annotate splines.cpp @ 5:5f3c32dc6e17

* Adjust comment syntax to permit Doxygen to generate HTML documentation; add Doxyfile
author Chris Cannam
date Wed, 06 Oct 2010 15:19:49 +0100
parents 6422640a802f
children 977f541d6683
rev   line source
xue@1 1 //---------------------------------------------------------------------------
xue@1 2
xue@1 3 #include "splines.h"
xue@1 4
Chris@5 5 /** \file splines.h */
Chris@5 6
xue@1 7 //---------------------------------------------------------------------------
Chris@5 8 /**
xue@1 9 function tridiagonal: solves linear system A[N][N]x[N]=d[N] where A is tridiagonal
xue@1 10
xue@1 11 In: tridiagonal matrix A[N][N] gives as three vectors - lower subdiagonal
xue@1 12 a[1:N-1], main diagonal b[0:N-1], upper subdiagonal c[0:N-2]
xue@1 13 vector d[N]
xue@1 14 Out: vector d[N] now containing x[N]
xue@1 15
xue@1 16 No return value.
xue@1 17 */
xue@1 18 void tridiagonal(int N, double* a, double* b, double* c, double* d)
xue@1 19 {
xue@1 20 for (int k=1; k<N; k++)
xue@1 21 {
xue@1 22 double m=a[k]/b[k-1];
xue@1 23 b[k]=b[k]-m*c[k-1];
xue@1 24 d[k]=d[k]-m*d[k-1];
xue@1 25 }
xue@1 26 d[N-1]=d[N-1]/b[N-1];
xue@1 27 for (int k=N-2; k>=0; k--)
xue@1 28 d[k]=(d[k]-c[k]*d[k+1])/b[k];
xue@1 29 }//tridiagonal
xue@1 30
Chris@5 31 /**
xue@1 32 function CubicSpline: computing piece-wise trinomial coefficients of a cubic spline
xue@1 33
xue@1 34 In: x[N+1], y[N+1]: knots
xue@1 35 bordermode: boundary mode of cubic spline
xue@1 36 bordermode=0: natural: y''(x0)=y''(x_N)=0
xue@1 37 bordermode=1: quadratic runout: y''(x0)=y''(x1), y''(x_N)=y''(x_(N-1))
xue@1 38 bordermode=2: cubic runout: y''(x0)=2y''(x1)-y''(x2), the same at the end point
xue@1 39 mode: spline format
xue@1 40 mode=0: spline defined on the l'th piece as y(x)=a[l]x^3+b[l]x^2+c[l]x+d[l]
xue@1 41 mode=1: spline defined on the l'th piece as y(x)=a[l]t^3+b[l]t^2+c[l]t+d[l], t=x-x[l]
xue@1 42 Out: a[N],b[N],c[N],d[N]: piecewise trinomial coefficients
xue@1 43 data[]: cubic spline computed for [xstart:xinterval:xend], if specified
xue@1 44 No return value. On start d must be allocated no less than N+1 storage units.
xue@1 45 */
xue@1 46 void CubicSpline(int N, double* a, double* b, double* c, double* d, double* x, double* y, int bordermode, int mode, double* data, double xinterval, double xstart, double xend)
xue@1 47 {
xue@1 48 double *h=new double[N];
xue@1 49 for (int i=0; i<N; i++) h[i]=x[i+1]-x[i];
xue@1 50
xue@1 51 for (int i=0; i<N-1; i++)
xue@1 52 {
xue@1 53 a[i]=h[i];
xue@1 54 b[i]=2*(h[i]+h[i+1]);
xue@1 55 c[i]=h[i+1];
xue@1 56 d[i+1]=6*((y[i+2]-y[i+1])/h[i+1]-(y[i+1]-y[i])/h[i]);
xue@1 57 }
xue@1 58 a[0]=0; c[N-2]=0;
xue@1 59
xue@1 60 if (bordermode==1)
xue@1 61 {
xue@1 62 b[0]+=h[0];
xue@1 63 b[N-2]+=h[N-1];
xue@1 64 }
xue@1 65 else if (bordermode==2)
xue@1 66 {
xue@1 67 b[0]+=2*h[0]; c[0]-=h[0];
xue@1 68 b[N-2]+=2*h[N-1]; a[N-2]-=h[N-1];
xue@1 69 }
xue@1 70
xue@1 71 tridiagonal(N-1, a, b, c, &d[1]);
xue@1 72
xue@1 73 if (bordermode==0)
xue@1 74 {
xue@1 75 d[0]=0; d[N]=0;
xue@1 76 }
xue@1 77 else if (bordermode==1)
xue@1 78 {
xue@1 79 d[0]=d[1]; d[N]=d[N-1];
xue@1 80 }
xue@1 81 else if (bordermode==2)
xue@1 82 {
xue@1 83 d[0]=2*d[1]-d[2];
xue@1 84 d[N]=2*d[N-1]-d[N-2];
xue@1 85 }
xue@1 86
xue@1 87 for (int i=0; i<N; i++)
xue@1 88 {
xue@1 89 double zi=d[i], zi1=d[i+1], xi=x[i], xi1=x[i+1], hi=h[i];
xue@1 90 double co1=y[i+1]/hi-hi*zi1/6, co2=y[i]/hi-hi*zi/6;
xue@1 91 if (mode==0)
xue@1 92 {
xue@1 93 a[i]=(zi1-zi)/6/hi;
xue@1 94 b[i]=(-xi*zi1+xi1*zi)/2/hi;
xue@1 95 c[i]=(zi1*xi*xi-zi*xi1*xi1)/2/hi+co1-co2;
xue@1 96 d[i]=(-zi1*xi*xi*xi+zi*xi1*xi1*xi1)/6/hi-co1*xi+co2*xi1;
xue@1 97 }
xue@1 98 else if (mode==1)
xue@1 99 {
xue@1 100 a[i]=(zi1-zi)/6/hi;
xue@1 101 b[i]=zi/2;
xue@1 102 c[i]=-zi*hi/2+co1-co2;
xue@1 103 d[i]=zi*hi*hi/6+co2*hi;
xue@1 104 }
xue@1 105 zi=zi1;
xue@1 106 }
xue@1 107 delete[] h;
xue@1 108 if (data)
xue@1 109 {
xue@1 110 if (xend<xstart) xend=x[N], xstart=x[0];
xue@1 111 int Count=(xend-xstart)/xinterval+1;
xue@1 112 for (int i=0, n=0; i<Count; i++)
xue@1 113 {
xue@1 114 double xx=xstart+i*xinterval;
xue@1 115 while (n<N-1 && xx>x[n+1]) n++;
xue@1 116 if (mode==1) xx=xx-x[n];
xue@1 117 data[i]=d[n]+xx*(c[n]+xx*(b[n]+xx*a[n]));
xue@1 118 }
xue@1 119 }
xue@1 120 }//CubicSpline
xue@1 121
Chris@5 122 /**
xue@1 123 function CubicSpline: computing piece-wise trinomial coefficients of a cubic spline with uniformly placed knots
xue@1 124
xue@1 125 In: y[N+1]: spline values at knots (0, h, 2h, ..., Nh)
xue@1 126 bordermode: boundary mode of cubic spline
xue@1 127 bordermode=0: natural: y''(x0)=y''(x_N)=0
xue@1 128 bordermode=1: quadratic runout: y''(x0)=y''(x1), y''(x_N)=y''(x_(N-1))
xue@1 129 bordermode=2: cubic runout: y''(x0)=2y''(x1)-y''(x2), the same at the end point
xue@1 130 mode: spline format
xue@1 131 mode=0: spline defined on the l'th piece as y(x)=a[l]x^3+b[l]x^2+c[l]x+d[l]
xue@1 132 mode=1: spline defined on the l'th piece as y(x)=a[l]t^3+b[l]t^2+c[l]t+d[l], t=x-x[l]
xue@1 133 Out: a[N],b[N],c[N],d[N]: piecewise trinomial coefficients
xue@1 134 data[]: cubic spline computed for [xstart:xinterval:xend], if specified
xue@1 135 No return value. On start d must be allocated no less than N+1 storage units.
xue@1 136 */
xue@1 137 void CubicSpline(int N, double* a, double* b, double* c, double* d, double h, double* y, int bordermode, int mode, double* data, double xinterval, double xstart, double xend)
xue@1 138 {
xue@1 139 for (int i=0; i<N-1; i++)
xue@1 140 {
xue@1 141 a[i]=h;
xue@1 142 b[i]=4*h;
xue@1 143 c[i]=h;
xue@1 144 d[i+1]=6*((y[i+2]-y[i+1])/h-(y[i+1]-y[i])/h);
xue@1 145 }
xue@1 146 a[0]=0; c[N-2]=0;
xue@1 147
xue@1 148 if (bordermode==1)
xue@1 149 {
xue@1 150 b[0]+=h;
xue@1 151 b[N-2]+=h;
xue@1 152 }
xue@1 153 else if (bordermode==2)
xue@1 154 {
xue@1 155 b[0]+=2*h; c[0]-=h;
xue@1 156 b[N-2]+=2*h; a[N-2]-=h;
xue@1 157 }
xue@1 158
xue@1 159 tridiagonal(N-1, a, b, c, &d[1]);
xue@1 160
xue@1 161 if (bordermode==0)
xue@1 162 {
xue@1 163 d[0]=0; d[N]=0;
xue@1 164 }
xue@1 165 else if (bordermode==1)
xue@1 166 {
xue@1 167 d[0]=d[1]; d[N]=d[N-1];
xue@1 168 }
xue@1 169 else if (bordermode==2)
xue@1 170 {
xue@1 171 d[0]=2*d[1]-d[2];
xue@1 172 d[N]=2*d[N-1]-d[N-2];
xue@1 173 }
xue@1 174
xue@1 175 for (int i=0; i<N; i++)
xue@1 176 {
xue@1 177 double zi=d[i], zi1=d[i+1];
xue@1 178 if (mode==0)
xue@1 179 {
xue@1 180 double co1=y[i+1]/h-h*zi1/6, co2=y[i]/h-h*zi/6;
xue@1 181 a[i]=(zi1-zi)/6/h;
xue@1 182 b[i]=(-i*zi1+(i+1)*zi)/2;
xue@1 183 c[i]=(zi1*i*i*h-zi*(i+1)*h*(i+1))/2+co1-co2;
xue@1 184 d[i]=(-zi1*i*h*i*h*i+zi*(i+1)*h*(i+1)*h*(i+1))/6-co1*i*h+co2*(i+1)*h;
xue@1 185 }
xue@1 186 else if (mode==1)
xue@1 187 {
xue@1 188 a[i]=(zi1-zi)/6/h;
xue@1 189 b[i]=zi/2;
xue@1 190 c[i]=-(zi*2+zi1)*h/6+(y[i+1]-y[i])/h;
xue@1 191 d[i]=y[i];
xue@1 192 }
xue@1 193 zi=zi1;
xue@1 194 }
xue@1 195 if (data)
xue@1 196 {
xue@1 197 if (xend<xstart) xend=N*h, xstart=0;
xue@1 198 int Count=(xend-xstart)/xinterval+1;
xue@1 199 for (int i=0, n=0; i<Count; i++)
xue@1 200 {
xue@1 201 double xx=xstart+i*xinterval;
xue@1 202 while (n<N-1 && xx>(n+1)*h) n++;
xue@1 203 if (mode==1) xx=xx-n*h;
xue@1 204 data[i]=d[n]+xx*(c[n]+xx*(b[n]+xx*a[n]));
xue@1 205 }
xue@1 206 }
xue@1 207 }//CubicSpline
xue@1 208
Chris@5 209 /**
xue@1 210 function Smooth_Interpolate: smoothly interpolate/extrapolate P-piece spline from P-1 values. The
xue@1 211 interpolation scheme is chosen according to P:
xue@1 212 P-1=1: constant
xue@1 213 P-1=2: linear function
xue@1 214 P-1=3: quadratic function
xue@1 215 P-1>=4: cubic spline
xue@1 216
xue@1 217 In: xind[P-1], x[P-1]: knot points
xue@1 218 Out: y[N]: smoothly interpolated signal, y(xind[p])=x[p], p=0, ..., P-2.
xue@1 219
xue@1 220 No return value.
xue@1 221 */
xue@1 222 void Smooth_Interpolate(double* y, int N, int P, double* x, double* xind)
xue@1 223 {
xue@1 224 if (P==2)
xue@1 225 {
xue@1 226 for (int n=0; n<N; n++) y[n]=x[0];
xue@1 227 }
xue@1 228 else if (P==3)
xue@1 229 {
xue@1 230 double alp=(x[1]-x[0])/(xind[1]-xind[0]);
xue@1 231 for (int n=0; n<N; n++) y[n]=x[0]+(n-xind[0])*alp;
xue@1 232 }
xue@1 233 else if (P==4)
xue@1 234 {
xue@1 235 double x0=xind[0], x1=xind[1], x2=xind[2], y0=x[0], y1=x[1], y2=x[2];
xue@1 236 double ix0_12=y0/((x0-x1)*(x0-x2)), ix1_02=y1/((x1-x0)*(x1-x2)), ix2_01=y2/((x2-x0)*(x2-x1));
xue@1 237 double a=ix0_12+ix1_02+ix2_01,
xue@1 238 b=-(x1+x2)*ix0_12-(x0+x2)*ix1_02-(x0+x1)*ix2_01,
xue@1 239 c=x1*x2*ix0_12+x0*x2*ix1_02+x0*x1*ix2_01;
xue@1 240 for (int n=0; n<N; n++) y[n]=c+n*(b+n*a);
xue@1 241 }
xue@1 242 else
xue@1 243 {
xue@1 244 double *fa=new double[P*4], *fb=&fa[P], *fc=&fa[P*2], *fd=&fa[P*3];
xue@1 245 CubicSpline(P-2, fa, fb, fc, fd, xind, x, 0, 1, y, 1, 0, N-1);
xue@1 246 delete[] fa;
xue@1 247 }
xue@1 248 }//Smooth_Interpolate