annotate splines.cpp @ 1:6422640a802f

first upload
author Wen X <xue.wen@elec.qmul.ac.uk>
date Tue, 05 Oct 2010 10:45:57 +0100
parents
children 5f3c32dc6e17
rev   line source
xue@1 1 //---------------------------------------------------------------------------
xue@1 2
xue@1 3
xue@1 4 #include "splines.h"
xue@1 5
xue@1 6 //---------------------------------------------------------------------------
xue@1 7 /*
xue@1 8 function tridiagonal: solves linear system A[N][N]x[N]=d[N] where A is tridiagonal
xue@1 9
xue@1 10 In: tridiagonal matrix A[N][N] gives as three vectors - lower subdiagonal
xue@1 11 a[1:N-1], main diagonal b[0:N-1], upper subdiagonal c[0:N-2]
xue@1 12 vector d[N]
xue@1 13 Out: vector d[N] now containing x[N]
xue@1 14
xue@1 15 No return value.
xue@1 16 */
xue@1 17 void tridiagonal(int N, double* a, double* b, double* c, double* d)
xue@1 18 {
xue@1 19 for (int k=1; k<N; k++)
xue@1 20 {
xue@1 21 double m=a[k]/b[k-1];
xue@1 22 b[k]=b[k]-m*c[k-1];
xue@1 23 d[k]=d[k]-m*d[k-1];
xue@1 24 }
xue@1 25 d[N-1]=d[N-1]/b[N-1];
xue@1 26 for (int k=N-2; k>=0; k--)
xue@1 27 d[k]=(d[k]-c[k]*d[k+1])/b[k];
xue@1 28 }//tridiagonal
xue@1 29
xue@1 30 /*
xue@1 31 function CubicSpline: computing piece-wise trinomial coefficients of a cubic spline
xue@1 32
xue@1 33 In: x[N+1], y[N+1]: knots
xue@1 34 bordermode: boundary mode of cubic spline
xue@1 35 bordermode=0: natural: y''(x0)=y''(x_N)=0
xue@1 36 bordermode=1: quadratic runout: y''(x0)=y''(x1), y''(x_N)=y''(x_(N-1))
xue@1 37 bordermode=2: cubic runout: y''(x0)=2y''(x1)-y''(x2), the same at the end point
xue@1 38 mode: spline format
xue@1 39 mode=0: spline defined on the l'th piece as y(x)=a[l]x^3+b[l]x^2+c[l]x+d[l]
xue@1 40 mode=1: spline defined on the l'th piece as y(x)=a[l]t^3+b[l]t^2+c[l]t+d[l], t=x-x[l]
xue@1 41 Out: a[N],b[N],c[N],d[N]: piecewise trinomial coefficients
xue@1 42 data[]: cubic spline computed for [xstart:xinterval:xend], if specified
xue@1 43 No return value. On start d must be allocated no less than N+1 storage units.
xue@1 44 */
xue@1 45 void CubicSpline(int N, double* a, double* b, double* c, double* d, double* x, double* y, int bordermode, int mode, double* data, double xinterval, double xstart, double xend)
xue@1 46 {
xue@1 47 double *h=new double[N];
xue@1 48 for (int i=0; i<N; i++) h[i]=x[i+1]-x[i];
xue@1 49
xue@1 50 for (int i=0; i<N-1; i++)
xue@1 51 {
xue@1 52 a[i]=h[i];
xue@1 53 b[i]=2*(h[i]+h[i+1]);
xue@1 54 c[i]=h[i+1];
xue@1 55 d[i+1]=6*((y[i+2]-y[i+1])/h[i+1]-(y[i+1]-y[i])/h[i]);
xue@1 56 }
xue@1 57 a[0]=0; c[N-2]=0;
xue@1 58
xue@1 59 if (bordermode==1)
xue@1 60 {
xue@1 61 b[0]+=h[0];
xue@1 62 b[N-2]+=h[N-1];
xue@1 63 }
xue@1 64 else if (bordermode==2)
xue@1 65 {
xue@1 66 b[0]+=2*h[0]; c[0]-=h[0];
xue@1 67 b[N-2]+=2*h[N-1]; a[N-2]-=h[N-1];
xue@1 68 }
xue@1 69
xue@1 70 tridiagonal(N-1, a, b, c, &d[1]);
xue@1 71
xue@1 72 if (bordermode==0)
xue@1 73 {
xue@1 74 d[0]=0; d[N]=0;
xue@1 75 }
xue@1 76 else if (bordermode==1)
xue@1 77 {
xue@1 78 d[0]=d[1]; d[N]=d[N-1];
xue@1 79 }
xue@1 80 else if (bordermode==2)
xue@1 81 {
xue@1 82 d[0]=2*d[1]-d[2];
xue@1 83 d[N]=2*d[N-1]-d[N-2];
xue@1 84 }
xue@1 85
xue@1 86 for (int i=0; i<N; i++)
xue@1 87 {
xue@1 88 double zi=d[i], zi1=d[i+1], xi=x[i], xi1=x[i+1], hi=h[i];
xue@1 89 double co1=y[i+1]/hi-hi*zi1/6, co2=y[i]/hi-hi*zi/6;
xue@1 90 if (mode==0)
xue@1 91 {
xue@1 92 a[i]=(zi1-zi)/6/hi;
xue@1 93 b[i]=(-xi*zi1+xi1*zi)/2/hi;
xue@1 94 c[i]=(zi1*xi*xi-zi*xi1*xi1)/2/hi+co1-co2;
xue@1 95 d[i]=(-zi1*xi*xi*xi+zi*xi1*xi1*xi1)/6/hi-co1*xi+co2*xi1;
xue@1 96 }
xue@1 97 else if (mode==1)
xue@1 98 {
xue@1 99 a[i]=(zi1-zi)/6/hi;
xue@1 100 b[i]=zi/2;
xue@1 101 c[i]=-zi*hi/2+co1-co2;
xue@1 102 d[i]=zi*hi*hi/6+co2*hi;
xue@1 103 }
xue@1 104 zi=zi1;
xue@1 105 }
xue@1 106 delete[] h;
xue@1 107 if (data)
xue@1 108 {
xue@1 109 if (xend<xstart) xend=x[N], xstart=x[0];
xue@1 110 int Count=(xend-xstart)/xinterval+1;
xue@1 111 for (int i=0, n=0; i<Count; i++)
xue@1 112 {
xue@1 113 double xx=xstart+i*xinterval;
xue@1 114 while (n<N-1 && xx>x[n+1]) n++;
xue@1 115 if (mode==1) xx=xx-x[n];
xue@1 116 data[i]=d[n]+xx*(c[n]+xx*(b[n]+xx*a[n]));
xue@1 117 }
xue@1 118 }
xue@1 119 }//CubicSpline
xue@1 120
xue@1 121 /*
xue@1 122 function CubicSpline: computing piece-wise trinomial coefficients of a cubic spline with uniformly placed knots
xue@1 123
xue@1 124 In: y[N+1]: spline values at knots (0, h, 2h, ..., Nh)
xue@1 125 bordermode: boundary mode of cubic spline
xue@1 126 bordermode=0: natural: y''(x0)=y''(x_N)=0
xue@1 127 bordermode=1: quadratic runout: y''(x0)=y''(x1), y''(x_N)=y''(x_(N-1))
xue@1 128 bordermode=2: cubic runout: y''(x0)=2y''(x1)-y''(x2), the same at the end point
xue@1 129 mode: spline format
xue@1 130 mode=0: spline defined on the l'th piece as y(x)=a[l]x^3+b[l]x^2+c[l]x+d[l]
xue@1 131 mode=1: spline defined on the l'th piece as y(x)=a[l]t^3+b[l]t^2+c[l]t+d[l], t=x-x[l]
xue@1 132 Out: a[N],b[N],c[N],d[N]: piecewise trinomial coefficients
xue@1 133 data[]: cubic spline computed for [xstart:xinterval:xend], if specified
xue@1 134 No return value. On start d must be allocated no less than N+1 storage units.
xue@1 135 */
xue@1 136 void CubicSpline(int N, double* a, double* b, double* c, double* d, double h, double* y, int bordermode, int mode, double* data, double xinterval, double xstart, double xend)
xue@1 137 {
xue@1 138 for (int i=0; i<N-1; i++)
xue@1 139 {
xue@1 140 a[i]=h;
xue@1 141 b[i]=4*h;
xue@1 142 c[i]=h;
xue@1 143 d[i+1]=6*((y[i+2]-y[i+1])/h-(y[i+1]-y[i])/h);
xue@1 144 }
xue@1 145 a[0]=0; c[N-2]=0;
xue@1 146
xue@1 147 if (bordermode==1)
xue@1 148 {
xue@1 149 b[0]+=h;
xue@1 150 b[N-2]+=h;
xue@1 151 }
xue@1 152 else if (bordermode==2)
xue@1 153 {
xue@1 154 b[0]+=2*h; c[0]-=h;
xue@1 155 b[N-2]+=2*h; a[N-2]-=h;
xue@1 156 }
xue@1 157
xue@1 158 tridiagonal(N-1, a, b, c, &d[1]);
xue@1 159
xue@1 160 if (bordermode==0)
xue@1 161 {
xue@1 162 d[0]=0; d[N]=0;
xue@1 163 }
xue@1 164 else if (bordermode==1)
xue@1 165 {
xue@1 166 d[0]=d[1]; d[N]=d[N-1];
xue@1 167 }
xue@1 168 else if (bordermode==2)
xue@1 169 {
xue@1 170 d[0]=2*d[1]-d[2];
xue@1 171 d[N]=2*d[N-1]-d[N-2];
xue@1 172 }
xue@1 173
xue@1 174 for (int i=0; i<N; i++)
xue@1 175 {
xue@1 176 double zi=d[i], zi1=d[i+1];
xue@1 177 if (mode==0)
xue@1 178 {
xue@1 179 double co1=y[i+1]/h-h*zi1/6, co2=y[i]/h-h*zi/6;
xue@1 180 a[i]=(zi1-zi)/6/h;
xue@1 181 b[i]=(-i*zi1+(i+1)*zi)/2;
xue@1 182 c[i]=(zi1*i*i*h-zi*(i+1)*h*(i+1))/2+co1-co2;
xue@1 183 d[i]=(-zi1*i*h*i*h*i+zi*(i+1)*h*(i+1)*h*(i+1))/6-co1*i*h+co2*(i+1)*h;
xue@1 184 }
xue@1 185 else if (mode==1)
xue@1 186 {
xue@1 187 a[i]=(zi1-zi)/6/h;
xue@1 188 b[i]=zi/2;
xue@1 189 c[i]=-(zi*2+zi1)*h/6+(y[i+1]-y[i])/h;
xue@1 190 d[i]=y[i];
xue@1 191 }
xue@1 192 zi=zi1;
xue@1 193 }
xue@1 194 if (data)
xue@1 195 {
xue@1 196 if (xend<xstart) xend=N*h, xstart=0;
xue@1 197 int Count=(xend-xstart)/xinterval+1;
xue@1 198 for (int i=0, n=0; i<Count; i++)
xue@1 199 {
xue@1 200 double xx=xstart+i*xinterval;
xue@1 201 while (n<N-1 && xx>(n+1)*h) n++;
xue@1 202 if (mode==1) xx=xx-n*h;
xue@1 203 data[i]=d[n]+xx*(c[n]+xx*(b[n]+xx*a[n]));
xue@1 204 }
xue@1 205 }
xue@1 206 }//CubicSpline
xue@1 207
xue@1 208 /*
xue@1 209 function Smooth_Interpolate: smoothly interpolate/extrapolate P-piece spline from P-1 values. The
xue@1 210 interpolation scheme is chosen according to P:
xue@1 211 P-1=1: constant
xue@1 212 P-1=2: linear function
xue@1 213 P-1=3: quadratic function
xue@1 214 P-1>=4: cubic spline
xue@1 215
xue@1 216 In: xind[P-1], x[P-1]: knot points
xue@1 217 Out: y[N]: smoothly interpolated signal, y(xind[p])=x[p], p=0, ..., P-2.
xue@1 218
xue@1 219 No return value.
xue@1 220 */
xue@1 221 void Smooth_Interpolate(double* y, int N, int P, double* x, double* xind)
xue@1 222 {
xue@1 223 if (P==2)
xue@1 224 {
xue@1 225 for (int n=0; n<N; n++) y[n]=x[0];
xue@1 226 }
xue@1 227 else if (P==3)
xue@1 228 {
xue@1 229 double alp=(x[1]-x[0])/(xind[1]-xind[0]);
xue@1 230 for (int n=0; n<N; n++) y[n]=x[0]+(n-xind[0])*alp;
xue@1 231 }
xue@1 232 else if (P==4)
xue@1 233 {
xue@1 234 double x0=xind[0], x1=xind[1], x2=xind[2], y0=x[0], y1=x[1], y2=x[2];
xue@1 235 double ix0_12=y0/((x0-x1)*(x0-x2)), ix1_02=y1/((x1-x0)*(x1-x2)), ix2_01=y2/((x2-x0)*(x2-x1));
xue@1 236 double a=ix0_12+ix1_02+ix2_01,
xue@1 237 b=-(x1+x2)*ix0_12-(x0+x2)*ix1_02-(x0+x1)*ix2_01,
xue@1 238 c=x1*x2*ix0_12+x0*x2*ix1_02+x0*x1*ix2_01;
xue@1 239 for (int n=0; n<N; n++) y[n]=c+n*(b+n*a);
xue@1 240 }
xue@1 241 else
xue@1 242 {
xue@1 243 double *fa=new double[P*4], *fb=&fa[P], *fc=&fa[P*2], *fd=&fa[P*3];
xue@1 244 CubicSpline(P-2, fa, fb, fc, fd, xind, x, 0, 1, y, 1, 0, N-1);
xue@1 245 delete[] fa;
xue@1 246 }
xue@1 247 }//Smooth_Interpolate