annotate hsedit.cpp @ 1:6422640a802f

first upload
author Wen X <xue.wen@elec.qmul.ac.uk>
date Tue, 05 Oct 2010 10:45:57 +0100
parents
children 5f3c32dc6e17
rev   line source
xue@1 1 //---------------------------------------------------------------------------
xue@1 2
xue@1 3 #include "hsedit.h"
xue@1 4 #include "splines.h"
xue@1 5
xue@1 6 //---------------------------------------------------------------------------
xue@1 7
xue@1 8 /*
xue@1 9 function DeFM: frequency de-modulation
xue@1 10
xue@1 11 In: peakfr[npfr]: segmentation into FM cycles, peakfr[0]=0, peakfr[npfr-1]=Fr-1
xue@1 12 a1[Fr], f1[Fr]: sequence of amplitudes and frequencies
xue@1 13 arec[Fr]: amplitude-based weights for frequency averaging
xue@1 14 Out: a2[Fr], f2[Fr]: amplitude and frequency sequance after demodulation
xue@1 15
xue@1 16 No return value.
xue@1 17 */
xue@1 18 void DeFM(double* a2, double* f2, double* a1, double* f1, double* arec, int npfr, int* peakfr)
xue@1 19 {
xue@1 20 double *frs=new double[npfr*12], *a=&frs[npfr], *f=&frs[npfr*2],
xue@1 21 *aa=&frs[npfr*3], *ab=&frs[npfr*4], *ac=&frs[npfr*5], *ad=&frs[npfr*6],
xue@1 22 *fa=&frs[npfr*7], *fb=&frs[npfr*8], *fc=&frs[npfr*9], *fd=&frs[npfr*10];
xue@1 23 a[0]=a1[0], f[0]=f1[0], frs[0]=peakfr[0];
xue@1 24 for (int i=1; i<npfr-1; i++)
xue@1 25 {
xue@1 26 a[i]=f[i]=frs[i]=0; double lrec=0;
xue@1 27 for (int fr=peakfr[i-1]; fr<peakfr[i+1]; fr++)
xue@1 28 a[i]+=a1[fr]*a1[fr], f[i]+=f1[fr]*arec[fr], frs[i]+=fr*arec[fr], lrec+=arec[fr];
xue@1 29 a[i]=sqrt(a[i]/(peakfr[i+1]-peakfr[i-1])), f[i]/=lrec, frs[i]/=lrec;
xue@1 30 }
xue@1 31 a[npfr-1]=a1[peakfr[npfr-1]], f[npfr-1]=f1[peakfr[npfr-1]], frs[npfr-1]=peakfr[npfr-1];
xue@1 32 CubicSpline(npfr-1, aa, ab, ac, ad, frs, a, 1, 1, a2);
xue@1 33 CubicSpline(npfr-1, fa, fb, fc, fd, frs, f, 1, 1, f2);
xue@1 34 delete[] frs;
xue@1 35 }//DeFM
xue@1 36
xue@1 37 /*
xue@1 38 function DFMSeg: segments HS frames into FM cycles
xue@1 39
xue@1 40 In: partials[M][Fr]: HS partials
xue@1 41 Out: peakfr[npfr]: segmentation, peakfr[0]=0, peakfr[npfr-1]=Fr-1.
xue@1 42 arec[Fr]: total amplitudes of frames
xue@1 43
xue@1 44 No return value.
xue@1 45 */
xue@1 46 void DFMSeg(double* arec, int& npfr, int* peakfr, int M, int Fr, atom** partials)
xue@1 47 {
xue@1 48 double *frec=new double[Fr];
xue@1 49 memset(arec, 0, sizeof(double)*Fr); memset(frec, 0, sizeof(double)*Fr);
xue@1 50 for (int m=0; m<M; m++) for (int fr=0; fr<Fr; fr++) {double la=partials[m][fr].a; la=la*la; arec[fr]+=la; frec[fr]+=partials[m][fr].f/(m+1)*la;}
xue@1 51 for (int fr=0; fr<Fr; fr++) frec[fr]=frec[fr]/arec[fr];
xue@1 52 peakfr[0]=0; npfr=1;
xue@1 53 for (int fr=1; fr<Fr-1; fr++)
xue@1 54 {
xue@1 55 if ((frec[fr]<frec[fr-1] && frec[fr]<frec[fr+1]) || (frec[fr]>frec[fr-1] && frec[fr]>frec[fr+1]))
xue@1 56 {
xue@1 57 peakfr[npfr]=fr;
xue@1 58 if (peakfr[npfr]-peakfr[npfr-1]>2) npfr++;
xue@1 59 }
xue@1 60 }
xue@1 61 peakfr[npfr++]=Fr-1;
xue@1 62 delete[] frec;
xue@1 63 }//DFMSeg
xue@1 64
xue@1 65 /*
xue@1 66 function HSAM: harmonic sinusoid amplitude modulation
xue@1 67
xue@1 68 In: SrcHS: source harmonic sinusoid
xue@1 69 dep: modulation depth
xue@1 70 fre: modulator frequency
xue@1 71 ph: modulator phase
xue@1 72 Out: HS: destination harmonic sinusoid
xue@1 73
xue@1 74 No reutrn value.
xue@1 75 */
xue@1 76 void HSAM(THS* HS, THS* SrcHS, double dep, double fre, double ph)
xue@1 77 {
xue@1 78 double omg=M_PI*2*fre;
xue@1 79 for (int m=0; m<HS->M; m++)
xue@1 80 for (int fr=0; fr<HS->Fr; fr++)
xue@1 81 HS->Partials[m][fr].a=SrcHS->Partials[m][fr].a*(1+dep*cos(omg*SrcHS->Partials[m][fr].t+ph));
xue@1 82 }//HSAM
xue@1 83
xue@1 84 /*
xue@1 85 function HSFM: harmonic sinusoid frequency modulation
xue@1 86
xue@1 87 In: SrcHS: source harmonic sinusoid
xue@1 88 a: modulation extent, in semitones
xue@1 89 fre: modulator frequency
xue@1 90 ph: modulator phase
xue@1 91 Out: HS: destination harmonic sinusoid
xue@1 92
xue@1 93 No reutrn value.
xue@1 94 */
xue@1 95 void HSFM(THS* HS, THS* SrcHS, double a, double freq, double ph)
xue@1 96 {
xue@1 97 double omg=M_PI*2*freq, pa=pow(2, a/12.0)-1;
xue@1 98 for (int m=0; m<HS->M; m++)
xue@1 99 for (int fr=0; fr<HS->Fr; fr++)
xue@1 100 HS->Partials[m][fr].f=SrcHS->Partials[m][fr].f*(1+pa*cos(omg*SrcHS->Partials[m][fr].t+ph));
xue@1 101 }//HSFM
xue@1 102
xue@1 103 /*
xue@1 104 function HSFM_SF: harmonic sinusoid frequency modulation with source-filter model
xue@1 105
xue@1 106 In: SrcHS: source harmonic sinusoid
xue@1 107 a: modulation extent, in semitones
xue@1 108 fre: modulator frequency
xue@1 109 ph: modulator phase
xue@1 110 SF: source-filter model
xue@1 111 Out: HS: destination harmonic sinusoid
xue@1 112
xue@1 113 No reutrn value.
xue@1 114 */
xue@1 115 void HSFM_SF(THS* HS, THS* SrcHS, double a, double freq, double ph, TSF* SF)
xue@1 116 {
xue@1 117 double omg=M_PI*2*freq, pa=pow(2, a/12.0)-1;
xue@1 118 for (int m=0; m<HS->M; m++) for (int fr=0; fr<HS->Fr; fr++)
xue@1 119 {
xue@1 120 double f0=SrcHS->Partials[m][fr].f;
xue@1 121 double f1=f0*(1+pa*cos(omg*SrcHS->Partials[m][fr].t+ph));
xue@1 122 HS->Partials[m][fr].f=f1;
xue@1 123 HS->Partials[m][fr].a=SrcHS->Partials[m][fr].a*exp(SF->LogAF(f1)-SF->LogAF(f0));
xue@1 124 }
xue@1 125 }//HSFM_SF
xue@1 126
xue@1 127 /*
xue@1 128 function: HSPitchShift: harmonic sinusoid pitch shifting
xue@1 129
xue@1 130 In: SrcHS: source harmonic sinusoid
xue@1 131 ps12: amount of pitch shift, in semitones
xue@1 132 Out: HS: destination harmonic sinusoid
xue@1 133
xue@1 134 No return value.
xue@1 135 */
xue@1 136 void HSPitchShift(THS* HS, THS* SrcHS, double ps12)
xue@1 137 {
xue@1 138 double pa=pow(2, ps12/12.0);
xue@1 139 for (int m=0; m<HS->M; m++) for (int fr=0; fr<HS->Fr; fr++) HS->Partials[m][fr].f=SrcHS->Partials[m][fr].f*pa;
xue@1 140 }//HSPitchShift
xue@1 141
xue@1 142 /*
xue@1 143 function ReFM: frequency re-modulation
xue@1 144
xue@1 145 In: partials[M][Fr]: HS partials
xue@1 146 amount: relative modulation depth after remodulation
xue@1 147 rate: relateive modulation rate after remodulation
xue@1 148 SF: a source-filter model, optional
xue@1 149 Out: partials2[M][Fr]: remodulated HS partials. Must be allocated before calling.
xue@1 150
xue@1 151 No return value.
xue@1 152 */
xue@1 153 void ReFM(int M, int Fr, atom** partials, atom** partials2, double amount, double rate, TSF* SF)
xue@1 154 {
xue@1 155 double *arec=new double[Fr]; int *peakfr=new int[Fr], npfr;
xue@1 156 DFMSeg(arec, npfr, peakfr, M, Fr, partials);
xue@1 157
xue@1 158 double *a1=new double[Fr*8];
xue@1 159 double *f1=&a1[Fr], *a2=&a1[Fr*3], *f2=&a1[Fr*4], *da=&a1[Fr*5], *df=&a1[Fr*6];
xue@1 160
xue@1 161 for (int m=0; m<M; m++)
xue@1 162 {
xue@1 163 atom *part=partials[m], *part2=partials2[m]; bool fzero=false;
xue@1 164 for (int fr=0; fr<Fr; fr++)
xue@1 165 {
xue@1 166 if (part[fr].f<=0){fzero=true; break;}
xue@1 167 a1[fr]=part[fr].a*2;
xue@1 168 f1[fr]=part[fr].f;
xue@1 169 }
xue@1 170 if (fzero){part2[0].f=0; break;}
xue@1 171 DeFM(a2, f2, a1, f1, arec, npfr, peakfr);
xue@1 172 for (int i=0; i<Fr; i++) da[i]=a1[i]-a2[i], df[i]=f1[i]-f2[i];
xue@1 173 for (int fr=0; fr<Fr; fr++)
xue@1 174 {
xue@1 175 double frd=fr/rate; int dfrd=floor(frd); frd-=dfrd;
xue@1 176 double lda=0, ldf=0;
xue@1 177 if (dfrd<Fr-1) lda=da[dfrd]*(1-frd)+da[dfrd+1]*frd, ldf=df[dfrd]*(1-frd)+df[dfrd+1]*frd;
xue@1 178 else if (dfrd==Fr-1) lda=da[dfrd]*(1-frd), ldf=df[dfrd]*(1-frd);
xue@1 179 part2[fr].f=f2[fr]=f2[fr]+ldf*amount;
xue@1 180 if (SF) part2[fr].a=part[fr].a*exp(SF->LogAF(part2[fr].f)-SF->LogAF(part[fr].f));
xue@1 181 else part2[fr].a=(a2[fr]+lda*amount)*0.5;
xue@1 182 }
xue@1 183 }
xue@1 184 delete[] a1;
xue@1 185 delete[] arec; delete[] peakfr;
xue@1 186 }//ReFM
xue@1 187
xue@1 188
xue@1 189
xue@1 190