annotate sinsyn.cpp @ 5:5f3c32dc6e17

* Adjust comment syntax to permit Doxygen to generate HTML documentation; add Doxyfile
author Chris Cannam
date Wed, 06 Oct 2010 15:19:49 +0100
parents fc19d45615d1
children 9b1c0825cc77
rev   line source
xue@1 1 //---------------------------------------------------------------------------
xue@1 2
xue@1 3 #include "align8.h"
Chris@2 4 #include "sinsyn.h"
xue@1 5 #include "splines.h"
xue@1 6
Chris@5 7 /** \file sinsyn.h */
Chris@5 8
xue@1 9 //---------------------------------------------------------------------------
Chris@5 10 /**
xue@1 11 function Sinuoid: original McAuley-Quatieri synthesizer interpolation between two measurement points.
xue@1 12
xue@1 13 In: T: length from measurement point 1 to measurement point 2
xue@1 14 a1, f1, p2: amplitude, frequency and phase angle at measurement point 1
xue@1 15 a2, f2, p2: amplitude, frequency and phase angle at measurement point 2
xue@1 16 ad: specifies if the resynthesized sinusoid is to be added to or to replace the contents of output buffer
xue@1 17 Out: data[T]: output buffer
xue@1 18 a[T], f[T], p[T]: resynthesized amplitude, frequency and phase
xue@1 19
xue@1 20 No return value.
xue@1 21 */
xue@1 22 void Sinusoid(double* data, int T, double a1, double a2, double f1, double f2, double p1, double p2, double* a, double* f, double* p, bool ad)
xue@1 23 {
xue@1 24 int M=floor(((p1-p2)/M_PI+(f1+f2)*T)/2.0+0.5);
xue@1 25 double b1=p2-p1-2*M_PI*(f1*T-M), b2=2*M_PI*(f2-f1);
xue@1 26 double pa=(3*b1/T-b2)/T, pb=(-2*b1/T+b2)/T/T, pc=2*M_PI*f1, pd=p1;
xue@1 27 double la=a1, da=(a2-a1)/T;
xue@1 28 if (ad)
xue@1 29 for (int t=0; t<T; t++)
xue@1 30 {
xue@1 31 double lp=pd+t*(pc+t*(pa+t*pb)), lf=(pc+2*pa*t+3*pb*t*t)/2/M_PI;
xue@1 32 data[t]+=la*cos(lp);
xue@1 33 a[t]=la;
xue@1 34 p[t]=lp;
xue@1 35 f[t]=lf;
xue@1 36 la=la+da;
xue@1 37 }
xue@1 38 else
xue@1 39 for (int t=0; t<T; t++)
xue@1 40 {
xue@1 41 double lp=pd+t*(pc+t*(pa+t*pb)), lf=(pc+2*pa*t+3*pb*t*t)/2/M_PI;
xue@1 42 data[t]=la*cos(lp);
xue@1 43 a[t]=la;
xue@1 44 p[t]=lp;
xue@1 45 f[t]=lf;
xue@1 46 la=la+da;
xue@1 47 }
xue@1 48 }//Sinusoid
xue@1 49
Chris@5 50 /**
xue@1 51 function Sinuoid: original McAuley-Quatieri synthesizer interpolation between two measurement points,
xue@1 52 without returning interpolated sinusoid parameters.
xue@1 53
xue@1 54 In: T: length from measurement point 1 to measurement point 2
xue@1 55 a1, f1, p2: amplitude, frequency and phase angle at measurement point 1
xue@1 56 a2, f2, p2: amplitude, frequency and phase angle at measurement point 2
xue@1 57 ad: specifies if the resynthesized sinusoid is to be added to or to replace the contents of output buffer
xue@1 58 Out: data[T]: output buffer
xue@1 59
xue@1 60 No return value.
xue@1 61 */
xue@1 62 void Sinusoid(double* data, int T, double a1, double a2, double f1, double f2, double p1, double p2, bool ad)
xue@1 63 {
xue@1 64 int M=floor(((p1-p2)/M_PI+(f1+f2)*T)/2.0+0.5);
xue@1 65 double b1=p2-p1-2*M_PI*(f1*T-M), b2=2*M_PI*(f2-f1);
xue@1 66 double pa=(3*b1/T-b2)/T, pb=(-2*b1/T+b2)/T/T, pc=2*M_PI*f1, pd=p1;
xue@1 67 double la=a1, da=(a2-a1)/T;
xue@1 68 if (ad)
xue@1 69 for (int t=0; t<T; t++)
xue@1 70 {
xue@1 71 data[t]+=la*cos(pd+t*(pc+t*(pa+t*pb)));
xue@1 72 la=la+da;
xue@1 73 }
xue@1 74 else
xue@1 75 for (int t=0; t<T; t++)
xue@1 76 {
xue@1 77 data[t]=la*cos(pd+t*(pc+t*(pa+t*pb)));
xue@1 78 la=la+da;
xue@1 79 }
xue@1 80 }//Sinusoid
xue@1 81
xue@1 82 //---------------------------------------------------------------------------
Chris@5 83 /**
xue@1 84 function Sinusoid_direct: synthesizes sinusoid over [CountSt, CountEn) from tronomial coefficients of
xue@1 85 amplitude and frequency, direct implementation.
xue@1 86
xue@1 87 In: CountSt, CountEn
xue@1 88 aa, ab, ac, ad: trinomial coefficients of amplitude
xue@1 89 fa, fb, fc, fd: trinomial coefficients of frequency
xue@1 90 p1: initial phase angle at 0 (NOT at CountSt)
xue@1 91 add: specifies if the resynthesized sinusoid is to be added to or to replace the content of output buffer
xue@1 92 Out: data[CountSt:CountEn-1]: output buffer.
xue@1 93 p1: phase angle at CountEn
xue@1 94
xue@1 95 No return value.
xue@1 96 */
xue@1 97 void Sinusoid_direct(double* data, int CountSt, int CountEn, double aa, double ab, double ac, double ad,
xue@1 98 double fa, double fb, double fc, double fd, double &p1, bool add)
xue@1 99 {
xue@1 100 int i; double a, ph;
xue@1 101 for (i=CountSt; i<CountEn; i++)
xue@1 102 {
xue@1 103 a=ad+i*(ac+i*(ab+i*aa));
xue@1 104 ph=p1+2*M_PI*i*(fd+i*((fc/2)+i*((fb/3)+i*fa/4)));
xue@1 105 if (add) data[i]+=a*cos(ph);
xue@1 106 else data[i]=a*cos(ph);
xue@1 107 }
xue@1 108 p1=p1+2*M_PI*i*(fd+i*((fc/2)+i*((fb/3)+i*fa/4)));
xue@1 109 }//Sinusoid
xue@1 110
Chris@5 111 /**
xue@1 112 function Sinusoid: synthesizes sinusoid over [CountSt, CountEn) from tronomial coefficients of
xue@1 113 amplitude and frequency, recursive implementation.
xue@1 114
xue@1 115 In: CountSt, CountEn
xue@1 116 a3, a2, a1, a0: trinomial coefficients of amplitude
xue@1 117 f3, f2, f1, f0: trinomial coefficients of frequency
xue@1 118 ph: initial phase angle at 0 (NOT at CountSt)
xue@1 119 add: specifies if the resynthesized sinusoid is to be added to or to replace the content of output buffer
xue@1 120 Out: data[CountSt:CountEn-1]: output buffer.
xue@1 121 ph: phase angle at CountEn
xue@1 122
xue@1 123 No return value. This function requires 8-byte stack alignment for optimal speed.
xue@1 124 */
xue@1 125 void Sinusoid(double* data, int CountSt, int CountEn, double a3, double a2, double a1, double a0,
xue@1 126 double f3, double f2, double f1, double f0, double &ph, bool add)
xue@1 127 {
xue@1 128 int i;
xue@1 129 double a, da, dda, ddda, dph, ddph, dddph, ddddph,
xue@1 130 sph, cph, sdph, cdph, sddph, cddph, sdddph, cdddph, sddddph, cddddph,
xue@1 131 p0=ph, p1=2*M_PI*f0, p2=M_PI*f1, p3=2.0*M_PI*f2/3, p4=2.0*M_PI*f3/4, tmp;
xue@1 132 if (CountSt==0)
xue@1 133 {
xue@1 134 a=a0; da=a1+a2+a3; dda=2*a2+6*a3; ddda=6*a3;
xue@1 135 dph=p1+p2+p3+p4; ddph=2*p2+6*p3+14*p4; dddph=6*p3+36*p4; ddddph=24*p4;
xue@1 136 }
xue@1 137 else
xue@1 138 {
xue@1 139 a=a0+CountSt*(a1+CountSt*(a2+CountSt*a3));
xue@1 140 da=a1+a2+a3+CountSt*(2*a2+3*a3+CountSt*3*a3);
xue@1 141 dda=2*a2+6*a3+CountSt*6*a3; ddda=6*a3;
xue@1 142 ph=p0+CountSt*(p1+CountSt*(p2+CountSt*(p3+CountSt*p4)));
xue@1 143 dph=p1+p2+p3+p4+CountSt*(2*p2+3*p3+4*p4+CountSt*(3*p3+6*p4+CountSt*4*p4));
xue@1 144 ddph=2*p2+6*p3+14*p4+CountSt*(6*p3+24*p4+CountSt*12*p4);
xue@1 145 dddph=6*p3+36*p4+CountSt*24*p4; ddddph=24*p4;
xue@1 146 }
xue@1 147 sph=sin(ph), cph=cos(ph);
xue@1 148 sdph=sin(dph), cdph=cos(dph);
xue@1 149 sddph=sin(ddph), cddph=cos(ddph);
xue@1 150 sdddph=sin(dddph), cdddph=cos(dddph);
xue@1 151 sddddph=sin(ddddph), cddddph=cos(ddddph);
xue@1 152 if (add)
xue@1 153 {
xue@1 154 for (i=CountSt; i<CountEn; i++)
xue@1 155 {
xue@1 156 data[i]+=a*cph;
xue@1 157 a=a+da; da=da+dda; dda=dda+ddda;
xue@1 158 tmp=cph*cdph-sph*sdph; sph=sph*cdph+cph*sdph; cph=tmp;
xue@1 159 tmp=cdph*cddph-sdph*sddph; sdph=sdph*cddph+cdph*sddph; cdph=tmp;
xue@1 160 tmp=cddph*cdddph-sddph*sdddph; sddph=sddph*cdddph+cddph*sdddph; cddph=tmp;
xue@1 161 tmp=cdddph*cddddph-sdddph*sddddph; sdddph=sdddph*cddddph+cdddph*sddddph; cdddph=tmp;
xue@1 162 }
xue@1 163 }
xue@1 164 else
xue@1 165 {
xue@1 166 for (i=CountSt; i<CountEn; i++)
xue@1 167 {
xue@1 168 data[i]=a*cph;
xue@1 169 a=a+da; da=da+dda; dda=dda+ddda;
xue@1 170 tmp=cph*cdph-sph*sdph; sph=sph*cdph+cph*sdph; cph=tmp;
xue@1 171 tmp=cdph*cddph-sdph*sddph; sdph=sdph*cddph+cdph*sddph; cdph=tmp;
xue@1 172 tmp=cddph*cdddph-sddph*sdddph; sddph=sddph*cdddph+cddph*sdddph; cddph=tmp;
xue@1 173 tmp=cdddph*cddddph-sdddph*sddddph; sdddph=sdddph*cddddph+cdddph*sddddph; cdddph=tmp;
xue@1 174 }
xue@1 175 }
xue@1 176 ph=p0+CountEn*(p1+CountEn*(p2+CountEn*(p3+CountEn*p4)));
xue@1 177 }
xue@1 178
Chris@5 179 /**
xue@1 180 function SinusoidExp: synthesizes complex sinusoid whose derivative log amplitude and frequency are
xue@1 181 trinomials
xue@1 182
xue@1 183 In: CountSt, CountEn
xue@1 184 a3, a2, a1, a0: trinomial coefficients for the derivative of log amplitude
xue@1 185 omg3, omg2, omg1, omg0: trinomial coefficients for angular frequency
xue@1 186 ea, ph: initial log amplitude and phase angle at 0
xue@1 187 add: specifies if the resynthesized sinusoid is to be added to or to replace the content of output buffer
xue@1 188 Out: data[CountSt:CountEn-1]: output buffer.
xue@1 189 ea, ph: log amplitude and phase angle at CountEn.
xue@1 190
xue@1 191 No return value.
xue@1 192 */
xue@1 193 void SinusoidExp(cdouble* data, int CountSt, int CountEn, double a3, double a2, double a1, double a0,
xue@1 194 double omg3, double omg2, double omg1, double omg0, double &ea, double &ph, bool add)
xue@1 195 {
xue@1 196 double e0=ea, e1=a0, e2=0.5*a1, e3=a2/3, e4=a3/4,
xue@1 197 p0=ph, p1=omg0, p2=0.5*omg1, p3=omg2/3, p4=omg3/4;
xue@1 198 if (add) for (int i=CountSt; i<CountEn; i++)
xue@1 199 {
xue@1 200 double lea=e0+i*(e1+i*(e2+i*(e3+i*e4)));
xue@1 201 double lph=p0+i*(p1+i*(p2+i*(p3+i*p4)));
xue@1 202 data[i]+=exp(cdouble(lea, lph));
xue@1 203 }
xue@1 204 else for (int i=CountSt; i<CountEn; i++)
xue@1 205 {
xue@1 206 double lea=e0+i*(e1+i*(e2+i*(e3+i*e4)));
xue@1 207 double lph=p0+i*(p1+i*(p2+i*(p3+i*p4)));
xue@1 208 data[i]=exp(cdouble(lea, lph));
xue@1 209 }
xue@1 210 ea=e0+CountEn*(e1+CountEn*(e2+CountEn*(e3+CountEn*e4)));
xue@1 211 ph=p0+CountEn*(p1+CountEn*(p2+CountEn*(p3+CountEn*p4)));
xue@1 212 }//SinusoidExp
xue@1 213
Chris@5 214 /**
xue@1 215 function SinusoidExp: synthesizes complex sinusoid piece whose derivative logarithm is h[M]'lamda[M].
xue@1 216 This version also synthesizes its derivative.
xue@1 217
xue@1 218 In: h[M][T], dih[M][T]: basis functions and their difference-integrals
xue@1 219 lamda[M]: coefficients of h[M]
xue@1 220 tmpexp: inital logarithm at 0
xue@1 221 Out: s[T], ds[T]: synthesized sinusoid and its derivative
xue@1 222 tmpexp: logarithm at T
xue@1 223
xue@1 224 No return value.
xue@1 225 */
xue@1 226 void SinusoidExp(int T, cdouble* s, cdouble* ds, int M, cdouble* lamda, double** h, double** dih, cdouble& tmpexp)
xue@1 227 {
xue@1 228 for (int t=0; t<T; t++)
xue@1 229 {
xue@1 230 s[t]=exp(tmpexp);
xue@1 231 cdouble dexp=0, dR=0;
xue@1 232 for (int m=0; m<M; m++) dexp+=lamda[m]*dih[m][t], dR+=lamda[m]*h[m][t];
xue@1 233 tmpexp+=dexp;
xue@1 234 ds[t]=s[t]*dR;
xue@1 235 }
xue@1 236 }//SinusoidExp
xue@1 237
Chris@5 238 /**
xue@1 239 function SinusoidExp: synthesizes complex sinusoid piece whose derivative logarithm is h[M]'lamda[M].
xue@1 240 This version does not synthesize its derivative.
xue@1 241
xue@1 242 In: dih[M][T]: difference of integrals of basis functions h[M]
xue@1 243 lamda[M]: coefficients of h[M]
xue@1 244 tmpexp: inital logarithm at 0
xue@1 245 Out: s[T]: synthesized sinusoid
xue@1 246 tmpexp: logarithm at T
xue@1 247
xue@1 248 No return value.
xue@1 249 */
xue@1 250 void SinusoidExp(int T, cdouble* s, int M, cdouble* lamda, double** dih, cdouble& tmpexp)
xue@1 251 {
xue@1 252 for (int t=0; t<T; t++)
xue@1 253 {
xue@1 254 s[t]=exp(tmpexp);
xue@1 255 cdouble dexp=0;
xue@1 256 for (int m=0; m<M; m++) dexp+=lamda[m]*dih[m][t];
xue@1 257 tmpexp+=dexp;
xue@1 258 }
xue@1 259 }//SinusoidExp
xue@1 260
Chris@5 261 /**
xue@1 262 function SinusoidExpA: synthesizes complex sinusoid whose log amplitude and frequency are trinomials
xue@1 263
xue@1 264 In: CountSt, CountEn
xue@1 265 a3, a2, a1, a0: trinomial coefficients for log amplitude
xue@1 266 omg3, omg2, omg1, omg0: trinomial coefficients for angular frequency
xue@1 267 ph: initial phase angle at 0
xue@1 268 add: specifies if the resynthesized sinusoid is to be added to or to replace the content of output buffer
xue@1 269 Out: data[CountSt:CountEn-1]: output buffer.
xue@1 270 ph: phase angle at CountEn.
xue@1 271
xue@1 272 No return value.
xue@1 273 */
xue@1 274 void SinusoidExpA(cdouble* data, int CountSt, int CountEn, double a3, double a2, double a1, double a0,
xue@1 275 double omg3, double omg2, double omg1, double omg0, double &ph, bool add)
xue@1 276 {
xue@1 277 double p0=ph, p1=omg0, p2=0.5*omg1, p3=omg2/3, p4=omg3/4;
xue@1 278 if (add) for (int i=CountSt; i<CountEn; i++)
xue@1 279 {
xue@1 280 double lea=a0+i*(a1+i*(a2+i*a3));
xue@1 281 double lph=p0+i*(p1+i*(p2+i*(p3+i*p4)));
xue@1 282 data[i]+=exp(cdouble(lea, lph));
xue@1 283 }
xue@1 284 else for (int i=CountSt; i<CountEn; i++)
xue@1 285 {
xue@1 286 double lea=a0+i*(a1+i*(a2+i*a3));
xue@1 287 double lph=p0+i*(p1+i*(p2+i*(p3+i*p4)));
xue@1 288 data[i]=exp(cdouble(lea, lph));
xue@1 289 }
xue@1 290 ph=p0+CountEn*(p1+CountEn*(p2+CountEn*(p3+CountEn*p4)));
xue@1 291 }//SinusoidExpA
xue@1 292
Chris@5 293 /**
xue@1 294 function SinusoidExpA: synthesizes complex sinusoid whose log amplitude and frequency are trinomials
xue@1 295 with phase angle specified at both ends.
xue@1 296
xue@1 297 In: CountSt, CountEn
xue@1 298 a3, a2, a1, a0: trinomial coefficients for log amplitude
xue@1 299 omg3, omg2, omg1, omg0: trinomial coefficients for angular frequency
xue@1 300 ph0, ph2: phase angles at 0 and CountEn.
xue@1 301 add: specifies if the resynthesized sinusoid is to be added to or to replace the content of output buffer
xue@1 302 Out: data[CountSt:CountEn-1]: output buffer.
xue@1 303
xue@1 304 No return value.
xue@1 305 */
xue@1 306 void SinusoidExpA(cdouble* data, int CountSt, int CountEn, double a3, double a2, double a1, double a0,
xue@1 307 double omg3, double omg2, double omg1, double omg0, double ph0, double ph2, bool add)
xue@1 308 {
xue@1 309 double p0=ph0, p1=omg0, p2=0.5*omg1, p3=omg2/3, p4=omg3/4;
xue@1 310 double pend=p0+CountEn*(p1+CountEn*(p2+CountEn*(p3+CountEn*p4)));
xue@1 311
xue@1 312 int k=floor((pend-ph2)/2/M_PI+0.5);
xue@1 313 double d=ph2-pend+2*M_PI*k;
xue@1 314 double _p=-2*d/CountEn/CountEn/CountEn;
xue@1 315 double _q=3*d/CountEn/CountEn;
xue@1 316
xue@1 317 if (add) for (int i=CountSt; i<CountEn; i++)
xue@1 318 {
xue@1 319 double lea=a0+i*(a1+i*(a2+i*a3));
xue@1 320 double lph=p0+i*(p1+i*(p2+i*(p3+i*p4)));
xue@1 321 data[i]+=exp(cdouble(lea, lph+(i*i*(_q+i*_p))));
xue@1 322 }
xue@1 323 else for (int i=CountSt; i<CountEn; i++)
xue@1 324 {
xue@1 325 double lea=a0+i*(a1+i*(a2+i*a3));
xue@1 326 double lph=p0+i*(p1+i*(p2+i*(p3+i*p4)));
xue@1 327 data[i]=exp(cdouble(lea, lph+(i*i*(_q+i*_p))));
xue@1 328 }
xue@1 329 }//SinusoidExpA
xue@1 330
Chris@5 331 /**
xue@1 332 function SinusoidExpA: synthesizes complex sinusoid piece whose log amplitude is h[M]'p[M] and
xue@1 333 frequency is h[M]'q[M]. This version also synthesizes its derivative.
xue@1 334
xue@1 335 In: h[M][T], dh[M][T], dih[M][T]: basis functions and their derivatives and difference-integrals
xue@1 336 p[M], q[M]: real and imaginary parts of coefficients of h[M]
xue@1 337 tmpph: inital phase angle at 0
xue@1 338 Out: s[T], ds[T]: synthesized sinusoid and its derivative
xue@1 339 tmpph: phase angle at T
xue@1 340
xue@1 341 No return value.
xue@1 342 */
xue@1 343 void SinusoidExpA(int T, cdouble* s, cdouble* ds, int M, double* p, double* q, double** h, double** dh, double** dih, double& tmpph)
xue@1 344 {
xue@1 345 for (int t=0; t<T; t++)
xue@1 346 {
xue@1 347 double e=0, dph=0, drr=0, dri=0;
xue@1 348 for (int m=0; m<M; m++) e+=p[m]*h[m][t], dph+=q[m]*dih[m][t], drr+=p[m]*dh[m][t], dri+=q[m]*h[m][t];
xue@1 349 s[t]=exp(cdouble(e, tmpph));
xue@1 350 ds[t]=s[t]*cdouble(drr, dri);
xue@1 351 tmpph+=dph;
xue@1 352 }
xue@1 353 }//SinusoidExpA
xue@1 354
Chris@5 355 /**
xue@1 356 function SinusoidExpA: synthesizes complex sinusoid piece whose log amplitude is h[M]'p[M] and
xue@1 357 frequency is h[M]'q[M]. This version does not synthesize its derivative.
xue@1 358
xue@1 359 In: h[M][T], dih[M][T]: basis functions and their difference-integrals
xue@1 360 p[M], q[M]: real and imaginary parts of coefficients of h[M]
xue@1 361 tmpph: inital phase angle at 0
xue@1 362 Out: s[T]: synthesized sinusoid
xue@1 363 tmpph: phase angle at T
xue@1 364
xue@1 365 No return value.
xue@1 366 */
xue@1 367 void SinusoidExpA(int T, cdouble* s, int M, double* p, double* q, double** h, double** dih, double& tmpph)
xue@1 368 {
xue@1 369 for (int t=0; t<T; t++)
xue@1 370 {
xue@1 371 double e=0, dph=0;
xue@1 372 for (int m=0; m<M; m++) e+=p[m]*h[m][t], dph+=q[m]*dih[m][t];
xue@1 373 s[t]=exp(cdouble(e, tmpph));
xue@1 374 tmpph+=dph;
xue@1 375 }
xue@1 376 }//SinusoidExpA
xue@1 377
Chris@5 378 /**
xue@1 379 function SinusoidExpA: synthesizes complex sinusoid piece whose log amplitude is h[M]'p[M] and
xue@1 380 frequency is h[M]'q[M] with phase angle specified at both ends. This version does not synthesize its
xue@1 381 derivative.
xue@1 382
xue@1 383 In: h[M][T], dih[M][T]: basis functions and their difference-integrals
xue@1 384 p[M], q[M]: real and imaginary parts of coefficients of h[M]
xue@1 385 ph1, ph2: phase angles at 0 and T.
xue@1 386 Out: s[T]: synthesized sinusoid
xue@1 387
xue@1 388 No return value.
xue@1 389 */
xue@1 390 void SinusoidExpA(int T, cdouble* s, int M, double* p, double* q, double** h, double** dih, double ph1, double ph2)
xue@1 391 {
xue@1 392 double pend=ph1;
xue@1 393 for (int t=0; t<T; t++)
xue@1 394 {
xue@1 395 double dph=0;
xue@1 396 for (int m=0; m<M; m++) dph+=q[m]*dih[m][t];
xue@1 397 pend+=dph;
xue@1 398 }
xue@1 399
xue@1 400 int k=floor((pend-ph2)/2/M_PI+0.5);
xue@1 401 double d=ph2-pend+2*M_PI*k;
xue@1 402 double _p=-2*d/T/T/T;
xue@1 403 double _q=3*d/T/T;
xue@1 404
xue@1 405 double ph=ph1;
xue@1 406 for (int t=0; t<T; t++)
xue@1 407 {
xue@1 408 double e=0, dph=0;
xue@1 409 for (int m=0; m<M; m++) e+=p[m]*h[m][t], dph+=q[m]*dih[m][t];
xue@1 410 if (e>300) e=300;
xue@1 411 if (e<-300) e=-300;
xue@1 412 s[t]=exp(cdouble(e, ph+(t*t*(_q+t*_p))));
xue@1 413 ph+=dph;
xue@1 414 }
xue@1 415 }//SinusoidExpA
xue@1 416
xue@1 417 /*
xue@1 418 //This is not used any longer as the recursion does not seem to help saving computation with all its overheads.
xue@1 419 void SinusoidExp(cdouble* data, int CountSt, int CountEn, double a3, double a2, double a1, double a0,
xue@1 420 double omg3, double omg2, double omg1, double omg0, double &ea, double &ph, bool add)
xue@1 421 {
xue@1 422 int i;
xue@1 423 double dea, ddea, dddea, ddddea,
xue@1 424 dph, ddph, dddph, ddddph,
xue@1 425 sph, cph, sdph, cdph, sddph, cddph, sdddph, cdddph, sddddph, cddddph,
xue@1 426 e0=ea, e1=a0, e2=0.5*a1, e3=a2/3, e4=a3/4,
xue@1 427 p0=ph, p1=omg0, p2=0.5*omg1, p3=omg2/3, p4=omg3/4, tmp;
xue@1 428 if (CountSt==0)
xue@1 429 {
xue@1 430 dea=e1+e2+e3+e4; ddea=2*e2+6*e3+14*e4; dddea=6*e3+36*e4; ddddea=24*e3;
xue@1 431 dph=p1+p2+p3+p4; ddph=2*p2+6*p3+14*p4; dddph=6*p3+36*p4; ddddph=24*p4;
xue@1 432 }
xue@1 433 else
xue@1 434 {
xue@1 435 ea=e0+CountSt*(e1+CountSt*(e2+CountSt*(e3+CountSt*e4)));
xue@1 436 dea=e1+e2+e3+e4+CountSt*(2*e2+3*e3+4*e4+CountSt*(3*e3+6*e4+CountSt*4*e4));
xue@1 437 ddea=2*e2+6*e3+14*e4+CountSt*(6*e3+24*e4+CountSt*12*e4);
xue@1 438 dddea=6*e3+36*e4+CountSt*24*e4; ddddea=24*e4;
xue@1 439 ph=p0+CountSt*(p1+CountSt*(p2+CountSt*(p3+CountSt*p4)));
xue@1 440 dph=p1+p2+p3+p4+CountSt*(2*p2+3*p3+4*p4+CountSt*(3*p3+6*p4+CountSt*4*p4));
xue@1 441 ddph=2*p2+6*p3+14*p4+CountSt*(6*p3+24*p4+CountSt*12*p4);
xue@1 442 dddph=6*p3+36*p4+CountSt*24*p4; ddddph=24*p4;
xue@1 443 }
xue@1 444 sph=sin(ph), cph=cos(ph);
xue@1 445 sdph=sin(dph), cdph=cos(dph);
xue@1 446 sddph=sin(ddph), cddph=cos(ddph);
xue@1 447 sdddph=sin(dddph), cdddph=cos(dddph);
xue@1 448 sddddph=sin(ddddph), cddddph=cos(ddddph);
xue@1 449 if (add)
xue@1 450 {
xue@1 451 for (i=CountSt; i<CountEn; i++)
xue@1 452 {
xue@1 453 data[i]+=exp(ea)*cdouble(cph, sph);
xue@1 454 ea=ea+dea; dea=dea+ddea; ddea=ddea+dddea; dddea+dddea+ddddea;
xue@1 455 tmp=cph*cdph-sph*sdph; sph=sph*cdph+cph*sdph; cph=tmp;
xue@1 456 tmp=cdph*cddph-sdph*sddph; sdph=sdph*cddph+cdph*sddph; cdph=tmp;
xue@1 457 tmp=cddph*cdddph-sddph*sdddph; sddph=sddph*cdddph+cddph*sdddph; cddph=tmp;
xue@1 458 tmp=cdddph*cddddph-sdddph*sddddph; sdddph=sdddph*cddddph+cdddph*sddddph; cdddph=tmp;
xue@1 459 }
xue@1 460 }
xue@1 461 else
xue@1 462 {
xue@1 463 for (i=CountSt; i<CountEn; i++)
xue@1 464 {
xue@1 465 data[i]=exp(ea)*cdouble(cph, sph);
xue@1 466 ea=ea+dea; dea=dea+ddea; ddea=ddea+dddea; dddea+dddea+ddddea;
xue@1 467 tmp=cph*cdph-sph*sdph; sph=sph*cdph+cph*sdph; cph=tmp;
xue@1 468 tmp=cdph*cddph-sdph*sddph; sdph=sdph*cddph+cdph*sddph; cdph=tmp;
xue@1 469 tmp=cddph*cdddph-sddph*sdddph; sddph=sddph*cdddph+cddph*sdddph; cddph=tmp;
xue@1 470 tmp=cdddph*cddddph-sdddph*sddddph; sdddph=sdddph*cddddph+cdddph*sddddph; cdddph=tmp;
xue@1 471 }
xue@1 472 }
xue@1 473 ea=e0+CountEn*(e1+CountEn*(e2+CountEn*(e3+CountEn*e4)));
xue@1 474 ph=p0+CountEn*(p1+CountEn*(p2+CountEn*(p3+CountEn*p4)));
xue@1 475 } //*/
xue@1 476
Chris@5 477 /**
xue@1 478 function Sinusoid: recursive cos-sin generator with trinomial frequency
xue@1 479
xue@1 480 In: CountSt, CountEn
xue@1 481 f3, f2, f1, f0: trinomial coefficients of frequency
xue@1 482 ph: initial phase angle at 0 (NOT at CountSt)
xue@1 483 Out: datar[CountSt:CountEn-1], datai[CountSt:CountEn-1]: synthesized pair of cosine and sine functions
xue@1 484 ph: phase angle at CountEn
xue@1 485
xue@1 486 No return value.
xue@1 487 */
xue@1 488 void Sinusoid(double* datar, double* datai, int CountSt, int CountEn, double f3, double f2, double f1, double f0, double &ph)
xue@1 489 {
xue@1 490 int i;
xue@1 491 double dph, ddph, dddph, ddddph,
xue@1 492 sph, cph, sdph, cdph, sddph, cddph, sdddph, cdddph, sddddph, cddddph,
xue@1 493 p0=ph, p1=2*M_PI*f0, p2=M_PI*f1, p3=2.0*M_PI*f2/3, p4=2.0*M_PI*f3/4, tmp;
xue@1 494 if (CountSt==0)
xue@1 495 {
xue@1 496 dph=p1+p2+p3+p4; ddph=2*p2+6*p3+14*p4; dddph=6*p3+36*p4; ddddph=24*p4;
xue@1 497 }
xue@1 498 else
xue@1 499 {
xue@1 500 ph=p0+CountSt*(p1+CountSt*(p2+CountSt*(p3+CountSt*p4)));
xue@1 501 dph=p1+p2+p3+p4+CountSt*(2*p2+3*p3+4*p4+CountSt*(3*p3+6*p4+CountSt*4*p4));
xue@1 502 ddph=2*p2+6*p3+14*p4+CountSt*(6*p3+24*p4+CountSt*12*p4);
xue@1 503 dddph=6*p3+36*p4+CountSt*24*p4; ddddph=24*p4;
xue@1 504 }
xue@1 505 sph=sin(ph), cph=cos(ph);
xue@1 506 sdph=sin(dph), cdph=cos(dph);
xue@1 507 sddph=sin(ddph), cddph=cos(ddph);
xue@1 508 sdddph=sin(dddph), cdddph=cos(dddph);
xue@1 509 sddddph=sin(ddddph), cddddph=cos(ddddph);
xue@1 510
xue@1 511 for (i=CountSt; i<CountEn; i++)
xue@1 512 {
xue@1 513 datar[i]=cph; datai[i]=sph;
xue@1 514 tmp=cph*cdph-sph*sdph; sph=sph*cdph+cph*sdph; cph=tmp;
xue@1 515 tmp=cdph*cddph-sdph*sddph; sdph=sdph*cddph+cdph*sddph; cdph=tmp;
xue@1 516 tmp=cddph*cdddph-sddph*sdddph; sddph=sddph*cdddph+cddph*sdddph; cddph=tmp;
xue@1 517 tmp=cdddph*cddddph-sdddph*sddddph; sdddph=sdddph*cddddph+cdddph*sddddph; cdddph=tmp;
xue@1 518 }
xue@1 519 ph=p0+CountEn*(p1+CountEn*(p2+CountEn*(p3+CountEn*p4)));
xue@1 520 }//Sinusoid*/
xue@1 521
Chris@5 522 /**
xue@1 523 function Sinusoids: recursive harmonic multi-sinusoid generator
xue@1 524
xue@1 525 In: st, en
xue@1 526 M: number of partials
xue@1 527 a3[M], a2[M], a1[M], a0[M]: trinomial coefficients for partial amplitudes
xue@1 528 f3, f2, f1, f0: trinomial coefficients for fundamental frequency
xue@1 529 ph[M]: partial phases at 0.
xue@1 530 add: specifies if the resynthesized sinusoid is to be added to or to replace the content of output buffer
xue@1 531 Out: data[st:en-1]: output buffer.
xue@1 532 ph[M]: partial phases at en.
xue@1 533
xue@1 534 No return value.
xue@1 535 */
xue@1 536 void Sinusoids(int M, double* data, int st, int en, double* a3, double* a2, double* a1, double* a0, double f3, double f2, double f1, double f0, double* ph, bool add)
xue@1 537 {
xue@1 538 double dph, ddph, dddph, ddddph;
xue@1 539 double sdph, cdph, cdph2, sddph, cddph, sdddph, cdddph, sddddph, cddddph, sdmph, cdmph, sdm_1ph, cdm_1ph;
xue@1 540 double p0, p1, p2, p3, p4, tmp, tmp2;
xue@1 541 double *a=(double*)malloc8(sizeof(double)*M*6), *da=&a[M], *dda=&a[M*2], *ddda=&a[M*3],
xue@1 542 *sph=&a[M*4], *cph=&a[M*5];
xue@1 543
xue@1 544 for (int m=0; m<M; m++)
xue@1 545 {
xue@1 546 p0=ph[m], p1=2*M_PI*f0, p2=M_PI*f1, p3=2.0*M_PI*f2/3, p4=2.0*M_PI*f3/4;
xue@1 547 if (st==0)
xue@1 548 {
xue@1 549 a[m]=a0[m]; da[m]=a1[m]+a2[m]+a3[m]; dda[m]=2*a2[m]+6*a3[m]; ddda[m]=6*a3[m];
xue@1 550 }
xue@1 551 else
xue@1 552 {
xue@1 553 a[m]=a0[m]+st*(a1[m]+st*(a2[m]+st*a3[m]));
xue@1 554 da[m]=a1[m]+a2[m]+a3[m]+st*(2*a2[m]+3*a3[m]+st*3*a3[m]);
xue@1 555 dda[m]=2*a2[m]+6*a3[m]+st*6*a3[m]; ddda[m]=6*a3[m];
xue@1 556 ph[m]=p0+st*(p1+st*(p2+st*(p3+st*p4)));
xue@1 557 }
xue@1 558 sph[m]=sin(ph[m]), cph[m]=cos(ph[m]);
xue@1 559 ph[m]=p0+(m+1)*en*(p1+en*(p2+en*(p3+en*p4)));
xue@1 560 }
xue@1 561
xue@1 562 if (st==0)
xue@1 563 {
xue@1 564 dph=p1+p2+p3+p4; ddph=2*p2+6*p3+14*p4; dddph=6*p3+36*p4; ddddph=24*p4;
xue@1 565 }
xue@1 566 else
xue@1 567 {
xue@1 568 dph=p1+p2+p3+p4+st*(2*p2+3*p3+4*p4+st*(3*p3+6*p4+st*4*p4));
xue@1 569 ddph=2*p2+6*p3+14*p4+st*(6*p3+24*p4+st*12*p4);
xue@1 570 dddph=6*p3+36*p4+st*24*p4; ddddph=24*p4;
xue@1 571 }
xue@1 572 sdph=sin(dph), cdph=cos(dph);
xue@1 573 sddph=sin(ddph), cddph=cos(ddph);
xue@1 574 sdddph=sin(dddph), cdddph=cos(dddph);
xue@1 575 sddddph=sin(ddddph), cddddph=cos(ddddph);
xue@1 576
xue@1 577 if (add)
xue@1 578 {
xue@1 579 for (int i=st; i<en; i++)
xue@1 580 {
xue@1 581 data[i]+=a[0]*cph[0]; a[0]+=da[0]; da[0]+=dda[0]; dda[0]+=ddda[0];
xue@1 582 tmp=cph[0]*cdph-sph[0]*sdph; sph[0]=sph[0]*cdph+cph[0]*sdph; cph[0]=tmp;
xue@1 583 cdm_1ph=1, sdm_1ph=0, cdmph=cdph, sdmph=sdph, cdph2=2*cdph;
xue@1 584
xue@1 585 for (int m=1; m<M; m++)
xue@1 586 {
xue@1 587 data[i]+=a[m]*cph[m]; a[m]+=da[m]; da[m]+=dda[m]; dda[m]+=ddda[m];
xue@1 588 // asm{mov ecx,m} asm{mov eax,a} asm{fld qword ptr [eax+ecx*8]} asm{mov edx,cph} asm{fld qword ptr [edx+ecx*8]} asm{fmul st(0),st(1)} asm{mov edx,data} asm{mov ebx,i} asm{fadd qword ptr [edx+ebx*8]} asm{fstp qword ptr [edx+ebx*8]} asm{mov edx,da} asm{fld qword ptr [edx+ecx*8]} asm{fadd st(1),st(0)} asm{mov ebx,dda} asm{fld qword ptr [ebx+ecx*8]} asm{fadd st(1),st(0)} asm{mov edi,ddda} asm{fadd qword ptr [edi+ecx*8]} asm{fstp qword ptr [ebx+ecx*8]} asm{fstp qword ptr [edx+ecx*8]} asm{fstp qword ptr [eax+ecx*8]}
xue@1 589 tmp=cdmph, tmp2=sdmph;
xue@1 590 cdmph=cdmph*cdph2-cdm_1ph; sdmph=sdmph*cdph2-sdm_1ph;
xue@1 591 cdm_1ph=tmp, sdm_1ph=tmp2;
xue@1 592
xue@1 593 tmp=cph[m]*cdmph-sph[m]*sdmph; sph[m]=sph[m]*cdmph+cph[m]*sdmph; cph[m]=tmp;
xue@1 594 // asm{mov ecx,m} asm{mov eax,cph} asm{fld qword ptr [eax+ecx*8]} asm{mov edx,sph} asm{fld qword ptr [edx+ecx*8]} asm{fld st(1)} asm{fmul sdmph} asm{fld st(1)} asm{fmul sdmph} asm{fld cdmph} asm{fmul st(4),st(0)} asm{fmulp st(3),st(0)} asm{fsubp st(3),st(0)} asm{faddp} asm{fstp qword ptr [edx+ecx*8]} asm{fstp qword ptr [eax+ecx*8]}
xue@1 595 }
xue@1 596
xue@1 597 tmp=cdph*cddph-sdph*sddph; sdph=sdph*cddph+cdph*sddph; cdph=tmp;
xue@1 598 tmp=cddph*cdddph-sddph*sdddph; sddph=sddph*cdddph+cddph*sdddph; cddph=tmp;
xue@1 599 tmp=cdddph*cddddph-sdddph*sddddph; sdddph=sdddph*cddddph+cdddph*sddddph; cdddph=tmp;
xue@1 600 }
xue@1 601 }
xue@1 602 else
xue@1 603 {
xue@1 604 }
xue@1 605 free8(a);
xue@1 606 }//Sinusoids*/
xue@1 607
Chris@5 608 /**
xue@1 609 function Sinusoid: synthesizes sinusoid piece from trinomial frequency and amplitude coefficients.
xue@1 610
xue@1 611 In: CountSt, CountEn
xue@1 612 aa, ab, ac, ad: trinomial coefficients of amplitude.
xue@1 613 fa, fb, fc, fd: trinomial coefficients of frequency.
xue@1 614 ph0, ph2: phase angles at 0 and CountEn.
xue@1 615 add: specifies if the resynthesized sinusoid is to be added to or to replace the content of output buffer
xue@1 616 Out: data[CountSt:CountEn-1]: output buffer.
xue@1 617
xue@1 618 No return value.
xue@1 619 */
xue@1 620 void Sinusoid(double* data, int CountSt, int CountEn, double aa, double ab, double ac, double ad,
xue@1 621 double fa, double fb, double fc, double fd, double ph0, double ph2, bool add)
xue@1 622 {
xue@1 623 double pend=ph0+2*M_PI*CountEn*(fd+CountEn*(fc/2+CountEn*(fb/3+CountEn*fa/4)));
xue@1 624 int k=floor((pend-ph2)/2/M_PI+0.5);
xue@1 625 double d=ph2-pend+2*M_PI*k;
xue@1 626 double p=-2*d/CountEn/CountEn/CountEn;
xue@1 627 double q=3*d/CountEn/CountEn, a, ph;
xue@1 628 for (int i=CountSt; i<CountEn; i++)
xue@1 629 {
xue@1 630 a=ad+i*(ac+i*(ab+i*aa)); if (a<0) a=0;
xue@1 631 ph=ph0+2*M_PI*i*(fd+i*((fc/2)+i*((fb/3)+i*fa/4)))+i*i*(q+i*p);
xue@1 632 if (add) data[i]+=a*cos(ph);
xue@1 633 else data[i]=a*cos(ph);
xue@1 634 }
xue@1 635 }//Sinusoid
xue@1 636
Chris@5 637 /**
xue@1 638 function Sinusoid: synthesizes sinusoid piece from trinomial frequency and amplitude coefficients,
xue@1 639 returning sinusoid coefficients instead of waveform.
xue@1 640
xue@1 641 In: CountSt, CountEn
xue@1 642 aa, ab, ac, ad: trinomial coefficients of amplitude (or log amplitude if LogA=true)
xue@1 643 fa, fb, fc, fd: trinomial coefficients of frequency.
xue@1 644 ph0, ph2: phase angles at 0 and CountEn.
xue@1 645 LogA: specifies whether log amplitude or amplitude is a trinomial
xue@1 646 Out: f[CountSt:CountEn-1], a[CountSt:CountEn-1], ph[CountSt:CountEn-1]: synthesized sinusoid parameters
xue@1 647 da[CountSt:CountEn-1]: derivative of synthesized amplitude, optional
xue@1 648
xue@1 649 No return value.
xue@1 650 */
xue@1 651 void Sinusoid(double* f, double* a, double* ph, double* da, int CountSt, int CountEn, double aa, double ab,
xue@1 652 double ac, double ad, double fa, double fb, double fc, double fd, double ph0, double ph2, bool LogA)
xue@1 653 {
xue@1 654 double pend=ph0+2*M_PI*CountEn*(fd+CountEn*(fc/2+CountEn*(fb/3+CountEn*fa/4)));
xue@1 655 int k=floor((pend-ph2)/2/M_PI+0.5);
xue@1 656 double d=ph2-pend+2*M_PI*k;
xue@1 657 double p=-2*d/CountEn/CountEn/CountEn;
xue@1 658 double q=3*d/CountEn/CountEn;
xue@1 659 if (LogA) for (int i=CountSt; i<CountEn; i++)
xue@1 660 {
xue@1 661 a[i]=exp(ad+i*(ac+i*(ab+i*aa)));
xue@1 662 if (da) da[i]=a[i]*(ac+i*(2*ab+i*3*aa));
xue@1 663 f[i]=fd+i*(fc+i*(fb+i*fa))+i*(2*q+3*i*p)/(2*M_PI);
xue@1 664 ph[i]=ph0+2*M_PI*i*(fd+i*((fc/2)+i*((fb/3)+i*fa/4)))+i*i*(q+i*p);
xue@1 665 }
xue@1 666 else for (int i=CountSt; i<CountEn; i++)
xue@1 667 {
xue@1 668 a[i]=ad+i*(ac+i*(ab+i*aa));
xue@1 669 if (da) da[i]=ac+i*(2*ab+i*3*aa);
xue@1 670 f[i]=fd+i*(fc+i*(fb+i*fa))+i*(2*q+3*i*p)/(2*M_PI);
xue@1 671 ph[i]=ph0+2*M_PI*i*(fd+i*((fc/2)+i*((fb/3)+i*fa/4)))+i*i*(q+i*p);
xue@1 672 }
xue@1 673 }//Sinusoid
xue@1 674
Chris@5 675 /**
xue@1 676 function Sinusoid: generates trinomial frequency and phase with phase correction.
xue@1 677
xue@1 678 In: CountSt, CountEn
xue@1 679 fa, fb, fc, fd: trinomial coefficients of frequency.
xue@1 680 ph0, ph2: phase angles at 0 and CountEn.
xue@1 681 Out: f[CountSt:CountEn-1], ph[CountSt:CountEn-1]: output buffers holding frequency and phase.
xue@1 682
xue@1 683 No return value.
xue@1 684 */
xue@1 685 void Sinusoid(double* f, double* ph, int CountSt, int CountEn, double fa, double fb,
xue@1 686 double fc, double fd, double ph0, double ph2)
xue@1 687 {
xue@1 688 double pend=ph0+2*M_PI*CountEn*(fd+CountEn*(fc/2+CountEn*(fb/3+CountEn*fa/4)));
xue@1 689 int k=floor((pend-ph2)/2/M_PI+0.5);
xue@1 690 double d=ph2-pend+2*M_PI*k;
xue@1 691 double p=-2*d/CountEn/CountEn/CountEn;
xue@1 692 double q=3*d/CountEn/CountEn;
xue@1 693 for (int i=CountSt; i<CountEn; i++)
xue@1 694 {
xue@1 695 f[i]=fd+i*(fc+i*(fb+i*fa))+i*(2*q+3*i*p)/(2*M_PI);
xue@1 696 ph[i]=ph0+2*M_PI*i*(fd+i*((fc/2)+i*((fb/3)+i*fa/4)))+i*i*(q+i*p);
xue@1 697 }
xue@1 698 }//Sinusoid
xue@1 699
Chris@5 700 /**
xue@1 701 function SynthesizeSinusoid: synthesizes a time-varying sinusoid from a sequence of frequencies and amplitudes
xue@1 702
xue@1 703 In: xs[Fr]: measurement points, should be integers although *xs has double type.
xue@1 704 fs[Fr], as[Fr]: sequence of frequencies and amplitudes at xs[Fr]
xue@1 705 phs[0]: initial phase angle at (int)xs[0].
xue@1 706 dst, den: start and end time of synthesis, dst<=xs[0], den>=xs[Fr-1]
xue@1 707 add: specifies if the resynthesized sinusoid is to be added to or to replace the content of output buffer
xue@1 708 Out: xrec[0:den-dst-1]: output buffer hosting synthesized sinusoid from dst to den.
xue@1 709 phs[Fr]: phase angles at xs[Fr]
xue@1 710
xue@1 711 Returns pointer to xrec.
xue@1 712 */
xue@1 713 double* SynthesizeSinusoid(double* xrec, int dst, int den, double* phs, int Fr, double* xs, double* fs, double* as, bool add, bool* terminatetag)
xue@1 714 {
xue@1 715 double *f3=new double[Fr*8], *f2=&f3[Fr], *f1=&f3[Fr*2], *f0=&f3[Fr*3],
xue@1 716 *a3=&f3[Fr*4], *a2=&a3[Fr], *a1=&a3[Fr*2], *a0=&a3[Fr*3];
xue@1 717 CubicSpline(Fr-1, f3, f2, f1, f0, xs, fs, 1, 1);
xue@1 718 CubicSpline(Fr-1, a3, a2, a1, a0, xs, as, 1, 1);
xue@1 719 double ph=phs[0];
xue@1 720 for (int fr=0; fr<Fr-1; fr++)
xue@1 721 {
xue@1 722 phs[fr]=ph;
xue@1 723 ALIGN8(Sinusoid(&xrec[(int)xs[fr]-dst], 0, xs[fr+1]-xs[fr], a3[fr], a2[fr], a1[fr], a0[fr], f3[fr], f2[fr], f1[fr], f0[fr], ph, add);)
xue@1 724 if (terminatetag && *terminatetag) {delete[] f3; return 0;}
xue@1 725 }
xue@1 726 phs[Fr-1]=ph;
xue@1 727 ALIGN8(Sinusoid(&xrec[(int)xs[Fr-2]-dst], xs[Fr-1]-xs[Fr-2], den-xs[Fr-2], a3[Fr-2], a2[Fr-2], a1[Fr-2], a0[Fr-2], f3[Fr-2], f2[Fr-2], f1[Fr-2], f0[Fr-2], ph, add);
xue@1 728 Sinusoid(&xrec[(int)xs[0]-dst], dst-xs[0], 0, a3[0], a2[0], a1[0], a0[0], f3[0], f2[0], f1[0], f0[0], phs[0], add);)
xue@1 729 delete[] f3;
xue@1 730 return xrec;
xue@1 731 }//SynthesizeSinusoid
xue@1 732
Chris@5 733 /**
xue@1 734 function ShiftTrinomial: shifts the origin of a trinomial from 0 to T
xue@1 735
xue@1 736 In: a3, a2, a1, a0.
xue@1 737 Out: b3, b2, b1, b0, so that a3*x^3+a2*x^2+a1*x+a0=b3(x-T)^3+b2(x-T)^2+b1(x-T)+b0
xue@1 738
xue@1 739 No return value.
xue@1 740 */
xue@1 741 void ShiftTrinomial(double T, double& b3, double& b2, double& b1, double& b0, double a3, double a2, double a1, double a0)
xue@1 742 {
xue@1 743 b3=a3;
xue@1 744 b2=a2+T*3*b3;
xue@1 745 b1=a1+T*(2*b2-T*3*b3);
xue@1 746 b0=a0+T*(b1-T*(b2-T*b3));
xue@1 747 }//ShiftTrinomial
xue@1 748
Chris@5 749 /**
xue@1 750 function SynthesizeSinusoidP: synthesizes a time-varying sinusoid from a sequence of frequencies,
xue@1 751 amplitudes and phase angles
xue@1 752
xue@1 753 In: xs[Fr]: measurement points, should be integers although *xs has double type.
xue@1 754 fs[Fr], as[Fr], phs[Fr]: sequence of frequencies, amplitudes and phase angles at xs[Fr]
xue@1 755 dst, den: start and end time of synthesis, dst<=xs[0], den>=xs[Fr-1]
xue@1 756 add: specifies if the resynthesized sinusoid is to be added to or to replace the content of output
xue@1 757 buffer
xue@1 758 Out: xrecm[0:den-dst-1]: output buffer hosting synthesized sinusoid from dst to den.
xue@1 759
xue@1 760 Returns pointer to xrecm.
xue@1 761 */
xue@1 762 double* SynthesizeSinusoidP(double* xrecm, int dst, int den, double* phs, int Fr, double* xs, double* fs, double* as, bool add)
xue@1 763 {
xue@1 764 double *f3=new double[Fr*8], *f2=&f3[Fr], *f1=&f3[Fr*2], *f0=&f3[Fr*3],
xue@1 765 *a3=&f3[Fr*4], *a2=&a3[Fr], *a1=&a3[Fr*2], *a0=&a3[Fr*3];
xue@1 766 CubicSpline(Fr-1, f3, f2, f1, f0, xs, fs, 1, 1);
xue@1 767 CubicSpline(Fr-1, a3, a2, a1, a0, xs, as, 1, 1);
xue@1 768 for (int fr=0; fr<Fr-1; fr++) Sinusoid(&xrecm[(int)xs[fr]-dst], 0, xs[fr+1]-xs[fr], a3[fr], a2[fr], a1[fr], a0[fr], f3[fr], f2[fr], f1[fr], f0[fr], phs[fr], phs[fr+1], add);
xue@1 769 double tmpph=phs[0]; Sinusoid(&xrecm[(int)xs[0]-dst], dst-xs[0], 0, 0, 0, 0, a0[0], f3[0], f2[0], f1[0], f0[0], tmpph, add);
xue@1 770 //extend the trinomials on [xs[Fr-2], xs[Fr-1]) based at xs[Fr-2] to beyond xs[Fr-1] based at xs[Fr-1].
xue@1 771 tmpph=phs[Fr-1];
xue@1 772 ShiftTrinomial(xs[Fr-1]-xs[Fr-2], f3[Fr-1], f2[Fr-1], f1[Fr-1], f0[Fr-1], f3[Fr-2], f2[Fr-2], f1[Fr-2], f0[Fr-2]);
xue@1 773 ShiftTrinomial(xs[Fr-1]-xs[Fr-2], a3[Fr-1], a2[Fr-1], a1[Fr-1], a0[Fr-1], a3[Fr-2], a2[Fr-2], a1[Fr-2], a0[Fr-2]);
xue@1 774 Sinusoid(&xrecm[(int)xs[Fr-1]-dst], 0, den-xs[Fr-1], 0, 0, 0, a0[Fr-1], f3[Fr-1], f2[Fr-1], f1[Fr-1], f0[Fr-1], tmpph, add);
xue@1 775 delete[] f3;
xue@1 776 return xrecm;
xue@1 777 }//SynthesizeSinusoidP