } + } + for (int i=0; i<C*2; i++) out[i<<L]=tmp[i]; + n/=2; + C*=2; + L--; + } + delete[] tmp; +}//idwtp + +/* + function idwtp: in which h and g can have different length. + + In: in[Count]: wavelet transform in interleaved format + h[Mh], g[Mg]: quadratic mirror filter pair + N: maximal time resolution + Out: out[N], waveform data (detail level 0). + + No return value. +*/ +void idwtp(double* in, int Count, int N, double* h, int Mh, double* g, int Mg, double* out) +{ + double* tmp=new double[Count]; + memcpy(out, in, sizeof(double)*Count); + int n=N, C=Count/N, L=log2(N)-1; + while (n>1) + { + memset(tmp, 0, sizeof(double)*C*2); + //2k<<L being the approx, (2k+1)<<L being the detail + for (int i=0; i<C; i++) + { + for (int j=0; j<Mh; j++) + { + int ind=i*2+j+(Mg-Mh)/2; + if (ind>=C*2) + { + tmp[ind-C*2]+=out[(2*i)<<L]*h[j]; + } + else if (ind<0) + { + tmp[ind+C*2]+=out[(2*i)<<L]*h[j]; + } + else + { + tmp[ind]+=out[(2*i)<<L]*h[j]; + } + } + } + for (int i=0; i<C; i++) + { + for (int j=0; j<Mg; j++) + { + int ind=i*2+j+(Mh-Mg)/2; + if (ind>=C*2) + { + tmp[ind-C*2]+=out[(2*i+1)<<L]*g[j]; + } + else if (ind<0) + { + tmp[ind+C*2]+=out[(2*i+1)<<L]*g[j]; + } + else + { + tmp[ind]+=out[(2*i+1)<<L]*g[j]; + } + } + } + for (int i=0; i<C*2; i++) out[i<<L]=tmp[i]; + n/=2; + C*=2; + L--; + } + delete[] tmp; +}//idwtp + +/* + function idwtp: in which h and g can be arbitrarily located: h from $sh to $eh, g from $sg to $eg + + In: in[Count]: wavelet transform in interleaved format + h[sh:eh-1], g[sg:eg-1]: quadratic mirror filter pair + N: maximal time resolution + Out: out[N], waveform data (detail level 0). + + No return value. +*/ +void idwtp(double* in, int Count, int N, double* h, int sh, int eh, double* g, int sg, int eg, double* out) +{ + double* tmp=new double[Count]; + memcpy(out, in, sizeof(double)*Count); + int n=N, C=Count/N, L=log2(N)-1; + while (n>1) + { + memset(tmp, 0, sizeof(double)*C*2); + //2k<<L being the approx, (2k+1)<<L being the detail + for (int i=0; i<C; i++) + { + for (int j=sh; j<=eh; j++) + { + int ind=i*2+j; + if (ind>=C*2) tmp[ind-C*2]+=out[(2*i)<<L]*h[j]; + else if (ind<0) tmp[ind+C*2]+=out[(2*i)<<L]*h[j]; + else tmp[ind]+=out[(2*i)<<L]*h[j]; + } + } + for (int i=0; i<C; i++) + { + for (int j=sg; j<=eg; j++) + { + int ind=i*2+j; + if (ind>=C*2) tmp[ind-C*2]+=out[(2*i+1)<<L]*g[j]; + else if (ind<0) tmp[ind+C*2]+=out[(2*i+1)<<L]*g[j]; + else tmp[ind]+=out[(2*i+1)<<L]*g[j]; + } + } + for (int i=0; i<C*2; i++) out[i<<L]=tmp[i]; + n/=2; + C*=2; + L--; + } + delete[] tmp; +}//idwtp + +//--------------------------------------------------------------------------- + +/* + Spline biorthogonal wavelet routines. + + Further reading: "Calculation of biorthogonal spline wavelets.pdf" +*/ + +//function Cmb: combination number C(n, k) (n>=k>=0) +int Cmb(int n, int k) +{ + if (k>n/2) k=n-k; + int c=1; + for (int i=1; i<=k; i++) c=c*(n+1-i)/i; + return c; +} + +/* + function splinewl: computes spline biorthogonal wavelet filters. This version of splinewl calcualtes + the positive-time half of h and hm coefficients only. + + p1 and p2 must have the same parity. If p1 is even, p1 coefficients will be returned in h1; if p1 is + odd, p1-1 coefficients will be returned in h1. + + Actual length of h is p1+1, of hm is p1+2p2-1. only a half of each is kept. + p even: h[0:p1/2] <- [p1/2:p1], hm[0:p1/2+p2-1] <- [p1/2+p2-1:p1+2p2-2] + p odd: h[0:(p1-1)/2] <- [(p1+1)/2:p1], hm[0:(p1-3)/2+p2] <- [(p1-1)/2+p2:p1+2p2-2] + i.e. h[0:hp1] <- [p1-hp1:p1], hm[0:hp1+p2-1] <- [p1-hp1-1+p2:p1+2p2-2] + + In: p1, p2: specify vanishing moments of h and hm + Out: h[] and hm[] as specified above. + + No return value. +*/ +void splinewl(int p1, int p2, double* h, double* hm) +{ + int hp1=p1/2, hp2=p2/2; + int q=(p1+p2)/2; + h[hp1]=sqrt(2.0)*pow(2, -p1); +// h1[hp1]=1; + for (int i=1, j=hp1-1; i<=hp1; i++, j--) + { + h[j]=h[j+1]*(p1+1-i)/i; + } + + double *_hh1=new double[p2+1], *_hh2=new double[2*q]; + double *hh1=&_hh1[p2-hp2], *hh2=&_hh2[q]; + + hh1[hp2]=sqrt(2.0)*pow(2, -p2); + for (int i=1, j=hp2-1; i<=hp2; i++, j--) + { + hh1[j]=hh1[j+1]*(p2+1-i)/i; + } + if (p2%2) //p2 is odd + { + for (int i=0; i<=hp2; i++) hh1[-i-1]=hh1[i]; + } + else //p2 even + { + for (int i=1; i<=hp2; i++) hh1[-i]=hh1[i]; + } + + memset(_hh2, 0, sizeof(double)*2*q); + for (int n=1-q; n<=q-1; n++) + { + int k=abs(n); + int CC1=Cmb(q-1+k, k), CC2=Cmb(2*k, k-n); //CC=1.0*C(q-1+k, k)*C(2*k, k-n) + for (; k<=q-1; k++) + { + hh2[n]=hh2[n]+1.0*CC1*CC2*pow(0.25, k); + CC1=CC1*(q+k)/(k+1); + CC2=CC2*(2*k+1)*(2*k+2)/((k+1-n)*(k+1+n)); + } + hh2[n]*=pow(-1, n); + } + + //hh1[hp2-p2:hp2], hh2[1-q:q-1] + //h2=conv(hh1, hh2), but the positive half only + memset(hm, 0, sizeof(double)*(hp1+p2)); + for (int i=hp2-p2; i<=hp2; i++) + for (int j=1-q; j<=q-1; j++) + { + if (i+j>=0 && i+j<hp1+p2) + hm[i+j]+=hh1[i]*hh2[j]; + } + + delete[] _hh1; + delete[] _hh2; +}//splinewl + + +/* + function splinewl: calculates the analysis and reconstruction filter pairs of spline biorthogonal + wavelet (h, g) and (hm, gm). h has the size p1+1, hm has the size p1+2p2-1. + + If p1+1 is odd, then all four filters are symmetric; if not, then h and hm are symmetric, while g and + gm are anti-symmetric. + + The concatenation of filters h with hm (or g with gm) introduces a time shift of p1+p2-1, which is the + return value multiplied by -1. + + If normmode==1, the results are normalized so that ||h||^2=||g||^2=1; + if normmode==2, the results are normalized so that ||hm||^2=||gm||^2=1, + if normmode==3, the results are normalized so that ||h||^2==||g||^2=||hm||^2=||gm||^2. + + If a *points* buffer is specified, the function returns the starting and ending + positions (inclusive) of h, hm, g, and gm, in the order of (hs, he, hms, hme, + gs, ge, gms, gme), as ps[0]~ps[7]. + + In: p1 and p2, specify vanishing moments of h and hm, respectively. + normmode: mode for normalization + Out: h[p1+1], g[p1+1], hm[p1+2p2-1], gm[p1+2p2-1], points[8] (optional) + + Returns -p1-p2+1. +*/ +int splinewl(int p1, int p2, double* h, double* hm, double* g, double* gm, int normmode, int* points) +{ + int lf=p1+1, lb=p1+2*p2-1; + int hlf=lf/2, hlb=lb/2; + + double *h1=&h[hlf], *h2=&hm[hlb]; + int hp1=p1/2, hp2=p2/2; + int q=(p1+p2)/2; + h1[hp1]=sqrt(2.0)*pow(2, -p1); +// h1[hp1]=2*pow(2, -p1); + for (int i=1, j=hp1-1; i<=hp1; i++, j--) h1[j]=h1[j+1]*(p1+1-i)/i; + + double *_hh1=new double[p2+1+2*q]; + double *_hh2=&_hh1[p2+1]; + double *hh1=&_hh1[p2-hp2], *hh2=&_hh2[q]; + hh1[hp2]=sqrt(2.0)*pow(2, -p2); +// hh1[hp2]=pow(2, -p2); + for (int i=1, j=hp2-1; i<=hp2; i++, j--) hh1[j]=hh1[j+1]*(p2+1-i)/i; + if (p2%2) for (int i=0; i<=hp2; i++) hh1[-i-1]=hh1[i]; + else for (int i=1; i<=hp2; i++) hh1[-i]=hh1[i]; + memset(_hh2, 0, sizeof(double)*2*q); + for (int n=1-q; n<=q-1; n++) + { + int k=abs(n); + int CC1=Cmb(q-1+k, k), CC2=Cmb(2*k, k-n); //CC=1.0*C(q-1+k, k)*C(2*k, k-n) + for (int k=abs(n); k<=q-1; k++) + { + hh2[n]=hh2[n]+1.0*CC1*CC2*pow(0.25, k); + CC1=CC1*(q+k)/(k+1); + CC2=CC2*(2*k+1)*(2*k+2)/((k+1-n)*(k+1+n)); + } + hh2[n]*=pow(-1, n); + } + //hh1[hp2-p2:hp2], hh2[1-q:q-1] + //h2=conv(hh1, hh2), but the positive half only + memset(h2, 0, sizeof(double)*(hp1+p2)); + for (int i=hp2-p2; i<=hp2; i++) for (int j=1-q; j<=q-1; j++) + if (i+j>=0 && i+j<hp1+p2) h2[i+j]+=hh1[i]*hh2[j]; + delete[] _hh1; + + int hs, he, hms, hme, gs, ge, gms, gme; + if (lf%2) + { + hs=-hlf, he=hlf, hms=-hlb, hme=hlb; + gs=-hlb+1, ge=hlb+1, gms=-hlf-1, gme=hlf-1; + } + else + { + hs=-hlf, he=hlf-1, hms=-hlb+1, hme=hlb; + gs=-hlb, ge=hlb-1, gms=-hlf+1, gme=hlf; + } + + if (lf%2) + { + for (int i=1; i<=hlf; i++) h1[-i]=h1[i]; + for (int i=1; i<=hlb; i++) h2[-i]=h2[i]; + double* _g=&g[hlb-1], *_gm=&gm[hlf+1]; + for (int i=gs; i<=ge; i++) _g[i]=(i%2)?h2[1-i]:-h2[1-i]; + for (int i=gms; i<=gme; i++) _gm[i]=(i%2)?h1[-1-i]:-h1[-1-i]; + } + else + { + for (int i=0; i<hlf; i++) h1[-i-1]=h1[i]; + for (int i=0; i<hlb; i++) h2[-i-1]=h2[i]; + h2=&h2[-1]; + double *_g=&g[hlb], *_gm=&gm[hlf-1]; + for (int i=gs; i<=ge; i++) _g[i]=(i%2)?-h2[-i]:h2[-i]; + for (int i=gms; i<=gme; i++) _gm[i]=(i%2)?-h1[-i]:h1[-i]; + } + + if (normmode) + { + double sumh=0; for (int i=0; i<=he-hs; i++) sumh+=h[i]*h[i]; + double sumhm=0; for (int i=0; i<=hme-hms; i++) sumhm+=hm[i]*hm[i]; + if (normmode==1) + { + double rr=sqrt(sumh); + for (int i=0; i<=hme-hms; i++) hm[i]*=rr; + rr=1.0/rr; + for (int i=0; i<=he-hs; i++) h[i]*=rr; + rr=sqrt(sumhm); + for (int i=0; i<=gme-gms; i++) gm[i]*=rr; + rr=1.0/rr; + for (int i=0; i<=ge-gs; i++) g[i]*=rr; + } + else if (normmode==2) + { + double rr=sqrt(sumh); + for (int i=0; i<=ge-gs; i++) g[i]*=rr; + rr=1.0/rr; + for (int i=0; i<=gme-gms; i++) gm[i]*=rr; + rr=sqrt(sumhm); + for (int i=0; i<=he-hs; i++) h[i]*=rr; + rr=1.0/rr; + for (int i=0; i<=hme-hms; i++) hm[i]*=rr; + } + else if (normmode==3) + { + double rr=pow(sumh/sumhm, 0.25); + for (int i=0; i<=hme-hms; i++) hm[i]*=rr; + for (int i=0; i<=ge-gs; i++) g[i]*=rr; + rr=1.0/rr; + for (int i=0; i<=he-hs; i++) h[i]*=rr; + for (int i=0; i<=gme-gms; i++) gm[i]*=rr; + } + } + + if (points) + { + points[0]=hs, points[1]=he, points[2]=hms, points[3]=hme; + points[4]=gs, points[5]=ge, points[6]=gms, points[7]=gme; + } + return -p1-p2+1; +}//splinewl + +//--------------------------------------------------------------------------- +/* + function wavpacqmf: calculate pseudo local cosine transforms using wavelet packet + + In: data[Count], Count=fr*WID, waveform data + WID: largest scale, equals 2^ORDER + wid: smallest scale, euqals 2^order + h[M], g[M]: quadratic mirror filter pair, fr>2*M + Out: spec[0][fr][WID], spec[1][2*fr][WID/2], ..., spec[ORDER-order-1][FR][wid] + + No return value. +*/ +void wavpacqmf(double*** spec, double* data, int Count, int WID, int wid, int M, double* h, double* g) +{ + int fr=Count/WID, ORDER=log2(WID), order=log2(wid); + double* _data1=new double[Count*2]; + double *data1=_data1, *data2=&_data1[Count]; + //the qmf always filters data1 and puts the results to data2 + memcpy(data1, data, sizeof(double)*Count); + int l=0, C=fr*WID, FR=1; + double *ldata, *ldataa, *ldatad; + while (l<ORDER) + { + //qmf + for (int f=0; f<FR; f++) + { + ldata=&data1[f*C]; + if (f%2==0) + ldataa=&data2[f*C], ldatad=&data2[f*C+C/2]; + else + ldatad=&data2[f*C], ldataa=&data2[f*C+C/2]; + + memset(&data2[f*C], 0, sizeof(double)*C); + for (int i=0; i<C; i+=2) + { + int i2=i/2; + ldataa[i2]=ldata[i]*h[0]; + ldatad[i2]=ldata[i]*g[0]; + for (int j=1; j<M; j++) + { + if (i+j<C) + { + ldataa[i2]+=ldata[i+j]*h[j]; + ldatad[i2]+=ldata[i+j]*g[j]; + } + else + { + ldataa[i2]+=ldata[i+j-C]*h[j]; + ldatad[i2]+=ldata[i+j-C]*g[j]; + } + } + } + } + double *tmp=data2; data2=data1; data1=tmp; + l++; + C=(C>>1); + FR=(FR<<1); + if (l>=order) + { + for (int f=0; f<FR; f++) + for(int i=0; i<C; i++) + spec[ORDER-l][i][f]=data1[f*C+i]; + } + } + + delete[] _data1; +}//wavpacqmf + +/* + function iwavpacqmf: inverse transform of wavpacqmf + + In: spec[Fr][Wid], Fr>M*2 + h[M], g[M], quadratic mirror filter pair + Out: data[Fr*Wid] + + No return value. +*/ +void iwavpacqmf(double* data, double** spec, int Fr, int Wid, int M, double* h, double* g) +{ + int Count=Fr*Wid, Order=log2(Wid); + double* _data1=new double[Count]; + double *data1, *data2, *ldata, *ldataa, *ldatad; + if (Order%2) data1=_data1, data2=data; + else data1=data, data2=_data1; + //data pass to buffer + for (int i=0, t=0; i<Wid; i++) + for (int j=0; j<Fr; j++) + data1[t++]=spec[j][i]; + + int l=Order; + int C=Fr; + int K=Wid/2; + while (l>0) + { + memset(data2, 0, sizeof(double)*Count); + for (int k=0; k<K; k++) + { + if (k%2==0) ldataa=&data1[2*k*C], ldatad=&data1[(2*k+1)*C]; + else ldatad=&data1[2*k*C], ldataa=&data1[(2*k+1)*C]; + ldata=&data2[2*k*C]; + //qmf + for (int i=0; i<C; i++) + { + for (int j=0; j<M; j++) + { + if (i*2+j<C*2) + { + ldata[i*2+j]+=ldataa[i]*h[j]+ldatad[i]*g[j]; + } + else + { + ldata[i*2+j-C*2]+=ldataa[i]*h[j]+ldatad[i]*g[j]; + } + } + } + } + + double *tmp=data2; data2=data1; data1=tmp; + l--; + C=(C<<1); + K=(K>>1); + } + delete[] _data1; +}//iwavpacqmf + +/* + function wavpac: calculate pseudo local cosine transforms using wavelet packet, + + In: data[Count], Count=fr*WID, waveform data + WID: largest scale, equals 2^ORDER + wid: smallest scale, euqals 2^order + h[hs:he-1], g[gs:ge-1]: filter pair + Out: spec[0][fr][WID], spec[1][2*fr][WID/2], ..., spec[ORDER-order-1][FR][wid] + + No return value. +*/ +void wavpac(double*** spec, double* data, int Count, int WID, int wid, double* h, int hs, int he, double* g, int gs, int ge) +{ + int fr=Count/WID, ORDER=log2(WID), order=log2(wid); + double* _data1=new double[Count*2]; + double *data1=_data1, *data2=&_data1[Count]; + //the qmf always filters data1 and puts the results to data2 + memcpy(data1, data, sizeof(double)*Count); + int l=0, C=fr*WID, FR=1; + double *ldata, *ldataa, *ldatad; + while (l<ORDER) + { + //qmf + for (int f=0; f<FR; f++) + { + ldata=&data1[f*C]; + if (f%2==0) + ldataa=&data2[f*C], ldatad=&data2[f*C+C/2]; + else + ldatad=&data2[f*C], ldataa=&data2[f*C+C/2]; + + memset(&data2[f*C], 0, sizeof(double)*C); + for (int i=0; i<C; i+=2) + { + int i2=i/2; + ldataa[i2]=0;//ldata[i]*h[0]; + ldatad[i2]=0;//ldata[i]*g[0]; + for (int j=hs; j<=he; j++) + { + int ind=i-j; + if (ind>=C) + { + ldataa[i2]+=ldata[ind-C]*h[j]; + } + else if (ind<0) + { + ldataa[i2]+=ldata[ind+C]*h[j]; + } + else + { + ldataa[i2]+=ldata[ind]*h[j]; + } + } + for (int j=gs; j<=ge; j++) + { + int ind=i-j; + if (ind>=C) + { + ldatad[i2]+=ldata[ind-C]*g[j]; + } + else if (ind<0) + { + ldatad[i2]+=ldata[ind+C]*g[j]; + } + else + { + ldatad[i2]+=ldata[ind]*g[j]; + } + } + } + } + double *tmp=data2; data2=data1; data1=tmp; + l++; + C=(C>>1); + FR=(FR<<1); + if (l>=order) + { + for (int f=0; f<FR; f++) + for(int i=0; i<C; i++) + spec[ORDER-l][i][f]=data1[f*C+i]; + } + } + + delete[] _data1; +}//wavpac + +/* + function iwavpac: inverse transform of wavpac + + In: spec[Fr][Wid] + h[hs:he-1], g[gs:ge-1], reconstruction filter pair + Out: data[Fr*Wid] + + No return value. +*/ +void iwavpac(double* data, double** spec, int Fr, int Wid, double* h, int hs, int he, double* g, int gs, int ge) +{ + int Count=Fr*Wid, Order=log2(Wid); + double* _data1=new double[Count]; + double *data1, *data2, *ldata, *ldataa, *ldatad; + if (Order%2) data1=_data1, data2=data; + else data1=data, data2=_data1; + //data pass to buffer + for (int i=0, t=0; i<Wid; i++) + for (int j=0; j<Fr; j++) + data1[t++]=spec[j][i]; + + int l=Order; + int C=Fr; + int K=Wid/2; + while (l>0) + { + memset(data2, 0, sizeof(double)*Count); + for (int k=0; k<K; k++) + { + if (k%2==0) ldataa=&data1[2*k*C], ldatad=&data1[(2*k+1)*C]; + else ldatad=&data1[2*k*C], ldataa=&data1[(2*k+1)*C]; + ldata=&data2[2*k*C]; + //qmf + for (int i=0; i<C; i++) + { + for (int j=hs; j<=he; j++) + { + int ind=i*2+j; + if (ind>=C*2) + { + ldata[ind-C*2]+=ldataa[i]*h[j]; + } + else if (ind<0) + { + ldata[ind+C*2]+=ldataa[i]*h[j]; + } + else + { + ldata[ind]+=ldataa[i]*h[j]; + } + } + for (int j=gs; j<=ge; j++) + { + int ind=i*2+j; + if (ind>=C*2) + { + ldata[ind-C*2]+=ldatad[i]*g[j]; + } + else if (ind<0) + { + ldata[ind+C*2]+=ldatad[i]*g[j]; + } + else + { + ldata[ind]+=ldatad[i]*g[j]; + } + } + } + } + + double *tmp=data2; data2=data1; data1=tmp; + l--; + C=(C<<1); + K=(K>>1); + } + delete[] _data1; +}//iwavpac