Mercurial > hg > x
view hsedit.cpp @ 1:6422640a802f
first upload
author | Wen X <xue.wen@elec.qmul.ac.uk> |
---|---|
date | Tue, 05 Oct 2010 10:45:57 +0100 |
parents | |
children | 5f3c32dc6e17 |
line wrap: on
line source
//--------------------------------------------------------------------------- #include "hsedit.h" #include "splines.h" //--------------------------------------------------------------------------- /* function DeFM: frequency de-modulation In: peakfr[npfr]: segmentation into FM cycles, peakfr[0]=0, peakfr[npfr-1]=Fr-1 a1[Fr], f1[Fr]: sequence of amplitudes and frequencies arec[Fr]: amplitude-based weights for frequency averaging Out: a2[Fr], f2[Fr]: amplitude and frequency sequance after demodulation No return value. */ void DeFM(double* a2, double* f2, double* a1, double* f1, double* arec, int npfr, int* peakfr) { double *frs=new double[npfr*12], *a=&frs[npfr], *f=&frs[npfr*2], *aa=&frs[npfr*3], *ab=&frs[npfr*4], *ac=&frs[npfr*5], *ad=&frs[npfr*6], *fa=&frs[npfr*7], *fb=&frs[npfr*8], *fc=&frs[npfr*9], *fd=&frs[npfr*10]; a[0]=a1[0], f[0]=f1[0], frs[0]=peakfr[0]; for (int i=1; i<npfr-1; i++) { a[i]=f[i]=frs[i]=0; double lrec=0; for (int fr=peakfr[i-1]; fr<peakfr[i+1]; fr++) a[i]+=a1[fr]*a1[fr], f[i]+=f1[fr]*arec[fr], frs[i]+=fr*arec[fr], lrec+=arec[fr]; a[i]=sqrt(a[i]/(peakfr[i+1]-peakfr[i-1])), f[i]/=lrec, frs[i]/=lrec; } a[npfr-1]=a1[peakfr[npfr-1]], f[npfr-1]=f1[peakfr[npfr-1]], frs[npfr-1]=peakfr[npfr-1]; CubicSpline(npfr-1, aa, ab, ac, ad, frs, a, 1, 1, a2); CubicSpline(npfr-1, fa, fb, fc, fd, frs, f, 1, 1, f2); delete[] frs; }//DeFM /* function DFMSeg: segments HS frames into FM cycles In: partials[M][Fr]: HS partials Out: peakfr[npfr]: segmentation, peakfr[0]=0, peakfr[npfr-1]=Fr-1. arec[Fr]: total amplitudes of frames No return value. */ void DFMSeg(double* arec, int& npfr, int* peakfr, int M, int Fr, atom** partials) { double *frec=new double[Fr]; memset(arec, 0, sizeof(double)*Fr); memset(frec, 0, sizeof(double)*Fr); for (int m=0; m<M; m++) for (int fr=0; fr<Fr; fr++) {double la=partials[m][fr].a; la=la*la; arec[fr]+=la; frec[fr]+=partials[m][fr].f/(m+1)*la;} for (int fr=0; fr<Fr; fr++) frec[fr]=frec[fr]/arec[fr]; peakfr[0]=0; npfr=1; for (int fr=1; fr<Fr-1; fr++) { if ((frec[fr]<frec[fr-1] && frec[fr]<frec[fr+1]) || (frec[fr]>frec[fr-1] && frec[fr]>frec[fr+1])) { peakfr[npfr]=fr; if (peakfr[npfr]-peakfr[npfr-1]>2) npfr++; } } peakfr[npfr++]=Fr-1; delete[] frec; }//DFMSeg /* function HSAM: harmonic sinusoid amplitude modulation In: SrcHS: source harmonic sinusoid dep: modulation depth fre: modulator frequency ph: modulator phase Out: HS: destination harmonic sinusoid No reutrn value. */ void HSAM(THS* HS, THS* SrcHS, double dep, double fre, double ph) { double omg=M_PI*2*fre; for (int m=0; m<HS->M; m++) for (int fr=0; fr<HS->Fr; fr++) HS->Partials[m][fr].a=SrcHS->Partials[m][fr].a*(1+dep*cos(omg*SrcHS->Partials[m][fr].t+ph)); }//HSAM /* function HSFM: harmonic sinusoid frequency modulation In: SrcHS: source harmonic sinusoid a: modulation extent, in semitones fre: modulator frequency ph: modulator phase Out: HS: destination harmonic sinusoid No reutrn value. */ void HSFM(THS* HS, THS* SrcHS, double a, double freq, double ph) { double omg=M_PI*2*freq, pa=pow(2, a/12.0)-1; for (int m=0; m<HS->M; m++) for (int fr=0; fr<HS->Fr; fr++) HS->Partials[m][fr].f=SrcHS->Partials[m][fr].f*(1+pa*cos(omg*SrcHS->Partials[m][fr].t+ph)); }//HSFM /* function HSFM_SF: harmonic sinusoid frequency modulation with source-filter model In: SrcHS: source harmonic sinusoid a: modulation extent, in semitones fre: modulator frequency ph: modulator phase SF: source-filter model Out: HS: destination harmonic sinusoid No reutrn value. */ void HSFM_SF(THS* HS, THS* SrcHS, double a, double freq, double ph, TSF* SF) { double omg=M_PI*2*freq, pa=pow(2, a/12.0)-1; for (int m=0; m<HS->M; m++) for (int fr=0; fr<HS->Fr; fr++) { double f0=SrcHS->Partials[m][fr].f; double f1=f0*(1+pa*cos(omg*SrcHS->Partials[m][fr].t+ph)); HS->Partials[m][fr].f=f1; HS->Partials[m][fr].a=SrcHS->Partials[m][fr].a*exp(SF->LogAF(f1)-SF->LogAF(f0)); } }//HSFM_SF /* function: HSPitchShift: harmonic sinusoid pitch shifting In: SrcHS: source harmonic sinusoid ps12: amount of pitch shift, in semitones Out: HS: destination harmonic sinusoid No return value. */ void HSPitchShift(THS* HS, THS* SrcHS, double ps12) { double pa=pow(2, ps12/12.0); for (int m=0; m<HS->M; m++) for (int fr=0; fr<HS->Fr; fr++) HS->Partials[m][fr].f=SrcHS->Partials[m][fr].f*pa; }//HSPitchShift /* function ReFM: frequency re-modulation In: partials[M][Fr]: HS partials amount: relative modulation depth after remodulation rate: relateive modulation rate after remodulation SF: a source-filter model, optional Out: partials2[M][Fr]: remodulated HS partials. Must be allocated before calling. No return value. */ void ReFM(int M, int Fr, atom** partials, atom** partials2, double amount, double rate, TSF* SF) { double *arec=new double[Fr]; int *peakfr=new int[Fr], npfr; DFMSeg(arec, npfr, peakfr, M, Fr, partials); double *a1=new double[Fr*8]; double *f1=&a1[Fr], *a2=&a1[Fr*3], *f2=&a1[Fr*4], *da=&a1[Fr*5], *df=&a1[Fr*6]; for (int m=0; m<M; m++) { atom *part=partials[m], *part2=partials2[m]; bool fzero=false; for (int fr=0; fr<Fr; fr++) { if (part[fr].f<=0){fzero=true; break;} a1[fr]=part[fr].a*2; f1[fr]=part[fr].f; } if (fzero){part2[0].f=0; break;} DeFM(a2, f2, a1, f1, arec, npfr, peakfr); for (int i=0; i<Fr; i++) da[i]=a1[i]-a2[i], df[i]=f1[i]-f2[i]; for (int fr=0; fr<Fr; fr++) { double frd=fr/rate; int dfrd=floor(frd); frd-=dfrd; double lda=0, ldf=0; if (dfrd<Fr-1) lda=da[dfrd]*(1-frd)+da[dfrd+1]*frd, ldf=df[dfrd]*(1-frd)+df[dfrd+1]*frd; else if (dfrd==Fr-1) lda=da[dfrd]*(1-frd), ldf=df[dfrd]*(1-frd); part2[fr].f=f2[fr]=f2[fr]+ldf*amount; if (SF) part2[fr].a=part[fr].a*exp(SF->LogAF(part2[fr].f)-SF->LogAF(part[fr].f)); else part2[fr].a=(a2[fr]+lda*amount)*0.5; } } delete[] a1; delete[] arec; delete[] peakfr; }//ReFM