annotate wavelet.cpp @ 5:5f3c32dc6e17

* Adjust comment syntax to permit Doxygen to generate HTML documentation; add Doxyfile
author Chris Cannam
date Wed, 06 Oct 2010 15:19:49 +0100
parents fc19d45615d1
children 977f541d6683
rev   line source
xue@1 1 //---------------------------------------------------------------------------
xue@1 2
xue@1 3 #include <math.h>
Chris@2 4 #include <string.h>
xue@1 5 #include "wavelet.h"
xue@1 6 #include "matrix.h"
xue@1 7
Chris@5 8 /** \file wavelet.h */
Chris@5 9
xue@1 10 //---------------------------------------------------------------------------
Chris@5 11 /**
xue@1 12 function csqrt: real implementation of complex square root z=sqrt(x)
xue@1 13
xue@1 14 In: xr and xi: real and imaginary parts of x
xue@1 15 Out: zr and zi: real and imaginary parts of z=sqrt(x)
xue@1 16
xue@1 17 No return value.
xue@1 18 */
xue@1 19 void csqrt(double& zr, double& zi, double xr, double xi)
xue@1 20 {
xue@1 21 if (xi==0)
xue@1 22 if (xr>=0) zr=sqrt(xr), zi=0;
xue@1 23 else zi=sqrt(-xr), zr=0;
xue@1 24 else
xue@1 25 {
xue@1 26 double xm=sqrt(xr*xr+xi*xi);
xue@1 27 double ri=sqrt((xm-xr)/2);
xue@1 28 zr=xi/2/ri;
xue@1 29 zi=ri;
xue@1 30 }
xue@1 31 }//csqrt
xue@1 32
Chris@5 33 /**
xue@1 34 function Daubechies: calculates the Daubechies filter of a given order p
xue@1 35
xue@1 36 In: filter order p
xue@1 37 Out: h[2p]: the 2p FIR coefficients
xue@1 38
xue@1 39 No reutrn value. The calculated filters are minimum phase, which means the energy concentrates at the
xue@1 40 beginning. This is usually used for reconstruction. On the contrary, for wavelet analysis the filter
xue@1 41 is mirrored.
xue@1 42 */
xue@1 43 void Daubechies(int p, double* h)
xue@1 44 {
xue@1 45 //initialize h(z)
xue@1 46 double r01=pow(2, -p-p+1.5);
xue@1 47
xue@1 48 h[0]=1;
xue@1 49 for (int i=1; i<=p; i++)
xue@1 50 {
xue@1 51 h[i]=h[i-1]*(p+1-i)/i;
xue@1 52 }
xue@1 53
xue@1 54 //construct polynomial p
xue@1 55 double *P=new double[p], *rp=new double[p], *ip=new double[p];
xue@1 56
xue@1 57 P[p-1]=1;
xue@1 58 double r02=1;
xue@1 59 for (int i=p-1; i>0; i--)
xue@1 60 {
xue@1 61 double rate=(i+1-1.0)/(p-2.0+i+1);
xue@1 62 P[i-1]=P[i]*rate;
xue@1 63 r02/=rate;
xue@1 64 }
xue@1 65 Roots(p-1, P, rp, ip);
xue@1 66 for (int i=0; i<p-1; i++)
xue@1 67 {
xue@1 68 //current length of h is p+1+i, h[0:p+i]
xue@1 69 if (i<p-2 && rp[i]==rp[i+1] && ip[i]==-ip[i+1])
xue@1 70 {
xue@1 71 double ar=rp[i], ai=ip[i];
xue@1 72 double bkr=-2*ar+1, bki=-2*ai, ckr=4*(ar*ar-ai*ai-ar), cki=4*(2*ar*ai-ai), dlr, dli;
xue@1 73 csqrt(dlr, dli, ckr, cki);
xue@1 74 double akr=bkr+dlr, aki=bki+dli;
xue@1 75 if (akr*akr+aki*aki>1) akr=bkr-dlr, aki=bki-dli;
xue@1 76 double ak1=-2*akr, ak2=akr*akr+aki*aki;
xue@1 77 h[p+2+i]=ak2*h[p+i];
xue@1 78 h[p+1+i]=ak2*h[p-1+i]+ak1*h[p+i];
xue@1 79 for (int j=p+i; j>1; j--) h[j]=h[j]+ak1*h[j-1]+ak2*h[j-2];
xue@1 80 h[1]=h[1]+ak1*h[0];
xue@1 81 r02/=ak2;
xue@1 82 i++;
xue@1 83 }
xue@1 84 else //real root of P
xue@1 85 {
xue@1 86 double ak, bk=-(2*rp[i]-1), delk=4*rp[i]*(rp[i]-1);
xue@1 87 if (bk>0) ak=bk-sqrt(delk);
xue@1 88 else ak=bk+sqrt(delk);
xue@1 89 r02/=ak;
xue@1 90 h[p+1+i]=-ak*h[p+i];
xue@1 91 for (int j=p+i; j>0; j--) h[j]=h[j]-ak*h[j-1];
xue@1 92 }
xue@1 93 }
xue@1 94 delete[] P; delete[] rp; delete[] ip;
xue@1 95 r01=r01*sqrt(r02);
xue@1 96 for (int i=0; i<p*2; i++) h[i]*=r01;
xue@1 97 }//Daubechies
xue@1 98
xue@1 99 /*
xue@1 100 Periodic wavelet decomposition and reconstruction routines
xue@1 101
xue@1 102 The wavelet transform of an N-point sequence is arranged in "interleaved" format
xue@1 103 as another N-point sequance. Level 1 details are found at N/2 points 1, 3, 5, ...,
xue@1 104 N-1; level 2 details are found at N/4 points 2, 6, ..., N-2; level 3 details are
xue@1 105 found at N/8 points 4, 12, ..., N-4; etc.
xue@1 106 */
xue@1 107
Chris@5 108 /**
xue@1 109 function dwtpqmf: in this implementation h and g are the same as reconstruction qmf filters. In fact
xue@1 110 the actual filters used are their mirrors and filter origin are aligned to the ends of the real
xue@1 111 filters, which turn out to be the starts of h and g.
xue@1 112
xue@1 113 The inverse transform is idwtp(), the same as inversing dwtp().
xue@1 114
xue@1 115 In: in[Count]: waveform data
xue@1 116 h[M], g[M]: quadratic mirror filter pair
xue@1 117 N: maximal time resolution
xue@1 118 Count=kN, N=2^lN being the reciprocal of the most detailed frequency scale, i.e.
xue@1 119 N=1 for no transforming at all, N=2 for dividing into approx. and detail,
xue@1 120 N=4 for dividing into approx+detail(approx+detial), etc.
xue@1 121 Count*2/N=2k gives the smallest length to be convolved with h and g.
xue@1 122 Out: out[N], the wavelet transform, arranged in interleaved format.
xue@1 123
xue@1 124 Returns maximal atom length (should equal N).
xue@1 125 */
xue@1 126 int dwtpqmf(double* in, int Count, int N, double* h, double* g, int M, double* out)
xue@1 127 {
xue@1 128 double* tmp=new double[Count];
xue@1 129 double *tmpa=tmp, *tmpla=in;
xue@1 130 int C=Count, L=0, n=1;
xue@1 131
xue@1 132 A:
xue@1 133 {
xue@1 134 //C: signal length at current layer
xue@1 135 //L: layer index, 0 being most detailed
xue@1 136 //n: atom length on current layer, equals 2^L.
xue@1 137 //C*n=(C<<L)=Count
xue@1 138 double* tmpd=&tmpa[C/2];
xue@1 139 for (int i=0; i<C; i+=2)
xue@1 140 {
xue@1 141 int i2=i/2;
xue@1 142 tmpa[i2]=tmpla[i]*h[0];
xue@1 143 tmpd[i2]=tmpla[i]*g[0];
xue@1 144 for (int j=1; j<M; j++)
xue@1 145 {
xue@1 146 if (i+j<C)
xue@1 147 {
xue@1 148 tmpa[i2]+=tmpla[i+j]*h[j];
xue@1 149 tmpd[i2]+=tmpla[i+j]*g[j];
xue@1 150 }
xue@1 151 else
xue@1 152 {
xue@1 153 tmpa[i2]+=tmpla[i+j-C]*h[j];
xue@1 154 tmpd[i2]+=tmpla[i+j-C]*g[j];
xue@1 155 }
xue@1 156 }
xue@1 157 }
xue@1 158 for (int i=0; i*2+1<C; i++) out[(2*i+1)<<L]=tmpd[i];
xue@1 159 for (int i=0; i*2<C; i++) out[i<<(L+1)]=tmpa[i];
xue@1 160 n*=2;
xue@1 161 if (n<N)
xue@1 162 {
xue@1 163 tmpla=tmpa;
xue@1 164 tmpa=tmpd;
xue@1 165 L++;
xue@1 166 C/=2;
xue@1 167 goto A;
xue@1 168 }
xue@1 169 }
xue@1 170 delete[] tmp;
xue@1 171 return n;
xue@1 172 }//dwtpqmf
xue@1 173
Chris@5 174 /**
xue@1 175 function dwtp: in this implementation h and g can be different from mirrored reconstruction filters,
xue@1 176 i.e. the biorthogonal transform. h[0] and g[0] are aligned at the ends of the filters, i.e. h[-M+1:0],
xue@1 177 g[-M+1:0].
xue@1 178
xue@1 179 In: in[Count]: waveform data
xue@1 180 h[-M+1:0], g[-M+1:0]: quadratic mirror filter pair
xue@1 181 N: maximal time resolution
xue@1 182 Out: out[N], the wavelet transform, arranged in interleaved format.
xue@1 183
xue@1 184 Returns maximal atom length (should equal N).
xue@1 185 */
xue@1 186 int dwtp(double* in, int Count, int N, double* h, double* g, int M, double* out)
xue@1 187 {
xue@1 188 double* tmp=new double[Count];
xue@1 189 double *tmpa=tmp, *tmpla=in;
xue@1 190 int C=Count, L=0, n=1;
xue@1 191
xue@1 192 A:
xue@1 193 {
xue@1 194 double* tmpd=&tmpa[C/2];
xue@1 195 for (int i=0; i<C; i+=2)
xue@1 196 {
xue@1 197 int i2=i/2;
xue@1 198 tmpa[i2]=tmpla[i]*h[0];
xue@1 199 tmpd[i2]=tmpla[i]*g[0];
xue@1 200 for (int j=-1; j>-M; j--)
xue@1 201 {
xue@1 202 if (i-j<C)
xue@1 203 {
xue@1 204 tmpa[i2]+=tmpla[i-j]*h[j];
xue@1 205 tmpd[i2]+=tmpla[i-j]*g[j];
xue@1 206 }
xue@1 207 else
xue@1 208 {
xue@1 209 tmpa[i2]+=tmpla[i-j-C]*h[j];
xue@1 210 tmpd[i2]+=tmpla[i-j-C]*g[j];
xue@1 211 }
xue@1 212 }
xue@1 213 }
xue@1 214 for (int i=0; i*2+1<C; i++) out[(2*i+1)<<L]=tmpd[i];
xue@1 215 for (int i=0; i*2<C; i++) out[i<<(L+1)]=tmpa[i];
xue@1 216 n*=2;
xue@1 217 if (n<N)
xue@1 218 {
xue@1 219 tmpla=tmpa;
xue@1 220 tmpa=tmpd;
xue@1 221 L++;
xue@1 222 C/=2;
xue@1 223 goto A;
xue@1 224 }
xue@1 225 }
xue@1 226 delete[] tmp;
xue@1 227 return n;
xue@1 228 }//dwtp
xue@1 229
Chris@5 230 /**
xue@1 231 function dwtp: in this implementation h and g can be different size. h[0] and g[0] are aligned at the
xue@1 232 ends of the filters, i.e. h[-Mh+1:0], g[-Mg+1:0].
xue@1 233
xue@1 234 In: in[Count]: waveform data
xue@1 235 h[-Mh+1:0], g[-Mg+1:0]: quadratic mirror filter pair
xue@1 236 N: maximal time resolution
xue@1 237 Out: out[N], the wavelet transform, arranged in interleaved format.
xue@1 238
xue@1 239 Returns maximal atom length (should equal N).
xue@1 240 */
xue@1 241 int dwtp(double* in, int Count, int N, double* h, int Mh, double* g, int Mg, double* out)
xue@1 242 {
xue@1 243 double* tmp=new double[Count];
xue@1 244 double *tmpa=tmp, *tmpla=in;
xue@1 245 int C=Count, L=0, n=1;
xue@1 246
xue@1 247 A:
xue@1 248 {
xue@1 249 double* tmpd=&tmpa[C/2];
xue@1 250 for (int i=0; i<C; i+=2)
xue@1 251 {
xue@1 252 int i2=i/2;
xue@1 253 tmpa[i2]=tmpla[i]*h[0];
xue@1 254 tmpd[i2]=tmpla[i]*g[0];
xue@1 255 for (int j=-1; j>-Mh; j--)
xue@1 256 {
xue@1 257 if (i-j<C)
xue@1 258 {
xue@1 259 tmpa[i2]+=tmpla[i-j]*h[j];
xue@1 260 }
xue@1 261 else
xue@1 262 {
xue@1 263 tmpa[i2]+=tmpla[i-j-C]*h[j];
xue@1 264 }
xue@1 265 }
xue@1 266 for (int j=-1; j>-Mg; j--)
xue@1 267 {
xue@1 268 if (i-j<C)
xue@1 269 {
xue@1 270 tmpd[i2]+=tmpla[i-j]*g[j];
xue@1 271 }
xue@1 272 else
xue@1 273 {
xue@1 274 tmpd[i2]+=tmpla[i-j-C]*g[j];
xue@1 275 }
xue@1 276 }
xue@1 277 }
xue@1 278 for (int i=0; i*2+1<C; i++) out[(2*i+1)<<L]=tmpd[i];
xue@1 279 for (int i=0; i*2<C; i++) out[i<<(L+1)]=tmpa[i];
xue@1 280 n*=2;
xue@1 281 if (n<N)
xue@1 282 {
xue@1 283 tmpla=tmpa;
xue@1 284 tmpa=tmpd;
xue@1 285 L++;
xue@1 286 C/=2;
xue@1 287 goto A;
xue@1 288 }
xue@1 289 }
xue@1 290 delete[] tmp;
xue@1 291 return n;
xue@1 292 }//dwtp
xue@1 293
Chris@5 294 /**
xue@1 295 function dwtp: in this implementation h and g can be arbitrarily located: h from $sh to $eh, g from
xue@1 296 $sg to $eg.
xue@1 297
xue@1 298 In: in[Count]: waveform data
xue@1 299 h[sh:eh-1], g[sg:eg-1]: quadratic mirror filter pair
xue@1 300 N: maximal time resolution
xue@1 301 Out: out[N], the wavelet transform, arranged in interleaved format.
xue@1 302
xue@1 303 Returns maximal atom length (should equal N).
xue@1 304 */
xue@1 305 int dwtp(double* in, int Count, int N, double* h, int sh, int eh, double* g, int sg, int eg, double* out)
xue@1 306 {
xue@1 307 double* tmp=new double[Count];
xue@1 308 double *tmpa=tmp, *tmpla=in;
xue@1 309 int C=Count, L=0, n=1;
xue@1 310
xue@1 311 A:
xue@1 312 {
xue@1 313 double* tmpd=&tmpa[C/2];
xue@1 314 for (int i=0; i<C; i+=2)
xue@1 315 {
xue@1 316 int i2=i/2;
xue@1 317 tmpa[i2]=0;//tmpla[i]*h[0];
xue@1 318 tmpd[i2]=0;//tmpla[i]*g[0];
xue@1 319 for (int j=sh; j<=eh; j++)
xue@1 320 {
xue@1 321 int ind=i-j;
xue@1 322 if (ind>=C) tmpa[i2]+=tmpla[ind-C]*h[j];
xue@1 323 else if (ind<0) tmpa[i2]+=tmpla[ind+C]*h[j];
xue@1 324 else tmpa[i2]+=tmpla[ind]*h[j];
xue@1 325 }
xue@1 326 for (int j=sg; j<=eg; j++)
xue@1 327 {
xue@1 328 int ind=i-j;
xue@1 329 if (ind>=C) tmpd[i2]+=tmpla[i-j-C]*g[j];
xue@1 330 else if (ind<0) tmpd[i2]+=tmpla[i-j+C]*g[j];
xue@1 331 else tmpd[i2]+=tmpla[i-j]*g[j];
xue@1 332 }
xue@1 333 }
xue@1 334 for (int i=0; i*2+1<C; i++) out[(2*i+1)<<L]=tmpd[i];
xue@1 335 for (int i=0; i*2<C; i++) out[i<<(L+1)]=tmpa[i];
xue@1 336 n*=2;
xue@1 337 if (n<N)
xue@1 338 {
xue@1 339 tmpla=tmpa;
xue@1 340 tmpa=tmpd;
xue@1 341 L++;
xue@1 342 C/=2;
xue@1 343 goto A;
xue@1 344 }
xue@1 345 }
xue@1 346 delete[] tmp;
xue@1 347 return n;
xue@1 348 }//dwtp
xue@1 349
Chris@5 350 /**
xue@1 351 function idwtp: periodic wavelet reconstruction by qmf
xue@1 352
xue@1 353 In: in[Count]: wavelet transform in interleaved format
xue@1 354 h[M], g[M]: quadratic mirror filter pair
xue@1 355 N: maximal time resolution
xue@1 356 Out: out[N], waveform data (detail level 0).
xue@1 357
xue@1 358 No return value.
xue@1 359 */
xue@1 360 void idwtp(double* in, int Count, int N, double* h, double* g, int M, double* out)
xue@1 361 {
xue@1 362 double* tmp=new double[Count];
xue@1 363 memcpy(out, in, sizeof(double)*Count);
xue@1 364 int n=N, C=Count/N, L=log2(N)-1;
xue@1 365 while (n>1)
xue@1 366 {
xue@1 367 memset(tmp, 0, sizeof(double)*C*2);
xue@1 368 //2k<<L being the approx, (2k+1)<<L being the detail
xue@1 369 for (int i=0; i<C; i++)
xue@1 370 {
xue@1 371 for (int j=0; j<M; j++)
xue@1 372 {
xue@1 373 if (i*2+j<C*2)
xue@1 374 {
xue@1 375 tmp[i*2+j]+=out[(2*i)<<L]*h[j]+out[(2*i+1)<<L]*g[j];
xue@1 376 }
xue@1 377 else
xue@1 378 {
xue@1 379 tmp[i*2+j-C*2]+=out[(2*i)<<L]*h[j]+out[(2*i+1)<<L]*g[j];
xue@1 380 }
xue@1 381 }
xue@1 382 }
xue@1 383 for (int i=0; i<C*2; i++) out[i<<L]=tmp[i];
xue@1 384 n/=2;
xue@1 385 C*=2;
xue@1 386 L--;
xue@1 387 }
xue@1 388 delete[] tmp;
xue@1 389 }//idwtp
xue@1 390
Chris@5 391 /**
xue@1 392 function idwtp: in which h and g can have different length.
xue@1 393
xue@1 394 In: in[Count]: wavelet transform in interleaved format
xue@1 395 h[Mh], g[Mg]: quadratic mirror filter pair
xue@1 396 N: maximal time resolution
xue@1 397 Out: out[N], waveform data (detail level 0).
xue@1 398
xue@1 399 No return value.
xue@1 400 */
xue@1 401 void idwtp(double* in, int Count, int N, double* h, int Mh, double* g, int Mg, double* out)
xue@1 402 {
xue@1 403 double* tmp=new double[Count];
xue@1 404 memcpy(out, in, sizeof(double)*Count);
xue@1 405 int n=N, C=Count/N, L=log2(N)-1;
xue@1 406 while (n>1)
xue@1 407 {
xue@1 408 memset(tmp, 0, sizeof(double)*C*2);
xue@1 409 //2k<<L being the approx, (2k+1)<<L being the detail
xue@1 410 for (int i=0; i<C; i++)
xue@1 411 {
xue@1 412 for (int j=0; j<Mh; j++)
xue@1 413 {
xue@1 414 int ind=i*2+j+(Mg-Mh)/2;
xue@1 415 if (ind>=C*2)
xue@1 416 {
xue@1 417 tmp[ind-C*2]+=out[(2*i)<<L]*h[j];
xue@1 418 }
xue@1 419 else if (ind<0)
xue@1 420 {
xue@1 421 tmp[ind+C*2]+=out[(2*i)<<L]*h[j];
xue@1 422 }
xue@1 423 else
xue@1 424 {
xue@1 425 tmp[ind]+=out[(2*i)<<L]*h[j];
xue@1 426 }
xue@1 427 }
xue@1 428 }
xue@1 429 for (int i=0; i<C; i++)
xue@1 430 {
xue@1 431 for (int j=0; j<Mg; j++)
xue@1 432 {
xue@1 433 int ind=i*2+j+(Mh-Mg)/2;
xue@1 434 if (ind>=C*2)
xue@1 435 {
xue@1 436 tmp[ind-C*2]+=out[(2*i+1)<<L]*g[j];
xue@1 437 }
xue@1 438 else if (ind<0)
xue@1 439 {
xue@1 440 tmp[ind+C*2]+=out[(2*i+1)<<L]*g[j];
xue@1 441 }
xue@1 442 else
xue@1 443 {
xue@1 444 tmp[ind]+=out[(2*i+1)<<L]*g[j];
xue@1 445 }
xue@1 446 }
xue@1 447 }
xue@1 448 for (int i=0; i<C*2; i++) out[i<<L]=tmp[i];
xue@1 449 n/=2;
xue@1 450 C*=2;
xue@1 451 L--;
xue@1 452 }
xue@1 453 delete[] tmp;
xue@1 454 }//idwtp
xue@1 455
Chris@5 456 /**
xue@1 457 function idwtp: in which h and g can be arbitrarily located: h from $sh to $eh, g from $sg to $eg
xue@1 458
xue@1 459 In: in[Count]: wavelet transform in interleaved format
xue@1 460 h[sh:eh-1], g[sg:eg-1]: quadratic mirror filter pair
xue@1 461 N: maximal time resolution
xue@1 462 Out: out[N], waveform data (detail level 0).
xue@1 463
xue@1 464 No return value.
xue@1 465 */
xue@1 466 void idwtp(double* in, int Count, int N, double* h, int sh, int eh, double* g, int sg, int eg, double* out)
xue@1 467 {
xue@1 468 double* tmp=new double[Count];
xue@1 469 memcpy(out, in, sizeof(double)*Count);
xue@1 470 int n=N, C=Count/N, L=log2(N)-1;
xue@1 471 while (n>1)
xue@1 472 {
xue@1 473 memset(tmp, 0, sizeof(double)*C*2);
xue@1 474 //2k<<L being the approx, (2k+1)<<L being the detail
xue@1 475 for (int i=0; i<C; i++)
xue@1 476 {
xue@1 477 for (int j=sh; j<=eh; j++)
xue@1 478 {
xue@1 479 int ind=i*2+j;
xue@1 480 if (ind>=C*2) tmp[ind-C*2]+=out[(2*i)<<L]*h[j];
xue@1 481 else if (ind<0) tmp[ind+C*2]+=out[(2*i)<<L]*h[j];
xue@1 482 else tmp[ind]+=out[(2*i)<<L]*h[j];
xue@1 483 }
xue@1 484 }
xue@1 485 for (int i=0; i<C; i++)
xue@1 486 {
xue@1 487 for (int j=sg; j<=eg; j++)
xue@1 488 {
xue@1 489 int ind=i*2+j;
xue@1 490 if (ind>=C*2) tmp[ind-C*2]+=out[(2*i+1)<<L]*g[j];
xue@1 491 else if (ind<0) tmp[ind+C*2]+=out[(2*i+1)<<L]*g[j];
xue@1 492 else tmp[ind]+=out[(2*i+1)<<L]*g[j];
xue@1 493 }
xue@1 494 }
xue@1 495 for (int i=0; i<C*2; i++) out[i<<L]=tmp[i];
xue@1 496 n/=2;
xue@1 497 C*=2;
xue@1 498 L--;
xue@1 499 }
xue@1 500 delete[] tmp;
xue@1 501 }//idwtp
xue@1 502
xue@1 503 //---------------------------------------------------------------------------
xue@1 504
xue@1 505 /*
xue@1 506 Spline biorthogonal wavelet routines.
xue@1 507
xue@1 508 Further reading: "Calculation of biorthogonal spline wavelets.pdf"
xue@1 509 */
xue@1 510
xue@1 511 //function Cmb: combination number C(n, k) (n>=k>=0)
xue@1 512 int Cmb(int n, int k)
xue@1 513 {
xue@1 514 if (k>n/2) k=n-k;
xue@1 515 int c=1;
xue@1 516 for (int i=1; i<=k; i++) c=c*(n+1-i)/i;
xue@1 517 return c;
xue@1 518 }
xue@1 519
Chris@5 520 /**
xue@1 521 function splinewl: computes spline biorthogonal wavelet filters. This version of splinewl calcualtes
xue@1 522 the positive-time half of h and hm coefficients only.
xue@1 523
xue@1 524 p1 and p2 must have the same parity. If p1 is even, p1 coefficients will be returned in h1; if p1 is
xue@1 525 odd, p1-1 coefficients will be returned in h1.
xue@1 526
xue@1 527 Actual length of h is p1+1, of hm is p1+2p2-1. only a half of each is kept.
xue@1 528 p even: h[0:p1/2] <- [p1/2:p1], hm[0:p1/2+p2-1] <- [p1/2+p2-1:p1+2p2-2]
xue@1 529 p odd: h[0:(p1-1)/2] <- [(p1+1)/2:p1], hm[0:(p1-3)/2+p2] <- [(p1-1)/2+p2:p1+2p2-2]
xue@1 530 i.e. h[0:hp1] <- [p1-hp1:p1], hm[0:hp1+p2-1] <- [p1-hp1-1+p2:p1+2p2-2]
xue@1 531
xue@1 532 In: p1, p2: specify vanishing moments of h and hm
xue@1 533 Out: h[] and hm[] as specified above.
xue@1 534
xue@1 535 No return value.
xue@1 536 */
xue@1 537 void splinewl(int p1, int p2, double* h, double* hm)
xue@1 538 {
xue@1 539 int hp1=p1/2, hp2=p2/2;
xue@1 540 int q=(p1+p2)/2;
xue@1 541 h[hp1]=sqrt(2.0)*pow(2, -p1);
xue@1 542 // h1[hp1]=1;
xue@1 543 for (int i=1, j=hp1-1; i<=hp1; i++, j--)
xue@1 544 {
xue@1 545 h[j]=h[j+1]*(p1+1-i)/i;
xue@1 546 }
xue@1 547
xue@1 548 double *_hh1=new double[p2+1], *_hh2=new double[2*q];
xue@1 549 double *hh1=&_hh1[p2-hp2], *hh2=&_hh2[q];
xue@1 550
xue@1 551 hh1[hp2]=sqrt(2.0)*pow(2, -p2);
xue@1 552 for (int i=1, j=hp2-1; i<=hp2; i++, j--)
xue@1 553 {
xue@1 554 hh1[j]=hh1[j+1]*(p2+1-i)/i;
xue@1 555 }
xue@1 556 if (p2%2) //p2 is odd
xue@1 557 {
xue@1 558 for (int i=0; i<=hp2; i++) hh1[-i-1]=hh1[i];
xue@1 559 }
xue@1 560 else //p2 even
xue@1 561 {
xue@1 562 for (int i=1; i<=hp2; i++) hh1[-i]=hh1[i];
xue@1 563 }
xue@1 564
xue@1 565 memset(_hh2, 0, sizeof(double)*2*q);
xue@1 566 for (int n=1-q; n<=q-1; n++)
xue@1 567 {
xue@1 568 int k=abs(n);
xue@1 569 int CC1=Cmb(q-1+k, k), CC2=Cmb(2*k, k-n); //CC=1.0*C(q-1+k, k)*C(2*k, k-n)
xue@1 570 for (; k<=q-1; k++)
xue@1 571 {
xue@1 572 hh2[n]=hh2[n]+1.0*CC1*CC2*pow(0.25, k);
xue@1 573 CC1=CC1*(q+k)/(k+1);
xue@1 574 CC2=CC2*(2*k+1)*(2*k+2)/((k+1-n)*(k+1+n));
xue@1 575 }
xue@1 576 hh2[n]*=pow(-1, n);
xue@1 577 }
xue@1 578
xue@1 579 //hh1[hp2-p2:hp2], hh2[1-q:q-1]
xue@1 580 //h2=conv(hh1, hh2), but the positive half only
xue@1 581 memset(hm, 0, sizeof(double)*(hp1+p2));
xue@1 582 for (int i=hp2-p2; i<=hp2; i++)
xue@1 583 for (int j=1-q; j<=q-1; j++)
xue@1 584 {
xue@1 585 if (i+j>=0 && i+j<hp1+p2)
xue@1 586 hm[i+j]+=hh1[i]*hh2[j];
xue@1 587 }
xue@1 588
xue@1 589 delete[] _hh1;
xue@1 590 delete[] _hh2;
xue@1 591 }//splinewl
xue@1 592
xue@1 593
Chris@5 594 /**
xue@1 595 function splinewl: calculates the analysis and reconstruction filter pairs of spline biorthogonal
xue@1 596 wavelet (h, g) and (hm, gm). h has the size p1+1, hm has the size p1+2p2-1.
xue@1 597
xue@1 598 If p1+1 is odd, then all four filters are symmetric; if not, then h and hm are symmetric, while g and
xue@1 599 gm are anti-symmetric.
xue@1 600
xue@1 601 The concatenation of filters h with hm (or g with gm) introduces a time shift of p1+p2-1, which is the
xue@1 602 return value multiplied by -1.
xue@1 603
xue@1 604 If normmode==1, the results are normalized so that ||h||^2=||g||^2=1;
xue@1 605 if normmode==2, the results are normalized so that ||hm||^2=||gm||^2=1,
xue@1 606 if normmode==3, the results are normalized so that ||h||^2==||g||^2=||hm||^2=||gm||^2.
xue@1 607
xue@1 608 If a *points* buffer is specified, the function returns the starting and ending
xue@1 609 positions (inclusive) of h, hm, g, and gm, in the order of (hs, he, hms, hme,
xue@1 610 gs, ge, gms, gme), as ps[0]~ps[7].
xue@1 611
xue@1 612 In: p1 and p2, specify vanishing moments of h and hm, respectively.
xue@1 613 normmode: mode for normalization
xue@1 614 Out: h[p1+1], g[p1+1], hm[p1+2p2-1], gm[p1+2p2-1], points[8] (optional)
xue@1 615
xue@1 616 Returns -p1-p2+1.
xue@1 617 */
xue@1 618 int splinewl(int p1, int p2, double* h, double* hm, double* g, double* gm, int normmode, int* points)
xue@1 619 {
xue@1 620 int lf=p1+1, lb=p1+2*p2-1;
xue@1 621 int hlf=lf/2, hlb=lb/2;
xue@1 622
xue@1 623 double *h1=&h[hlf], *h2=&hm[hlb];
xue@1 624 int hp1=p1/2, hp2=p2/2;
xue@1 625 int q=(p1+p2)/2;
xue@1 626 h1[hp1]=sqrt(2.0)*pow(2, -p1);
xue@1 627 // h1[hp1]=2*pow(2, -p1);
xue@1 628 for (int i=1, j=hp1-1; i<=hp1; i++, j--) h1[j]=h1[j+1]*(p1+1-i)/i;
xue@1 629
xue@1 630 double *_hh1=new double[p2+1+2*q];
xue@1 631 double *_hh2=&_hh1[p2+1];
xue@1 632 double *hh1=&_hh1[p2-hp2], *hh2=&_hh2[q];
xue@1 633 hh1[hp2]=sqrt(2.0)*pow(2, -p2);
xue@1 634 // hh1[hp2]=pow(2, -p2);
xue@1 635 for (int i=1, j=hp2-1; i<=hp2; i++, j--) hh1[j]=hh1[j+1]*(p2+1-i)/i;
xue@1 636 if (p2%2) for (int i=0; i<=hp2; i++) hh1[-i-1]=hh1[i];
xue@1 637 else for (int i=1; i<=hp2; i++) hh1[-i]=hh1[i];
xue@1 638 memset(_hh2, 0, sizeof(double)*2*q);
xue@1 639 for (int n=1-q; n<=q-1; n++)
xue@1 640 {
xue@1 641 int k=abs(n);
xue@1 642 int CC1=Cmb(q-1+k, k), CC2=Cmb(2*k, k-n); //CC=1.0*C(q-1+k, k)*C(2*k, k-n)
xue@1 643 for (int k=abs(n); k<=q-1; k++)
xue@1 644 {
xue@1 645 hh2[n]=hh2[n]+1.0*CC1*CC2*pow(0.25, k);
xue@1 646 CC1=CC1*(q+k)/(k+1);
xue@1 647 CC2=CC2*(2*k+1)*(2*k+2)/((k+1-n)*(k+1+n));
xue@1 648 }
xue@1 649 hh2[n]*=pow(-1, n);
xue@1 650 }
xue@1 651 //hh1[hp2-p2:hp2], hh2[1-q:q-1]
xue@1 652 //h2=conv(hh1, hh2), but the positive half only
xue@1 653 memset(h2, 0, sizeof(double)*(hp1+p2));
xue@1 654 for (int i=hp2-p2; i<=hp2; i++) for (int j=1-q; j<=q-1; j++)
xue@1 655 if (i+j>=0 && i+j<hp1+p2) h2[i+j]+=hh1[i]*hh2[j];
xue@1 656 delete[] _hh1;
xue@1 657
xue@1 658 int hs, he, hms, hme, gs, ge, gms, gme;
xue@1 659 if (lf%2)
xue@1 660 {
xue@1 661 hs=-hlf, he=hlf, hms=-hlb, hme=hlb;
xue@1 662 gs=-hlb+1, ge=hlb+1, gms=-hlf-1, gme=hlf-1;
xue@1 663 }
xue@1 664 else
xue@1 665 {
xue@1 666 hs=-hlf, he=hlf-1, hms=-hlb+1, hme=hlb;
xue@1 667 gs=-hlb, ge=hlb-1, gms=-hlf+1, gme=hlf;
xue@1 668 }
xue@1 669
xue@1 670 if (lf%2)
xue@1 671 {
xue@1 672 for (int i=1; i<=hlf; i++) h1[-i]=h1[i];
xue@1 673 for (int i=1; i<=hlb; i++) h2[-i]=h2[i];
xue@1 674 double* _g=&g[hlb-1], *_gm=&gm[hlf+1];
xue@1 675 for (int i=gs; i<=ge; i++) _g[i]=(i%2)?h2[1-i]:-h2[1-i];
xue@1 676 for (int i=gms; i<=gme; i++) _gm[i]=(i%2)?h1[-1-i]:-h1[-1-i];
xue@1 677 }
xue@1 678 else
xue@1 679 {
xue@1 680 for (int i=0; i<hlf; i++) h1[-i-1]=h1[i];
xue@1 681 for (int i=0; i<hlb; i++) h2[-i-1]=h2[i];
xue@1 682 h2=&h2[-1];
xue@1 683 double *_g=&g[hlb], *_gm=&gm[hlf-1];
xue@1 684 for (int i=gs; i<=ge; i++) _g[i]=(i%2)?-h2[-i]:h2[-i];
xue@1 685 for (int i=gms; i<=gme; i++) _gm[i]=(i%2)?-h1[-i]:h1[-i];
xue@1 686 }
xue@1 687
xue@1 688 if (normmode)
xue@1 689 {
xue@1 690 double sumh=0; for (int i=0; i<=he-hs; i++) sumh+=h[i]*h[i];
xue@1 691 double sumhm=0; for (int i=0; i<=hme-hms; i++) sumhm+=hm[i]*hm[i];
xue@1 692 if (normmode==1)
xue@1 693 {
xue@1 694 double rr=sqrt(sumh);
xue@1 695 for (int i=0; i<=hme-hms; i++) hm[i]*=rr;
xue@1 696 rr=1.0/rr;
xue@1 697 for (int i=0; i<=he-hs; i++) h[i]*=rr;
xue@1 698 rr=sqrt(sumhm);
xue@1 699 for (int i=0; i<=gme-gms; i++) gm[i]*=rr;
xue@1 700 rr=1.0/rr;
xue@1 701 for (int i=0; i<=ge-gs; i++) g[i]*=rr;
xue@1 702 }
xue@1 703 else if (normmode==2)
xue@1 704 {
xue@1 705 double rr=sqrt(sumh);
xue@1 706 for (int i=0; i<=ge-gs; i++) g[i]*=rr;
xue@1 707 rr=1.0/rr;
xue@1 708 for (int i=0; i<=gme-gms; i++) gm[i]*=rr;
xue@1 709 rr=sqrt(sumhm);
xue@1 710 for (int i=0; i<=he-hs; i++) h[i]*=rr;
xue@1 711 rr=1.0/rr;
xue@1 712 for (int i=0; i<=hme-hms; i++) hm[i]*=rr;
xue@1 713 }
xue@1 714 else if (normmode==3)
xue@1 715 {
xue@1 716 double rr=pow(sumh/sumhm, 0.25);
xue@1 717 for (int i=0; i<=hme-hms; i++) hm[i]*=rr;
xue@1 718 for (int i=0; i<=ge-gs; i++) g[i]*=rr;
xue@1 719 rr=1.0/rr;
xue@1 720 for (int i=0; i<=he-hs; i++) h[i]*=rr;
xue@1 721 for (int i=0; i<=gme-gms; i++) gm[i]*=rr;
xue@1 722 }
xue@1 723 }
xue@1 724
xue@1 725 if (points)
xue@1 726 {
xue@1 727 points[0]=hs, points[1]=he, points[2]=hms, points[3]=hme;
xue@1 728 points[4]=gs, points[5]=ge, points[6]=gms, points[7]=gme;
xue@1 729 }
xue@1 730 return -p1-p2+1;
xue@1 731 }//splinewl
xue@1 732
xue@1 733 //---------------------------------------------------------------------------
Chris@5 734 /**
xue@1 735 function wavpacqmf: calculate pseudo local cosine transforms using wavelet packet
xue@1 736
xue@1 737 In: data[Count], Count=fr*WID, waveform data
xue@1 738 WID: largest scale, equals 2^ORDER
xue@1 739 wid: smallest scale, euqals 2^order
xue@1 740 h[M], g[M]: quadratic mirror filter pair, fr>2*M
xue@1 741 Out: spec[0][fr][WID], spec[1][2*fr][WID/2], ..., spec[ORDER-order-1][FR][wid]
xue@1 742
xue@1 743 No return value.
xue@1 744 */
xue@1 745 void wavpacqmf(double*** spec, double* data, int Count, int WID, int wid, int M, double* h, double* g)
xue@1 746 {
xue@1 747 int fr=Count/WID, ORDER=log2(WID), order=log2(wid);
xue@1 748 double* _data1=new double[Count*2];
xue@1 749 double *data1=_data1, *data2=&_data1[Count];
xue@1 750 //the qmf always filters data1 and puts the results to data2
xue@1 751 memcpy(data1, data, sizeof(double)*Count);
xue@1 752 int l=0, C=fr*WID, FR=1;
xue@1 753 double *ldata, *ldataa, *ldatad;
xue@1 754 while (l<ORDER)
xue@1 755 {
xue@1 756 //qmf
xue@1 757 for (int f=0; f<FR; f++)
xue@1 758 {
xue@1 759 ldata=&data1[f*C];
xue@1 760 if (f%2==0)
xue@1 761 ldataa=&data2[f*C], ldatad=&data2[f*C+C/2];
xue@1 762 else
xue@1 763 ldatad=&data2[f*C], ldataa=&data2[f*C+C/2];
xue@1 764
xue@1 765 memset(&data2[f*C], 0, sizeof(double)*C);
xue@1 766 for (int i=0; i<C; i+=2)
xue@1 767 {
xue@1 768 int i2=i/2;
xue@1 769 ldataa[i2]=ldata[i]*h[0];
xue@1 770 ldatad[i2]=ldata[i]*g[0];
xue@1 771 for (int j=1; j<M; j++)
xue@1 772 {
xue@1 773 if (i+j<C)
xue@1 774 {
xue@1 775 ldataa[i2]+=ldata[i+j]*h[j];
xue@1 776 ldatad[i2]+=ldata[i+j]*g[j];
xue@1 777 }
xue@1 778 else
xue@1 779 {
xue@1 780 ldataa[i2]+=ldata[i+j-C]*h[j];
xue@1 781 ldatad[i2]+=ldata[i+j-C]*g[j];
xue@1 782 }
xue@1 783 }
xue@1 784 }
xue@1 785 }
xue@1 786 double *tmp=data2; data2=data1; data1=tmp;
xue@1 787 l++;
xue@1 788 C=(C>>1);
xue@1 789 FR=(FR<<1);
xue@1 790 if (l>=order)
xue@1 791 {
xue@1 792 for (int f=0; f<FR; f++)
xue@1 793 for(int i=0; i<C; i++)
xue@1 794 spec[ORDER-l][i][f]=data1[f*C+i];
xue@1 795 }
xue@1 796 }
xue@1 797
xue@1 798 delete[] _data1;
xue@1 799 }//wavpacqmf
xue@1 800
Chris@5 801 /**
xue@1 802 function iwavpacqmf: inverse transform of wavpacqmf
xue@1 803
xue@1 804 In: spec[Fr][Wid], Fr>M*2
xue@1 805 h[M], g[M], quadratic mirror filter pair
xue@1 806 Out: data[Fr*Wid]
xue@1 807
xue@1 808 No return value.
xue@1 809 */
xue@1 810 void iwavpacqmf(double* data, double** spec, int Fr, int Wid, int M, double* h, double* g)
xue@1 811 {
xue@1 812 int Count=Fr*Wid, Order=log2(Wid);
xue@1 813 double* _data1=new double[Count];
xue@1 814 double *data1, *data2, *ldata, *ldataa, *ldatad;
xue@1 815 if (Order%2) data1=_data1, data2=data;
xue@1 816 else data1=data, data2=_data1;
xue@1 817 //data pass to buffer
xue@1 818 for (int i=0, t=0; i<Wid; i++)
xue@1 819 for (int j=0; j<Fr; j++)
xue@1 820 data1[t++]=spec[j][i];
xue@1 821
xue@1 822 int l=Order;
xue@1 823 int C=Fr;
xue@1 824 int K=Wid/2;
xue@1 825 while (l>0)
xue@1 826 {
xue@1 827 memset(data2, 0, sizeof(double)*Count);
xue@1 828 for (int k=0; k<K; k++)
xue@1 829 {
xue@1 830 if (k%2==0) ldataa=&data1[2*k*C], ldatad=&data1[(2*k+1)*C];
xue@1 831 else ldatad=&data1[2*k*C], ldataa=&data1[(2*k+1)*C];
xue@1 832 ldata=&data2[2*k*C];
xue@1 833 //qmf
xue@1 834 for (int i=0; i<C; i++)
xue@1 835 {
xue@1 836 for (int j=0; j<M; j++)
xue@1 837 {
xue@1 838 if (i*2+j<C*2)
xue@1 839 {
xue@1 840 ldata[i*2+j]+=ldataa[i]*h[j]+ldatad[i]*g[j];
xue@1 841 }
xue@1 842 else
xue@1 843 {
xue@1 844 ldata[i*2+j-C*2]+=ldataa[i]*h[j]+ldatad[i]*g[j];
xue@1 845 }
xue@1 846 }
xue@1 847 }
xue@1 848 }
xue@1 849
xue@1 850 double *tmp=data2; data2=data1; data1=tmp;
xue@1 851 l--;
xue@1 852 C=(C<<1);
xue@1 853 K=(K>>1);
xue@1 854 }
xue@1 855 delete[] _data1;
xue@1 856 }//iwavpacqmf
xue@1 857
Chris@5 858 /**
xue@1 859 function wavpac: calculate pseudo local cosine transforms using wavelet packet,
xue@1 860
xue@1 861 In: data[Count], Count=fr*WID, waveform data
xue@1 862 WID: largest scale, equals 2^ORDER
xue@1 863 wid: smallest scale, euqals 2^order
xue@1 864 h[hs:he-1], g[gs:ge-1]: filter pair
xue@1 865 Out: spec[0][fr][WID], spec[1][2*fr][WID/2], ..., spec[ORDER-order-1][FR][wid]
xue@1 866
xue@1 867 No return value.
xue@1 868 */
xue@1 869 void wavpac(double*** spec, double* data, int Count, int WID, int wid, double* h, int hs, int he, double* g, int gs, int ge)
xue@1 870 {
xue@1 871 int fr=Count/WID, ORDER=log2(WID), order=log2(wid);
xue@1 872 double* _data1=new double[Count*2];
xue@1 873 double *data1=_data1, *data2=&_data1[Count];
xue@1 874 //the qmf always filters data1 and puts the results to data2
xue@1 875 memcpy(data1, data, sizeof(double)*Count);
xue@1 876 int l=0, C=fr*WID, FR=1;
xue@1 877 double *ldata, *ldataa, *ldatad;
xue@1 878 while (l<ORDER)
xue@1 879 {
xue@1 880 //qmf
xue@1 881 for (int f=0; f<FR; f++)
xue@1 882 {
xue@1 883 ldata=&data1[f*C];
xue@1 884 if (f%2==0)
xue@1 885 ldataa=&data2[f*C], ldatad=&data2[f*C+C/2];
xue@1 886 else
xue@1 887 ldatad=&data2[f*C], ldataa=&data2[f*C+C/2];
xue@1 888
xue@1 889 memset(&data2[f*C], 0, sizeof(double)*C);
xue@1 890 for (int i=0; i<C; i+=2)
xue@1 891 {
xue@1 892 int i2=i/2;
xue@1 893 ldataa[i2]=0;//ldata[i]*h[0];
xue@1 894 ldatad[i2]=0;//ldata[i]*g[0];
xue@1 895 for (int j=hs; j<=he; j++)
xue@1 896 {
xue@1 897 int ind=i-j;
xue@1 898 if (ind>=C)
xue@1 899 {
xue@1 900 ldataa[i2]+=ldata[ind-C]*h[j];
xue@1 901 }
xue@1 902 else if (ind<0)
xue@1 903 {
xue@1 904 ldataa[i2]+=ldata[ind+C]*h[j];
xue@1 905 }
xue@1 906 else
xue@1 907 {
xue@1 908 ldataa[i2]+=ldata[ind]*h[j];
xue@1 909 }
xue@1 910 }
xue@1 911 for (int j=gs; j<=ge; j++)
xue@1 912 {
xue@1 913 int ind=i-j;
xue@1 914 if (ind>=C)
xue@1 915 {
xue@1 916 ldatad[i2]+=ldata[ind-C]*g[j];
xue@1 917 }
xue@1 918 else if (ind<0)
xue@1 919 {
xue@1 920 ldatad[i2]+=ldata[ind+C]*g[j];
xue@1 921 }
xue@1 922 else
xue@1 923 {
xue@1 924 ldatad[i2]+=ldata[ind]*g[j];
xue@1 925 }
xue@1 926 }
xue@1 927 }
xue@1 928 }
xue@1 929 double *tmp=data2; data2=data1; data1=tmp;
xue@1 930 l++;
xue@1 931 C=(C>>1);
xue@1 932 FR=(FR<<1);
xue@1 933 if (l>=order)
xue@1 934 {
xue@1 935 for (int f=0; f<FR; f++)
xue@1 936 for(int i=0; i<C; i++)
xue@1 937 spec[ORDER-l][i][f]=data1[f*C+i];
xue@1 938 }
xue@1 939 }
xue@1 940
xue@1 941 delete[] _data1;
xue@1 942 }//wavpac
xue@1 943
Chris@5 944 /**
xue@1 945 function iwavpac: inverse transform of wavpac
xue@1 946
xue@1 947 In: spec[Fr][Wid]
xue@1 948 h[hs:he-1], g[gs:ge-1], reconstruction filter pair
xue@1 949 Out: data[Fr*Wid]
xue@1 950
xue@1 951 No return value.
xue@1 952 */
xue@1 953 void iwavpac(double* data, double** spec, int Fr, int Wid, double* h, int hs, int he, double* g, int gs, int ge)
xue@1 954 {
xue@1 955 int Count=Fr*Wid, Order=log2(Wid);
xue@1 956 double* _data1=new double[Count];
xue@1 957 double *data1, *data2, *ldata, *ldataa, *ldatad;
xue@1 958 if (Order%2) data1=_data1, data2=data;
xue@1 959 else data1=data, data2=_data1;
xue@1 960 //data pass to buffer
xue@1 961 for (int i=0, t=0; i<Wid; i++)
xue@1 962 for (int j=0; j<Fr; j++)
xue@1 963 data1[t++]=spec[j][i];
xue@1 964
xue@1 965 int l=Order;
xue@1 966 int C=Fr;
xue@1 967 int K=Wid/2;
xue@1 968 while (l>0)
xue@1 969 {
xue@1 970 memset(data2, 0, sizeof(double)*Count);
xue@1 971 for (int k=0; k<K; k++)
xue@1 972 {
xue@1 973 if (k%2==0) ldataa=&data1[2*k*C], ldatad=&data1[(2*k+1)*C];
xue@1 974 else ldatad=&data1[2*k*C], ldataa=&data1[(2*k+1)*C];
xue@1 975 ldata=&data2[2*k*C];
xue@1 976 //qmf
xue@1 977 for (int i=0; i<C; i++)
xue@1 978 {
xue@1 979 for (int j=hs; j<=he; j++)
xue@1 980 {
xue@1 981 int ind=i*2+j;
xue@1 982 if (ind>=C*2)
xue@1 983 {
xue@1 984 ldata[ind-C*2]+=ldataa[i]*h[j];
xue@1 985 }
xue@1 986 else if (ind<0)
xue@1 987 {
xue@1 988 ldata[ind+C*2]+=ldataa[i]*h[j];
xue@1 989 }
xue@1 990 else
xue@1 991 {
xue@1 992 ldata[ind]+=ldataa[i]*h[j];
xue@1 993 }
xue@1 994 }
xue@1 995 for (int j=gs; j<=ge; j++)
xue@1 996 {
xue@1 997 int ind=i*2+j;
xue@1 998 if (ind>=C*2)
xue@1 999 {
xue@1 1000 ldata[ind-C*2]+=ldatad[i]*g[j];
xue@1 1001 }
xue@1 1002 else if (ind<0)
xue@1 1003 {
xue@1 1004 ldata[ind+C*2]+=ldatad[i]*g[j];
xue@1 1005 }
xue@1 1006 else
xue@1 1007 {
xue@1 1008 ldata[ind]+=ldatad[i]*g[j];
xue@1 1009 }
xue@1 1010 }
xue@1 1011 }
xue@1 1012 }
xue@1 1013
xue@1 1014 double *tmp=data2; data2=data1; data1=tmp;
xue@1 1015 l--;
xue@1 1016 C=(C<<1);
xue@1 1017 K=(K>>1);
xue@1 1018 }
xue@1 1019 delete[] _data1;
xue@1 1020 }//iwavpac