xue@1
|
1 //---------------------------------------------------------------------------
|
xue@1
|
2
|
xue@1
|
3 #include "align8.h"
|
Chris@2
|
4 #include "sinsyn.h"
|
xue@1
|
5 #include "splines.h"
|
xue@1
|
6
|
Chris@5
|
7 /** \file sinsyn.h */
|
Chris@5
|
8
|
xue@1
|
9 //---------------------------------------------------------------------------
|
Chris@5
|
10 /**
|
xue@1
|
11 function Sinuoid: original McAuley-Quatieri synthesizer interpolation between two measurement points.
|
xue@1
|
12
|
xue@1
|
13 In: T: length from measurement point 1 to measurement point 2
|
xue@1
|
14 a1, f1, p2: amplitude, frequency and phase angle at measurement point 1
|
xue@1
|
15 a2, f2, p2: amplitude, frequency and phase angle at measurement point 2
|
xue@1
|
16 ad: specifies if the resynthesized sinusoid is to be added to or to replace the contents of output buffer
|
xue@1
|
17 Out: data[T]: output buffer
|
xue@1
|
18 a[T], f[T], p[T]: resynthesized amplitude, frequency and phase
|
xue@1
|
19
|
xue@1
|
20 No return value.
|
xue@1
|
21 */
|
xue@1
|
22 void Sinusoid(double* data, int T, double a1, double a2, double f1, double f2, double p1, double p2, double* a, double* f, double* p, bool ad)
|
xue@1
|
23 {
|
xue@1
|
24 int M=floor(((p1-p2)/M_PI+(f1+f2)*T)/2.0+0.5);
|
xue@1
|
25 double b1=p2-p1-2*M_PI*(f1*T-M), b2=2*M_PI*(f2-f1);
|
xue@1
|
26 double pa=(3*b1/T-b2)/T, pb=(-2*b1/T+b2)/T/T, pc=2*M_PI*f1, pd=p1;
|
xue@1
|
27 double la=a1, da=(a2-a1)/T;
|
xue@1
|
28 if (ad)
|
xue@1
|
29 for (int t=0; t<T; t++)
|
xue@1
|
30 {
|
xue@1
|
31 double lp=pd+t*(pc+t*(pa+t*pb)), lf=(pc+2*pa*t+3*pb*t*t)/2/M_PI;
|
xue@1
|
32 data[t]+=la*cos(lp);
|
xue@1
|
33 a[t]=la;
|
xue@1
|
34 p[t]=lp;
|
xue@1
|
35 f[t]=lf;
|
xue@1
|
36 la=la+da;
|
xue@1
|
37 }
|
xue@1
|
38 else
|
xue@1
|
39 for (int t=0; t<T; t++)
|
xue@1
|
40 {
|
xue@1
|
41 double lp=pd+t*(pc+t*(pa+t*pb)), lf=(pc+2*pa*t+3*pb*t*t)/2/M_PI;
|
xue@1
|
42 data[t]=la*cos(lp);
|
xue@1
|
43 a[t]=la;
|
xue@1
|
44 p[t]=lp;
|
xue@1
|
45 f[t]=lf;
|
xue@1
|
46 la=la+da;
|
xue@1
|
47 }
|
xue@1
|
48 }//Sinusoid
|
xue@1
|
49
|
Chris@5
|
50 /**
|
xue@1
|
51 function Sinuoid: original McAuley-Quatieri synthesizer interpolation between two measurement points,
|
xue@1
|
52 without returning interpolated sinusoid parameters.
|
xue@1
|
53
|
xue@1
|
54 In: T: length from measurement point 1 to measurement point 2
|
xue@1
|
55 a1, f1, p2: amplitude, frequency and phase angle at measurement point 1
|
xue@1
|
56 a2, f2, p2: amplitude, frequency and phase angle at measurement point 2
|
xue@1
|
57 ad: specifies if the resynthesized sinusoid is to be added to or to replace the contents of output buffer
|
xue@1
|
58 Out: data[T]: output buffer
|
xue@1
|
59
|
xue@1
|
60 No return value.
|
xue@1
|
61 */
|
xue@1
|
62 void Sinusoid(double* data, int T, double a1, double a2, double f1, double f2, double p1, double p2, bool ad)
|
xue@1
|
63 {
|
xue@1
|
64 int M=floor(((p1-p2)/M_PI+(f1+f2)*T)/2.0+0.5);
|
xue@1
|
65 double b1=p2-p1-2*M_PI*(f1*T-M), b2=2*M_PI*(f2-f1);
|
xue@1
|
66 double pa=(3*b1/T-b2)/T, pb=(-2*b1/T+b2)/T/T, pc=2*M_PI*f1, pd=p1;
|
xue@1
|
67 double la=a1, da=(a2-a1)/T;
|
xue@1
|
68 if (ad)
|
xue@1
|
69 for (int t=0; t<T; t++)
|
xue@1
|
70 {
|
xue@1
|
71 data[t]+=la*cos(pd+t*(pc+t*(pa+t*pb)));
|
xue@1
|
72 la=la+da;
|
xue@1
|
73 }
|
xue@1
|
74 else
|
xue@1
|
75 for (int t=0; t<T; t++)
|
xue@1
|
76 {
|
xue@1
|
77 data[t]=la*cos(pd+t*(pc+t*(pa+t*pb)));
|
xue@1
|
78 la=la+da;
|
xue@1
|
79 }
|
xue@1
|
80 }//Sinusoid
|
xue@1
|
81
|
xue@1
|
82 //---------------------------------------------------------------------------
|
Chris@5
|
83 /**
|
xue@1
|
84 function Sinusoid_direct: synthesizes sinusoid over [CountSt, CountEn) from tronomial coefficients of
|
xue@1
|
85 amplitude and frequency, direct implementation.
|
xue@1
|
86
|
xue@1
|
87 In: CountSt, CountEn
|
xue@1
|
88 aa, ab, ac, ad: trinomial coefficients of amplitude
|
xue@1
|
89 fa, fb, fc, fd: trinomial coefficients of frequency
|
xue@1
|
90 p1: initial phase angle at 0 (NOT at CountSt)
|
xue@1
|
91 add: specifies if the resynthesized sinusoid is to be added to or to replace the content of output buffer
|
xue@1
|
92 Out: data[CountSt:CountEn-1]: output buffer.
|
xue@1
|
93 p1: phase angle at CountEn
|
xue@1
|
94
|
xue@1
|
95 No return value.
|
xue@1
|
96 */
|
xue@1
|
97 void Sinusoid_direct(double* data, int CountSt, int CountEn, double aa, double ab, double ac, double ad,
|
xue@1
|
98 double fa, double fb, double fc, double fd, double &p1, bool add)
|
xue@1
|
99 {
|
xue@1
|
100 int i; double a, ph;
|
xue@1
|
101 for (i=CountSt; i<CountEn; i++)
|
xue@1
|
102 {
|
xue@1
|
103 a=ad+i*(ac+i*(ab+i*aa));
|
xue@1
|
104 ph=p1+2*M_PI*i*(fd+i*((fc/2)+i*((fb/3)+i*fa/4)));
|
xue@1
|
105 if (add) data[i]+=a*cos(ph);
|
xue@1
|
106 else data[i]=a*cos(ph);
|
xue@1
|
107 }
|
xue@1
|
108 p1=p1+2*M_PI*i*(fd+i*((fc/2)+i*((fb/3)+i*fa/4)));
|
xue@1
|
109 }//Sinusoid
|
xue@1
|
110
|
Chris@5
|
111 /**
|
xue@1
|
112 function Sinusoid: synthesizes sinusoid over [CountSt, CountEn) from tronomial coefficients of
|
xue@1
|
113 amplitude and frequency, recursive implementation.
|
xue@1
|
114
|
xue@1
|
115 In: CountSt, CountEn
|
xue@1
|
116 a3, a2, a1, a0: trinomial coefficients of amplitude
|
xue@1
|
117 f3, f2, f1, f0: trinomial coefficients of frequency
|
xue@1
|
118 ph: initial phase angle at 0 (NOT at CountSt)
|
xue@1
|
119 add: specifies if the resynthesized sinusoid is to be added to or to replace the content of output buffer
|
xue@1
|
120 Out: data[CountSt:CountEn-1]: output buffer.
|
xue@1
|
121 ph: phase angle at CountEn
|
xue@1
|
122
|
xue@1
|
123 No return value. This function requires 8-byte stack alignment for optimal speed.
|
xue@1
|
124 */
|
xue@1
|
125 void Sinusoid(double* data, int CountSt, int CountEn, double a3, double a2, double a1, double a0,
|
xue@1
|
126 double f3, double f2, double f1, double f0, double &ph, bool add)
|
xue@1
|
127 {
|
xue@1
|
128 int i;
|
xue@1
|
129 double a, da, dda, ddda, dph, ddph, dddph, ddddph,
|
xue@1
|
130 sph, cph, sdph, cdph, sddph, cddph, sdddph, cdddph, sddddph, cddddph,
|
xue@1
|
131 p0=ph, p1=2*M_PI*f0, p2=M_PI*f1, p3=2.0*M_PI*f2/3, p4=2.0*M_PI*f3/4, tmp;
|
xue@1
|
132 if (CountSt==0)
|
xue@1
|
133 {
|
xue@1
|
134 a=a0; da=a1+a2+a3; dda=2*a2+6*a3; ddda=6*a3;
|
xue@1
|
135 dph=p1+p2+p3+p4; ddph=2*p2+6*p3+14*p4; dddph=6*p3+36*p4; ddddph=24*p4;
|
xue@1
|
136 }
|
xue@1
|
137 else
|
xue@1
|
138 {
|
xue@1
|
139 a=a0+CountSt*(a1+CountSt*(a2+CountSt*a3));
|
xue@1
|
140 da=a1+a2+a3+CountSt*(2*a2+3*a3+CountSt*3*a3);
|
xue@1
|
141 dda=2*a2+6*a3+CountSt*6*a3; ddda=6*a3;
|
xue@1
|
142 ph=p0+CountSt*(p1+CountSt*(p2+CountSt*(p3+CountSt*p4)));
|
xue@1
|
143 dph=p1+p2+p3+p4+CountSt*(2*p2+3*p3+4*p4+CountSt*(3*p3+6*p4+CountSt*4*p4));
|
xue@1
|
144 ddph=2*p2+6*p3+14*p4+CountSt*(6*p3+24*p4+CountSt*12*p4);
|
xue@1
|
145 dddph=6*p3+36*p4+CountSt*24*p4; ddddph=24*p4;
|
xue@1
|
146 }
|
xue@1
|
147 sph=sin(ph), cph=cos(ph);
|
xue@1
|
148 sdph=sin(dph), cdph=cos(dph);
|
xue@1
|
149 sddph=sin(ddph), cddph=cos(ddph);
|
xue@1
|
150 sdddph=sin(dddph), cdddph=cos(dddph);
|
xue@1
|
151 sddddph=sin(ddddph), cddddph=cos(ddddph);
|
xue@1
|
152 if (add)
|
xue@1
|
153 {
|
xue@1
|
154 for (i=CountSt; i<CountEn; i++)
|
xue@1
|
155 {
|
xue@1
|
156 data[i]+=a*cph;
|
xue@1
|
157 a=a+da; da=da+dda; dda=dda+ddda;
|
xue@1
|
158 tmp=cph*cdph-sph*sdph; sph=sph*cdph+cph*sdph; cph=tmp;
|
xue@1
|
159 tmp=cdph*cddph-sdph*sddph; sdph=sdph*cddph+cdph*sddph; cdph=tmp;
|
xue@1
|
160 tmp=cddph*cdddph-sddph*sdddph; sddph=sddph*cdddph+cddph*sdddph; cddph=tmp;
|
xue@1
|
161 tmp=cdddph*cddddph-sdddph*sddddph; sdddph=sdddph*cddddph+cdddph*sddddph; cdddph=tmp;
|
xue@1
|
162 }
|
xue@1
|
163 }
|
xue@1
|
164 else
|
xue@1
|
165 {
|
xue@1
|
166 for (i=CountSt; i<CountEn; i++)
|
xue@1
|
167 {
|
xue@1
|
168 data[i]=a*cph;
|
xue@1
|
169 a=a+da; da=da+dda; dda=dda+ddda;
|
xue@1
|
170 tmp=cph*cdph-sph*sdph; sph=sph*cdph+cph*sdph; cph=tmp;
|
xue@1
|
171 tmp=cdph*cddph-sdph*sddph; sdph=sdph*cddph+cdph*sddph; cdph=tmp;
|
xue@1
|
172 tmp=cddph*cdddph-sddph*sdddph; sddph=sddph*cdddph+cddph*sdddph; cddph=tmp;
|
xue@1
|
173 tmp=cdddph*cddddph-sdddph*sddddph; sdddph=sdddph*cddddph+cdddph*sddddph; cdddph=tmp;
|
xue@1
|
174 }
|
xue@1
|
175 }
|
xue@1
|
176 ph=p0+CountEn*(p1+CountEn*(p2+CountEn*(p3+CountEn*p4)));
|
xue@1
|
177 }
|
xue@1
|
178
|
Chris@5
|
179 /**
|
xue@1
|
180 function SinusoidExp: synthesizes complex sinusoid whose derivative log amplitude and frequency are
|
xue@1
|
181 trinomials
|
xue@1
|
182
|
xue@1
|
183 In: CountSt, CountEn
|
xue@1
|
184 a3, a2, a1, a0: trinomial coefficients for the derivative of log amplitude
|
xue@1
|
185 omg3, omg2, omg1, omg0: trinomial coefficients for angular frequency
|
xue@1
|
186 ea, ph: initial log amplitude and phase angle at 0
|
xue@1
|
187 add: specifies if the resynthesized sinusoid is to be added to or to replace the content of output buffer
|
xue@1
|
188 Out: data[CountSt:CountEn-1]: output buffer.
|
xue@1
|
189 ea, ph: log amplitude and phase angle at CountEn.
|
xue@1
|
190
|
xue@1
|
191 No return value.
|
xue@1
|
192 */
|
xue@1
|
193 void SinusoidExp(cdouble* data, int CountSt, int CountEn, double a3, double a2, double a1, double a0,
|
xue@1
|
194 double omg3, double omg2, double omg1, double omg0, double &ea, double &ph, bool add)
|
xue@1
|
195 {
|
xue@1
|
196 double e0=ea, e1=a0, e2=0.5*a1, e3=a2/3, e4=a3/4,
|
xue@1
|
197 p0=ph, p1=omg0, p2=0.5*omg1, p3=omg2/3, p4=omg3/4;
|
xue@1
|
198 if (add) for (int i=CountSt; i<CountEn; i++)
|
xue@1
|
199 {
|
xue@1
|
200 double lea=e0+i*(e1+i*(e2+i*(e3+i*e4)));
|
xue@1
|
201 double lph=p0+i*(p1+i*(p2+i*(p3+i*p4)));
|
xue@1
|
202 data[i]+=exp(cdouble(lea, lph));
|
xue@1
|
203 }
|
xue@1
|
204 else for (int i=CountSt; i<CountEn; i++)
|
xue@1
|
205 {
|
xue@1
|
206 double lea=e0+i*(e1+i*(e2+i*(e3+i*e4)));
|
xue@1
|
207 double lph=p0+i*(p1+i*(p2+i*(p3+i*p4)));
|
xue@1
|
208 data[i]=exp(cdouble(lea, lph));
|
xue@1
|
209 }
|
xue@1
|
210 ea=e0+CountEn*(e1+CountEn*(e2+CountEn*(e3+CountEn*e4)));
|
xue@1
|
211 ph=p0+CountEn*(p1+CountEn*(p2+CountEn*(p3+CountEn*p4)));
|
xue@1
|
212 }//SinusoidExp
|
xue@1
|
213
|
Chris@5
|
214 /**
|
xue@1
|
215 function SinusoidExp: synthesizes complex sinusoid piece whose derivative logarithm is h[M]'lamda[M].
|
xue@1
|
216 This version also synthesizes its derivative.
|
xue@1
|
217
|
xue@1
|
218 In: h[M][T], dih[M][T]: basis functions and their difference-integrals
|
xue@1
|
219 lamda[M]: coefficients of h[M]
|
xue@1
|
220 tmpexp: inital logarithm at 0
|
xue@1
|
221 Out: s[T], ds[T]: synthesized sinusoid and its derivative
|
xue@1
|
222 tmpexp: logarithm at T
|
xue@1
|
223
|
xue@1
|
224 No return value.
|
xue@1
|
225 */
|
xue@1
|
226 void SinusoidExp(int T, cdouble* s, cdouble* ds, int M, cdouble* lamda, double** h, double** dih, cdouble& tmpexp)
|
xue@1
|
227 {
|
xue@1
|
228 for (int t=0; t<T; t++)
|
xue@1
|
229 {
|
xue@1
|
230 s[t]=exp(tmpexp);
|
xue@1
|
231 cdouble dexp=0, dR=0;
|
xue@1
|
232 for (int m=0; m<M; m++) dexp+=lamda[m]*dih[m][t], dR+=lamda[m]*h[m][t];
|
xue@1
|
233 tmpexp+=dexp;
|
xue@1
|
234 ds[t]=s[t]*dR;
|
xue@1
|
235 }
|
xue@1
|
236 }//SinusoidExp
|
xue@1
|
237
|
Chris@5
|
238 /**
|
xue@1
|
239 function SinusoidExp: synthesizes complex sinusoid piece whose derivative logarithm is h[M]'lamda[M].
|
xue@1
|
240 This version does not synthesize its derivative.
|
xue@1
|
241
|
xue@1
|
242 In: dih[M][T]: difference of integrals of basis functions h[M]
|
xue@1
|
243 lamda[M]: coefficients of h[M]
|
xue@1
|
244 tmpexp: inital logarithm at 0
|
xue@1
|
245 Out: s[T]: synthesized sinusoid
|
xue@1
|
246 tmpexp: logarithm at T
|
xue@1
|
247
|
xue@1
|
248 No return value.
|
xue@1
|
249 */
|
xue@1
|
250 void SinusoidExp(int T, cdouble* s, int M, cdouble* lamda, double** dih, cdouble& tmpexp)
|
xue@1
|
251 {
|
xue@1
|
252 for (int t=0; t<T; t++)
|
xue@1
|
253 {
|
xue@1
|
254 s[t]=exp(tmpexp);
|
xue@1
|
255 cdouble dexp=0;
|
xue@1
|
256 for (int m=0; m<M; m++) dexp+=lamda[m]*dih[m][t];
|
xue@1
|
257 tmpexp+=dexp;
|
xue@1
|
258 }
|
xue@1
|
259 }//SinusoidExp
|
xue@1
|
260
|
Chris@5
|
261 /**
|
xue@1
|
262 function SinusoidExpA: synthesizes complex sinusoid whose log amplitude and frequency are trinomials
|
xue@1
|
263
|
xue@1
|
264 In: CountSt, CountEn
|
xue@1
|
265 a3, a2, a1, a0: trinomial coefficients for log amplitude
|
xue@1
|
266 omg3, omg2, omg1, omg0: trinomial coefficients for angular frequency
|
xue@1
|
267 ph: initial phase angle at 0
|
xue@1
|
268 add: specifies if the resynthesized sinusoid is to be added to or to replace the content of output buffer
|
xue@1
|
269 Out: data[CountSt:CountEn-1]: output buffer.
|
xue@1
|
270 ph: phase angle at CountEn.
|
xue@1
|
271
|
xue@1
|
272 No return value.
|
xue@1
|
273 */
|
xue@1
|
274 void SinusoidExpA(cdouble* data, int CountSt, int CountEn, double a3, double a2, double a1, double a0,
|
xue@1
|
275 double omg3, double omg2, double omg1, double omg0, double &ph, bool add)
|
xue@1
|
276 {
|
xue@1
|
277 double p0=ph, p1=omg0, p2=0.5*omg1, p3=omg2/3, p4=omg3/4;
|
xue@1
|
278 if (add) for (int i=CountSt; i<CountEn; i++)
|
xue@1
|
279 {
|
xue@1
|
280 double lea=a0+i*(a1+i*(a2+i*a3));
|
xue@1
|
281 double lph=p0+i*(p1+i*(p2+i*(p3+i*p4)));
|
xue@1
|
282 data[i]+=exp(cdouble(lea, lph));
|
xue@1
|
283 }
|
xue@1
|
284 else for (int i=CountSt; i<CountEn; i++)
|
xue@1
|
285 {
|
xue@1
|
286 double lea=a0+i*(a1+i*(a2+i*a3));
|
xue@1
|
287 double lph=p0+i*(p1+i*(p2+i*(p3+i*p4)));
|
xue@1
|
288 data[i]=exp(cdouble(lea, lph));
|
xue@1
|
289 }
|
xue@1
|
290 ph=p0+CountEn*(p1+CountEn*(p2+CountEn*(p3+CountEn*p4)));
|
xue@1
|
291 }//SinusoidExpA
|
xue@1
|
292
|
Chris@5
|
293 /**
|
xue@1
|
294 function SinusoidExpA: synthesizes complex sinusoid whose log amplitude and frequency are trinomials
|
xue@1
|
295 with phase angle specified at both ends.
|
xue@1
|
296
|
xue@1
|
297 In: CountSt, CountEn
|
xue@1
|
298 a3, a2, a1, a0: trinomial coefficients for log amplitude
|
xue@1
|
299 omg3, omg2, omg1, omg0: trinomial coefficients for angular frequency
|
xue@1
|
300 ph0, ph2: phase angles at 0 and CountEn.
|
xue@1
|
301 add: specifies if the resynthesized sinusoid is to be added to or to replace the content of output buffer
|
xue@1
|
302 Out: data[CountSt:CountEn-1]: output buffer.
|
xue@1
|
303
|
xue@1
|
304 No return value.
|
xue@1
|
305 */
|
xue@1
|
306 void SinusoidExpA(cdouble* data, int CountSt, int CountEn, double a3, double a2, double a1, double a0,
|
xue@1
|
307 double omg3, double omg2, double omg1, double omg0, double ph0, double ph2, bool add)
|
xue@1
|
308 {
|
xue@1
|
309 double p0=ph0, p1=omg0, p2=0.5*omg1, p3=omg2/3, p4=omg3/4;
|
xue@1
|
310 double pend=p0+CountEn*(p1+CountEn*(p2+CountEn*(p3+CountEn*p4)));
|
xue@1
|
311
|
xue@1
|
312 int k=floor((pend-ph2)/2/M_PI+0.5);
|
xue@1
|
313 double d=ph2-pend+2*M_PI*k;
|
xue@1
|
314 double _p=-2*d/CountEn/CountEn/CountEn;
|
xue@1
|
315 double _q=3*d/CountEn/CountEn;
|
xue@1
|
316
|
xue@1
|
317 if (add) for (int i=CountSt; i<CountEn; i++)
|
xue@1
|
318 {
|
xue@1
|
319 double lea=a0+i*(a1+i*(a2+i*a3));
|
xue@1
|
320 double lph=p0+i*(p1+i*(p2+i*(p3+i*p4)));
|
xue@1
|
321 data[i]+=exp(cdouble(lea, lph+(i*i*(_q+i*_p))));
|
xue@1
|
322 }
|
xue@1
|
323 else for (int i=CountSt; i<CountEn; i++)
|
xue@1
|
324 {
|
xue@1
|
325 double lea=a0+i*(a1+i*(a2+i*a3));
|
xue@1
|
326 double lph=p0+i*(p1+i*(p2+i*(p3+i*p4)));
|
xue@1
|
327 data[i]=exp(cdouble(lea, lph+(i*i*(_q+i*_p))));
|
xue@1
|
328 }
|
xue@1
|
329 }//SinusoidExpA
|
xue@1
|
330
|
Chris@5
|
331 /**
|
xue@1
|
332 function SinusoidExpA: synthesizes complex sinusoid piece whose log amplitude is h[M]'p[M] and
|
xue@1
|
333 frequency is h[M]'q[M]. This version also synthesizes its derivative.
|
xue@1
|
334
|
xue@1
|
335 In: h[M][T], dh[M][T], dih[M][T]: basis functions and their derivatives and difference-integrals
|
xue@1
|
336 p[M], q[M]: real and imaginary parts of coefficients of h[M]
|
xue@1
|
337 tmpph: inital phase angle at 0
|
xue@1
|
338 Out: s[T], ds[T]: synthesized sinusoid and its derivative
|
xue@1
|
339 tmpph: phase angle at T
|
xue@1
|
340
|
xue@1
|
341 No return value.
|
xue@1
|
342 */
|
xue@1
|
343 void SinusoidExpA(int T, cdouble* s, cdouble* ds, int M, double* p, double* q, double** h, double** dh, double** dih, double& tmpph)
|
xue@1
|
344 {
|
xue@1
|
345 for (int t=0; t<T; t++)
|
xue@1
|
346 {
|
xue@1
|
347 double e=0, dph=0, drr=0, dri=0;
|
xue@1
|
348 for (int m=0; m<M; m++) e+=p[m]*h[m][t], dph+=q[m]*dih[m][t], drr+=p[m]*dh[m][t], dri+=q[m]*h[m][t];
|
xue@1
|
349 s[t]=exp(cdouble(e, tmpph));
|
xue@1
|
350 ds[t]=s[t]*cdouble(drr, dri);
|
xue@1
|
351 tmpph+=dph;
|
xue@1
|
352 }
|
xue@1
|
353 }//SinusoidExpA
|
xue@1
|
354
|
Chris@5
|
355 /**
|
xue@1
|
356 function SinusoidExpA: synthesizes complex sinusoid piece whose log amplitude is h[M]'p[M] and
|
xue@1
|
357 frequency is h[M]'q[M]. This version does not synthesize its derivative.
|
xue@1
|
358
|
xue@1
|
359 In: h[M][T], dih[M][T]: basis functions and their difference-integrals
|
xue@1
|
360 p[M], q[M]: real and imaginary parts of coefficients of h[M]
|
xue@1
|
361 tmpph: inital phase angle at 0
|
xue@1
|
362 Out: s[T]: synthesized sinusoid
|
xue@1
|
363 tmpph: phase angle at T
|
xue@1
|
364
|
xue@1
|
365 No return value.
|
xue@1
|
366 */
|
xue@1
|
367 void SinusoidExpA(int T, cdouble* s, int M, double* p, double* q, double** h, double** dih, double& tmpph)
|
xue@1
|
368 {
|
xue@1
|
369 for (int t=0; t<T; t++)
|
xue@1
|
370 {
|
xue@1
|
371 double e=0, dph=0;
|
xue@1
|
372 for (int m=0; m<M; m++) e+=p[m]*h[m][t], dph+=q[m]*dih[m][t];
|
xue@1
|
373 s[t]=exp(cdouble(e, tmpph));
|
xue@1
|
374 tmpph+=dph;
|
xue@1
|
375 }
|
xue@1
|
376 }//SinusoidExpA
|
xue@1
|
377
|
Chris@5
|
378 /**
|
xue@1
|
379 function SinusoidExpA: synthesizes complex sinusoid piece whose log amplitude is h[M]'p[M] and
|
xue@1
|
380 frequency is h[M]'q[M] with phase angle specified at both ends. This version does not synthesize its
|
xue@1
|
381 derivative.
|
xue@1
|
382
|
xue@1
|
383 In: h[M][T], dih[M][T]: basis functions and their difference-integrals
|
xue@1
|
384 p[M], q[M]: real and imaginary parts of coefficients of h[M]
|
xue@1
|
385 ph1, ph2: phase angles at 0 and T.
|
xue@1
|
386 Out: s[T]: synthesized sinusoid
|
xue@1
|
387
|
xue@1
|
388 No return value.
|
xue@1
|
389 */
|
xue@1
|
390 void SinusoidExpA(int T, cdouble* s, int M, double* p, double* q, double** h, double** dih, double ph1, double ph2)
|
xue@1
|
391 {
|
xue@1
|
392 double pend=ph1;
|
xue@1
|
393 for (int t=0; t<T; t++)
|
xue@1
|
394 {
|
xue@1
|
395 double dph=0;
|
xue@1
|
396 for (int m=0; m<M; m++) dph+=q[m]*dih[m][t];
|
xue@1
|
397 pend+=dph;
|
xue@1
|
398 }
|
xue@1
|
399
|
xue@1
|
400 int k=floor((pend-ph2)/2/M_PI+0.5);
|
xue@1
|
401 double d=ph2-pend+2*M_PI*k;
|
xue@1
|
402 double _p=-2*d/T/T/T;
|
xue@1
|
403 double _q=3*d/T/T;
|
xue@1
|
404
|
xue@1
|
405 double ph=ph1;
|
xue@1
|
406 for (int t=0; t<T; t++)
|
xue@1
|
407 {
|
xue@1
|
408 double e=0, dph=0;
|
xue@1
|
409 for (int m=0; m<M; m++) e+=p[m]*h[m][t], dph+=q[m]*dih[m][t];
|
xue@1
|
410 if (e>300) e=300;
|
xue@1
|
411 if (e<-300) e=-300;
|
xue@1
|
412 s[t]=exp(cdouble(e, ph+(t*t*(_q+t*_p))));
|
xue@1
|
413 ph+=dph;
|
xue@1
|
414 }
|
xue@1
|
415 }//SinusoidExpA
|
xue@1
|
416
|
xue@1
|
417 /*
|
xue@1
|
418 //This is not used any longer as the recursion does not seem to help saving computation with all its overheads.
|
xue@1
|
419 void SinusoidExp(cdouble* data, int CountSt, int CountEn, double a3, double a2, double a1, double a0,
|
xue@1
|
420 double omg3, double omg2, double omg1, double omg0, double &ea, double &ph, bool add)
|
xue@1
|
421 {
|
xue@1
|
422 int i;
|
xue@1
|
423 double dea, ddea, dddea, ddddea,
|
xue@1
|
424 dph, ddph, dddph, ddddph,
|
xue@1
|
425 sph, cph, sdph, cdph, sddph, cddph, sdddph, cdddph, sddddph, cddddph,
|
xue@1
|
426 e0=ea, e1=a0, e2=0.5*a1, e3=a2/3, e4=a3/4,
|
xue@1
|
427 p0=ph, p1=omg0, p2=0.5*omg1, p3=omg2/3, p4=omg3/4, tmp;
|
xue@1
|
428 if (CountSt==0)
|
xue@1
|
429 {
|
xue@1
|
430 dea=e1+e2+e3+e4; ddea=2*e2+6*e3+14*e4; dddea=6*e3+36*e4; ddddea=24*e3;
|
xue@1
|
431 dph=p1+p2+p3+p4; ddph=2*p2+6*p3+14*p4; dddph=6*p3+36*p4; ddddph=24*p4;
|
xue@1
|
432 }
|
xue@1
|
433 else
|
xue@1
|
434 {
|
xue@1
|
435 ea=e0+CountSt*(e1+CountSt*(e2+CountSt*(e3+CountSt*e4)));
|
xue@1
|
436 dea=e1+e2+e3+e4+CountSt*(2*e2+3*e3+4*e4+CountSt*(3*e3+6*e4+CountSt*4*e4));
|
xue@1
|
437 ddea=2*e2+6*e3+14*e4+CountSt*(6*e3+24*e4+CountSt*12*e4);
|
xue@1
|
438 dddea=6*e3+36*e4+CountSt*24*e4; ddddea=24*e4;
|
xue@1
|
439 ph=p0+CountSt*(p1+CountSt*(p2+CountSt*(p3+CountSt*p4)));
|
xue@1
|
440 dph=p1+p2+p3+p4+CountSt*(2*p2+3*p3+4*p4+CountSt*(3*p3+6*p4+CountSt*4*p4));
|
xue@1
|
441 ddph=2*p2+6*p3+14*p4+CountSt*(6*p3+24*p4+CountSt*12*p4);
|
xue@1
|
442 dddph=6*p3+36*p4+CountSt*24*p4; ddddph=24*p4;
|
xue@1
|
443 }
|
xue@1
|
444 sph=sin(ph), cph=cos(ph);
|
xue@1
|
445 sdph=sin(dph), cdph=cos(dph);
|
xue@1
|
446 sddph=sin(ddph), cddph=cos(ddph);
|
xue@1
|
447 sdddph=sin(dddph), cdddph=cos(dddph);
|
xue@1
|
448 sddddph=sin(ddddph), cddddph=cos(ddddph);
|
xue@1
|
449 if (add)
|
xue@1
|
450 {
|
xue@1
|
451 for (i=CountSt; i<CountEn; i++)
|
xue@1
|
452 {
|
xue@1
|
453 data[i]+=exp(ea)*cdouble(cph, sph);
|
xue@1
|
454 ea=ea+dea; dea=dea+ddea; ddea=ddea+dddea; dddea+dddea+ddddea;
|
xue@1
|
455 tmp=cph*cdph-sph*sdph; sph=sph*cdph+cph*sdph; cph=tmp;
|
xue@1
|
456 tmp=cdph*cddph-sdph*sddph; sdph=sdph*cddph+cdph*sddph; cdph=tmp;
|
xue@1
|
457 tmp=cddph*cdddph-sddph*sdddph; sddph=sddph*cdddph+cddph*sdddph; cddph=tmp;
|
xue@1
|
458 tmp=cdddph*cddddph-sdddph*sddddph; sdddph=sdddph*cddddph+cdddph*sddddph; cdddph=tmp;
|
xue@1
|
459 }
|
xue@1
|
460 }
|
xue@1
|
461 else
|
xue@1
|
462 {
|
xue@1
|
463 for (i=CountSt; i<CountEn; i++)
|
xue@1
|
464 {
|
xue@1
|
465 data[i]=exp(ea)*cdouble(cph, sph);
|
xue@1
|
466 ea=ea+dea; dea=dea+ddea; ddea=ddea+dddea; dddea+dddea+ddddea;
|
xue@1
|
467 tmp=cph*cdph-sph*sdph; sph=sph*cdph+cph*sdph; cph=tmp;
|
xue@1
|
468 tmp=cdph*cddph-sdph*sddph; sdph=sdph*cddph+cdph*sddph; cdph=tmp;
|
xue@1
|
469 tmp=cddph*cdddph-sddph*sdddph; sddph=sddph*cdddph+cddph*sdddph; cddph=tmp;
|
xue@1
|
470 tmp=cdddph*cddddph-sdddph*sddddph; sdddph=sdddph*cddddph+cdddph*sddddph; cdddph=tmp;
|
xue@1
|
471 }
|
xue@1
|
472 }
|
xue@1
|
473 ea=e0+CountEn*(e1+CountEn*(e2+CountEn*(e3+CountEn*e4)));
|
xue@1
|
474 ph=p0+CountEn*(p1+CountEn*(p2+CountEn*(p3+CountEn*p4)));
|
xue@1
|
475 } //*/
|
xue@1
|
476
|
Chris@5
|
477 /**
|
xue@1
|
478 function Sinusoid: recursive cos-sin generator with trinomial frequency
|
xue@1
|
479
|
xue@1
|
480 In: CountSt, CountEn
|
xue@1
|
481 f3, f2, f1, f0: trinomial coefficients of frequency
|
xue@1
|
482 ph: initial phase angle at 0 (NOT at CountSt)
|
xue@1
|
483 Out: datar[CountSt:CountEn-1], datai[CountSt:CountEn-1]: synthesized pair of cosine and sine functions
|
xue@1
|
484 ph: phase angle at CountEn
|
xue@1
|
485
|
xue@1
|
486 No return value.
|
xue@1
|
487 */
|
xue@1
|
488 void Sinusoid(double* datar, double* datai, int CountSt, int CountEn, double f3, double f2, double f1, double f0, double &ph)
|
xue@1
|
489 {
|
xue@1
|
490 int i;
|
xue@1
|
491 double dph, ddph, dddph, ddddph,
|
xue@1
|
492 sph, cph, sdph, cdph, sddph, cddph, sdddph, cdddph, sddddph, cddddph,
|
xue@1
|
493 p0=ph, p1=2*M_PI*f0, p2=M_PI*f1, p3=2.0*M_PI*f2/3, p4=2.0*M_PI*f3/4, tmp;
|
xue@1
|
494 if (CountSt==0)
|
xue@1
|
495 {
|
xue@1
|
496 dph=p1+p2+p3+p4; ddph=2*p2+6*p3+14*p4; dddph=6*p3+36*p4; ddddph=24*p4;
|
xue@1
|
497 }
|
xue@1
|
498 else
|
xue@1
|
499 {
|
xue@1
|
500 ph=p0+CountSt*(p1+CountSt*(p2+CountSt*(p3+CountSt*p4)));
|
xue@1
|
501 dph=p1+p2+p3+p4+CountSt*(2*p2+3*p3+4*p4+CountSt*(3*p3+6*p4+CountSt*4*p4));
|
xue@1
|
502 ddph=2*p2+6*p3+14*p4+CountSt*(6*p3+24*p4+CountSt*12*p4);
|
xue@1
|
503 dddph=6*p3+36*p4+CountSt*24*p4; ddddph=24*p4;
|
xue@1
|
504 }
|
xue@1
|
505 sph=sin(ph), cph=cos(ph);
|
xue@1
|
506 sdph=sin(dph), cdph=cos(dph);
|
xue@1
|
507 sddph=sin(ddph), cddph=cos(ddph);
|
xue@1
|
508 sdddph=sin(dddph), cdddph=cos(dddph);
|
xue@1
|
509 sddddph=sin(ddddph), cddddph=cos(ddddph);
|
xue@1
|
510
|
xue@1
|
511 for (i=CountSt; i<CountEn; i++)
|
xue@1
|
512 {
|
xue@1
|
513 datar[i]=cph; datai[i]=sph;
|
xue@1
|
514 tmp=cph*cdph-sph*sdph; sph=sph*cdph+cph*sdph; cph=tmp;
|
xue@1
|
515 tmp=cdph*cddph-sdph*sddph; sdph=sdph*cddph+cdph*sddph; cdph=tmp;
|
xue@1
|
516 tmp=cddph*cdddph-sddph*sdddph; sddph=sddph*cdddph+cddph*sdddph; cddph=tmp;
|
xue@1
|
517 tmp=cdddph*cddddph-sdddph*sddddph; sdddph=sdddph*cddddph+cdddph*sddddph; cdddph=tmp;
|
xue@1
|
518 }
|
xue@1
|
519 ph=p0+CountEn*(p1+CountEn*(p2+CountEn*(p3+CountEn*p4)));
|
xue@1
|
520 }//Sinusoid*/
|
xue@1
|
521
|
Chris@5
|
522 /**
|
xue@1
|
523 function Sinusoids: recursive harmonic multi-sinusoid generator
|
xue@1
|
524
|
xue@1
|
525 In: st, en
|
xue@1
|
526 M: number of partials
|
xue@1
|
527 a3[M], a2[M], a1[M], a0[M]: trinomial coefficients for partial amplitudes
|
xue@1
|
528 f3, f2, f1, f0: trinomial coefficients for fundamental frequency
|
xue@1
|
529 ph[M]: partial phases at 0.
|
xue@1
|
530 add: specifies if the resynthesized sinusoid is to be added to or to replace the content of output buffer
|
xue@1
|
531 Out: data[st:en-1]: output buffer.
|
xue@1
|
532 ph[M]: partial phases at en.
|
xue@1
|
533
|
xue@1
|
534 No return value.
|
xue@1
|
535 */
|
xue@1
|
536 void Sinusoids(int M, double* data, int st, int en, double* a3, double* a2, double* a1, double* a0, double f3, double f2, double f1, double f0, double* ph, bool add)
|
xue@1
|
537 {
|
xue@1
|
538 double dph, ddph, dddph, ddddph;
|
xue@1
|
539 double sdph, cdph, cdph2, sddph, cddph, sdddph, cdddph, sddddph, cddddph, sdmph, cdmph, sdm_1ph, cdm_1ph;
|
xue@1
|
540 double p0, p1, p2, p3, p4, tmp, tmp2;
|
xue@1
|
541 double *a=(double*)malloc8(sizeof(double)*M*6), *da=&a[M], *dda=&a[M*2], *ddda=&a[M*3],
|
xue@1
|
542 *sph=&a[M*4], *cph=&a[M*5];
|
xue@1
|
543
|
xue@1
|
544 for (int m=0; m<M; m++)
|
xue@1
|
545 {
|
xue@1
|
546 p0=ph[m], p1=2*M_PI*f0, p2=M_PI*f1, p3=2.0*M_PI*f2/3, p4=2.0*M_PI*f3/4;
|
xue@1
|
547 if (st==0)
|
xue@1
|
548 {
|
xue@1
|
549 a[m]=a0[m]; da[m]=a1[m]+a2[m]+a3[m]; dda[m]=2*a2[m]+6*a3[m]; ddda[m]=6*a3[m];
|
xue@1
|
550 }
|
xue@1
|
551 else
|
xue@1
|
552 {
|
xue@1
|
553 a[m]=a0[m]+st*(a1[m]+st*(a2[m]+st*a3[m]));
|
xue@1
|
554 da[m]=a1[m]+a2[m]+a3[m]+st*(2*a2[m]+3*a3[m]+st*3*a3[m]);
|
xue@1
|
555 dda[m]=2*a2[m]+6*a3[m]+st*6*a3[m]; ddda[m]=6*a3[m];
|
xue@1
|
556 ph[m]=p0+st*(p1+st*(p2+st*(p3+st*p4)));
|
xue@1
|
557 }
|
xue@1
|
558 sph[m]=sin(ph[m]), cph[m]=cos(ph[m]);
|
xue@1
|
559 ph[m]=p0+(m+1)*en*(p1+en*(p2+en*(p3+en*p4)));
|
xue@1
|
560 }
|
xue@1
|
561
|
xue@1
|
562 if (st==0)
|
xue@1
|
563 {
|
xue@1
|
564 dph=p1+p2+p3+p4; ddph=2*p2+6*p3+14*p4; dddph=6*p3+36*p4; ddddph=24*p4;
|
xue@1
|
565 }
|
xue@1
|
566 else
|
xue@1
|
567 {
|
xue@1
|
568 dph=p1+p2+p3+p4+st*(2*p2+3*p3+4*p4+st*(3*p3+6*p4+st*4*p4));
|
xue@1
|
569 ddph=2*p2+6*p3+14*p4+st*(6*p3+24*p4+st*12*p4);
|
xue@1
|
570 dddph=6*p3+36*p4+st*24*p4; ddddph=24*p4;
|
xue@1
|
571 }
|
xue@1
|
572 sdph=sin(dph), cdph=cos(dph);
|
xue@1
|
573 sddph=sin(ddph), cddph=cos(ddph);
|
xue@1
|
574 sdddph=sin(dddph), cdddph=cos(dddph);
|
xue@1
|
575 sddddph=sin(ddddph), cddddph=cos(ddddph);
|
xue@1
|
576
|
xue@1
|
577 if (add)
|
xue@1
|
578 {
|
xue@1
|
579 for (int i=st; i<en; i++)
|
xue@1
|
580 {
|
xue@1
|
581 data[i]+=a[0]*cph[0]; a[0]+=da[0]; da[0]+=dda[0]; dda[0]+=ddda[0];
|
xue@1
|
582 tmp=cph[0]*cdph-sph[0]*sdph; sph[0]=sph[0]*cdph+cph[0]*sdph; cph[0]=tmp;
|
xue@1
|
583 cdm_1ph=1, sdm_1ph=0, cdmph=cdph, sdmph=sdph, cdph2=2*cdph;
|
xue@1
|
584
|
xue@1
|
585 for (int m=1; m<M; m++)
|
xue@1
|
586 {
|
xue@1
|
587 data[i]+=a[m]*cph[m]; a[m]+=da[m]; da[m]+=dda[m]; dda[m]+=ddda[m];
|
xue@1
|
588 // asm{mov ecx,m} asm{mov eax,a} asm{fld qword ptr [eax+ecx*8]} asm{mov edx,cph} asm{fld qword ptr [edx+ecx*8]} asm{fmul st(0),st(1)} asm{mov edx,data} asm{mov ebx,i} asm{fadd qword ptr [edx+ebx*8]} asm{fstp qword ptr [edx+ebx*8]} asm{mov edx,da} asm{fld qword ptr [edx+ecx*8]} asm{fadd st(1),st(0)} asm{mov ebx,dda} asm{fld qword ptr [ebx+ecx*8]} asm{fadd st(1),st(0)} asm{mov edi,ddda} asm{fadd qword ptr [edi+ecx*8]} asm{fstp qword ptr [ebx+ecx*8]} asm{fstp qword ptr [edx+ecx*8]} asm{fstp qword ptr [eax+ecx*8]}
|
xue@1
|
589 tmp=cdmph, tmp2=sdmph;
|
xue@1
|
590 cdmph=cdmph*cdph2-cdm_1ph; sdmph=sdmph*cdph2-sdm_1ph;
|
xue@1
|
591 cdm_1ph=tmp, sdm_1ph=tmp2;
|
xue@1
|
592
|
xue@1
|
593 tmp=cph[m]*cdmph-sph[m]*sdmph; sph[m]=sph[m]*cdmph+cph[m]*sdmph; cph[m]=tmp;
|
xue@1
|
594 // asm{mov ecx,m} asm{mov eax,cph} asm{fld qword ptr [eax+ecx*8]} asm{mov edx,sph} asm{fld qword ptr [edx+ecx*8]} asm{fld st(1)} asm{fmul sdmph} asm{fld st(1)} asm{fmul sdmph} asm{fld cdmph} asm{fmul st(4),st(0)} asm{fmulp st(3),st(0)} asm{fsubp st(3),st(0)} asm{faddp} asm{fstp qword ptr [edx+ecx*8]} asm{fstp qword ptr [eax+ecx*8]}
|
xue@1
|
595 }
|
xue@1
|
596
|
xue@1
|
597 tmp=cdph*cddph-sdph*sddph; sdph=sdph*cddph+cdph*sddph; cdph=tmp;
|
xue@1
|
598 tmp=cddph*cdddph-sddph*sdddph; sddph=sddph*cdddph+cddph*sdddph; cddph=tmp;
|
xue@1
|
599 tmp=cdddph*cddddph-sdddph*sddddph; sdddph=sdddph*cddddph+cdddph*sddddph; cdddph=tmp;
|
xue@1
|
600 }
|
xue@1
|
601 }
|
xue@1
|
602 else
|
xue@1
|
603 {
|
xue@1
|
604 }
|
xue@1
|
605 free8(a);
|
xue@1
|
606 }//Sinusoids*/
|
xue@1
|
607
|
Chris@5
|
608 /**
|
xue@1
|
609 function Sinusoid: synthesizes sinusoid piece from trinomial frequency and amplitude coefficients.
|
xue@1
|
610
|
xue@1
|
611 In: CountSt, CountEn
|
xue@1
|
612 aa, ab, ac, ad: trinomial coefficients of amplitude.
|
xue@1
|
613 fa, fb, fc, fd: trinomial coefficients of frequency.
|
xue@1
|
614 ph0, ph2: phase angles at 0 and CountEn.
|
xue@1
|
615 add: specifies if the resynthesized sinusoid is to be added to or to replace the content of output buffer
|
xue@1
|
616 Out: data[CountSt:CountEn-1]: output buffer.
|
xue@1
|
617
|
xue@1
|
618 No return value.
|
xue@1
|
619 */
|
xue@1
|
620 void Sinusoid(double* data, int CountSt, int CountEn, double aa, double ab, double ac, double ad,
|
xue@1
|
621 double fa, double fb, double fc, double fd, double ph0, double ph2, bool add)
|
xue@1
|
622 {
|
xue@1
|
623 double pend=ph0+2*M_PI*CountEn*(fd+CountEn*(fc/2+CountEn*(fb/3+CountEn*fa/4)));
|
xue@1
|
624 int k=floor((pend-ph2)/2/M_PI+0.5);
|
xue@1
|
625 double d=ph2-pend+2*M_PI*k;
|
xue@1
|
626 double p=-2*d/CountEn/CountEn/CountEn;
|
xue@1
|
627 double q=3*d/CountEn/CountEn, a, ph;
|
xue@1
|
628 for (int i=CountSt; i<CountEn; i++)
|
xue@1
|
629 {
|
xue@1
|
630 a=ad+i*(ac+i*(ab+i*aa)); if (a<0) a=0;
|
xue@1
|
631 ph=ph0+2*M_PI*i*(fd+i*((fc/2)+i*((fb/3)+i*fa/4)))+i*i*(q+i*p);
|
xue@1
|
632 if (add) data[i]+=a*cos(ph);
|
xue@1
|
633 else data[i]=a*cos(ph);
|
xue@1
|
634 }
|
xue@1
|
635 }//Sinusoid
|
xue@1
|
636
|
Chris@5
|
637 /**
|
xue@1
|
638 function Sinusoid: synthesizes sinusoid piece from trinomial frequency and amplitude coefficients,
|
xue@1
|
639 returning sinusoid coefficients instead of waveform.
|
xue@1
|
640
|
xue@1
|
641 In: CountSt, CountEn
|
xue@1
|
642 aa, ab, ac, ad: trinomial coefficients of amplitude (or log amplitude if LogA=true)
|
xue@1
|
643 fa, fb, fc, fd: trinomial coefficients of frequency.
|
xue@1
|
644 ph0, ph2: phase angles at 0 and CountEn.
|
xue@1
|
645 LogA: specifies whether log amplitude or amplitude is a trinomial
|
xue@1
|
646 Out: f[CountSt:CountEn-1], a[CountSt:CountEn-1], ph[CountSt:CountEn-1]: synthesized sinusoid parameters
|
xue@1
|
647 da[CountSt:CountEn-1]: derivative of synthesized amplitude, optional
|
xue@1
|
648
|
xue@1
|
649 No return value.
|
xue@1
|
650 */
|
xue@1
|
651 void Sinusoid(double* f, double* a, double* ph, double* da, int CountSt, int CountEn, double aa, double ab,
|
xue@1
|
652 double ac, double ad, double fa, double fb, double fc, double fd, double ph0, double ph2, bool LogA)
|
xue@1
|
653 {
|
xue@1
|
654 double pend=ph0+2*M_PI*CountEn*(fd+CountEn*(fc/2+CountEn*(fb/3+CountEn*fa/4)));
|
xue@1
|
655 int k=floor((pend-ph2)/2/M_PI+0.5);
|
xue@1
|
656 double d=ph2-pend+2*M_PI*k;
|
xue@1
|
657 double p=-2*d/CountEn/CountEn/CountEn;
|
xue@1
|
658 double q=3*d/CountEn/CountEn;
|
xue@1
|
659 if (LogA) for (int i=CountSt; i<CountEn; i++)
|
xue@1
|
660 {
|
xue@1
|
661 a[i]=exp(ad+i*(ac+i*(ab+i*aa)));
|
xue@1
|
662 if (da) da[i]=a[i]*(ac+i*(2*ab+i*3*aa));
|
xue@1
|
663 f[i]=fd+i*(fc+i*(fb+i*fa))+i*(2*q+3*i*p)/(2*M_PI);
|
xue@1
|
664 ph[i]=ph0+2*M_PI*i*(fd+i*((fc/2)+i*((fb/3)+i*fa/4)))+i*i*(q+i*p);
|
xue@1
|
665 }
|
xue@1
|
666 else for (int i=CountSt; i<CountEn; i++)
|
xue@1
|
667 {
|
xue@1
|
668 a[i]=ad+i*(ac+i*(ab+i*aa));
|
xue@1
|
669 if (da) da[i]=ac+i*(2*ab+i*3*aa);
|
xue@1
|
670 f[i]=fd+i*(fc+i*(fb+i*fa))+i*(2*q+3*i*p)/(2*M_PI);
|
xue@1
|
671 ph[i]=ph0+2*M_PI*i*(fd+i*((fc/2)+i*((fb/3)+i*fa/4)))+i*i*(q+i*p);
|
xue@1
|
672 }
|
xue@1
|
673 }//Sinusoid
|
xue@1
|
674
|
Chris@5
|
675 /**
|
xue@1
|
676 function Sinusoid: generates trinomial frequency and phase with phase correction.
|
xue@1
|
677
|
xue@1
|
678 In: CountSt, CountEn
|
xue@1
|
679 fa, fb, fc, fd: trinomial coefficients of frequency.
|
xue@1
|
680 ph0, ph2: phase angles at 0 and CountEn.
|
xue@1
|
681 Out: f[CountSt:CountEn-1], ph[CountSt:CountEn-1]: output buffers holding frequency and phase.
|
xue@1
|
682
|
xue@1
|
683 No return value.
|
xue@1
|
684 */
|
xue@1
|
685 void Sinusoid(double* f, double* ph, int CountSt, int CountEn, double fa, double fb,
|
xue@1
|
686 double fc, double fd, double ph0, double ph2)
|
xue@1
|
687 {
|
xue@1
|
688 double pend=ph0+2*M_PI*CountEn*(fd+CountEn*(fc/2+CountEn*(fb/3+CountEn*fa/4)));
|
xue@1
|
689 int k=floor((pend-ph2)/2/M_PI+0.5);
|
xue@1
|
690 double d=ph2-pend+2*M_PI*k;
|
xue@1
|
691 double p=-2*d/CountEn/CountEn/CountEn;
|
xue@1
|
692 double q=3*d/CountEn/CountEn;
|
xue@1
|
693 for (int i=CountSt; i<CountEn; i++)
|
xue@1
|
694 {
|
xue@1
|
695 f[i]=fd+i*(fc+i*(fb+i*fa))+i*(2*q+3*i*p)/(2*M_PI);
|
xue@1
|
696 ph[i]=ph0+2*M_PI*i*(fd+i*((fc/2)+i*((fb/3)+i*fa/4)))+i*i*(q+i*p);
|
xue@1
|
697 }
|
xue@1
|
698 }//Sinusoid
|
xue@1
|
699
|
Chris@5
|
700 /**
|
xue@1
|
701 function SynthesizeSinusoid: synthesizes a time-varying sinusoid from a sequence of frequencies and amplitudes
|
xue@1
|
702
|
xue@1
|
703 In: xs[Fr]: measurement points, should be integers although *xs has double type.
|
xue@1
|
704 fs[Fr], as[Fr]: sequence of frequencies and amplitudes at xs[Fr]
|
xue@1
|
705 phs[0]: initial phase angle at (int)xs[0].
|
xue@1
|
706 dst, den: start and end time of synthesis, dst<=xs[0], den>=xs[Fr-1]
|
xue@1
|
707 add: specifies if the resynthesized sinusoid is to be added to or to replace the content of output buffer
|
xue@1
|
708 Out: xrec[0:den-dst-1]: output buffer hosting synthesized sinusoid from dst to den.
|
xue@1
|
709 phs[Fr]: phase angles at xs[Fr]
|
xue@1
|
710
|
xue@1
|
711 Returns pointer to xrec.
|
xue@1
|
712 */
|
xue@1
|
713 double* SynthesizeSinusoid(double* xrec, int dst, int den, double* phs, int Fr, double* xs, double* fs, double* as, bool add, bool* terminatetag)
|
xue@1
|
714 {
|
xue@1
|
715 double *f3=new double[Fr*8], *f2=&f3[Fr], *f1=&f3[Fr*2], *f0=&f3[Fr*3],
|
xue@1
|
716 *a3=&f3[Fr*4], *a2=&a3[Fr], *a1=&a3[Fr*2], *a0=&a3[Fr*3];
|
xue@1
|
717 CubicSpline(Fr-1, f3, f2, f1, f0, xs, fs, 1, 1);
|
xue@1
|
718 CubicSpline(Fr-1, a3, a2, a1, a0, xs, as, 1, 1);
|
xue@1
|
719 double ph=phs[0];
|
xue@1
|
720 for (int fr=0; fr<Fr-1; fr++)
|
xue@1
|
721 {
|
xue@1
|
722 phs[fr]=ph;
|
xue@1
|
723 ALIGN8(Sinusoid(&xrec[(int)xs[fr]-dst], 0, xs[fr+1]-xs[fr], a3[fr], a2[fr], a1[fr], a0[fr], f3[fr], f2[fr], f1[fr], f0[fr], ph, add);)
|
xue@1
|
724 if (terminatetag && *terminatetag) {delete[] f3; return 0;}
|
xue@1
|
725 }
|
xue@1
|
726 phs[Fr-1]=ph;
|
xue@1
|
727 ALIGN8(Sinusoid(&xrec[(int)xs[Fr-2]-dst], xs[Fr-1]-xs[Fr-2], den-xs[Fr-2], a3[Fr-2], a2[Fr-2], a1[Fr-2], a0[Fr-2], f3[Fr-2], f2[Fr-2], f1[Fr-2], f0[Fr-2], ph, add);
|
xue@1
|
728 Sinusoid(&xrec[(int)xs[0]-dst], dst-xs[0], 0, a3[0], a2[0], a1[0], a0[0], f3[0], f2[0], f1[0], f0[0], phs[0], add);)
|
xue@1
|
729 delete[] f3;
|
xue@1
|
730 return xrec;
|
xue@1
|
731 }//SynthesizeSinusoid
|
xue@1
|
732
|
Chris@5
|
733 /**
|
xue@1
|
734 function ShiftTrinomial: shifts the origin of a trinomial from 0 to T
|
xue@1
|
735
|
xue@1
|
736 In: a3, a2, a1, a0.
|
xue@1
|
737 Out: b3, b2, b1, b0, so that a3*x^3+a2*x^2+a1*x+a0=b3(x-T)^3+b2(x-T)^2+b1(x-T)+b0
|
xue@1
|
738
|
xue@1
|
739 No return value.
|
xue@1
|
740 */
|
xue@1
|
741 void ShiftTrinomial(double T, double& b3, double& b2, double& b1, double& b0, double a3, double a2, double a1, double a0)
|
xue@1
|
742 {
|
xue@1
|
743 b3=a3;
|
xue@1
|
744 b2=a2+T*3*b3;
|
xue@1
|
745 b1=a1+T*(2*b2-T*3*b3);
|
xue@1
|
746 b0=a0+T*(b1-T*(b2-T*b3));
|
xue@1
|
747 }//ShiftTrinomial
|
xue@1
|
748
|
Chris@5
|
749 /**
|
xue@1
|
750 function SynthesizeSinusoidP: synthesizes a time-varying sinusoid from a sequence of frequencies,
|
xue@1
|
751 amplitudes and phase angles
|
xue@1
|
752
|
xue@1
|
753 In: xs[Fr]: measurement points, should be integers although *xs has double type.
|
xue@1
|
754 fs[Fr], as[Fr], phs[Fr]: sequence of frequencies, amplitudes and phase angles at xs[Fr]
|
xue@1
|
755 dst, den: start and end time of synthesis, dst<=xs[0], den>=xs[Fr-1]
|
xue@1
|
756 add: specifies if the resynthesized sinusoid is to be added to or to replace the content of output
|
xue@1
|
757 buffer
|
xue@1
|
758 Out: xrecm[0:den-dst-1]: output buffer hosting synthesized sinusoid from dst to den.
|
xue@1
|
759
|
xue@1
|
760 Returns pointer to xrecm.
|
xue@1
|
761 */
|
xue@1
|
762 double* SynthesizeSinusoidP(double* xrecm, int dst, int den, double* phs, int Fr, double* xs, double* fs, double* as, bool add)
|
xue@1
|
763 {
|
xue@1
|
764 double *f3=new double[Fr*8], *f2=&f3[Fr], *f1=&f3[Fr*2], *f0=&f3[Fr*3],
|
xue@1
|
765 *a3=&f3[Fr*4], *a2=&a3[Fr], *a1=&a3[Fr*2], *a0=&a3[Fr*3];
|
xue@1
|
766 CubicSpline(Fr-1, f3, f2, f1, f0, xs, fs, 1, 1);
|
xue@1
|
767 CubicSpline(Fr-1, a3, a2, a1, a0, xs, as, 1, 1);
|
xue@1
|
768 for (int fr=0; fr<Fr-1; fr++) Sinusoid(&xrecm[(int)xs[fr]-dst], 0, xs[fr+1]-xs[fr], a3[fr], a2[fr], a1[fr], a0[fr], f3[fr], f2[fr], f1[fr], f0[fr], phs[fr], phs[fr+1], add);
|
xue@1
|
769 double tmpph=phs[0]; Sinusoid(&xrecm[(int)xs[0]-dst], dst-xs[0], 0, 0, 0, 0, a0[0], f3[0], f2[0], f1[0], f0[0], tmpph, add);
|
xue@1
|
770 //extend the trinomials on [xs[Fr-2], xs[Fr-1]) based at xs[Fr-2] to beyond xs[Fr-1] based at xs[Fr-1].
|
xue@1
|
771 tmpph=phs[Fr-1];
|
xue@1
|
772 ShiftTrinomial(xs[Fr-1]-xs[Fr-2], f3[Fr-1], f2[Fr-1], f1[Fr-1], f0[Fr-1], f3[Fr-2], f2[Fr-2], f1[Fr-2], f0[Fr-2]);
|
xue@1
|
773 ShiftTrinomial(xs[Fr-1]-xs[Fr-2], a3[Fr-1], a2[Fr-1], a1[Fr-1], a0[Fr-1], a3[Fr-2], a2[Fr-2], a1[Fr-2], a0[Fr-2]);
|
xue@1
|
774 Sinusoid(&xrecm[(int)xs[Fr-1]-dst], 0, den-xs[Fr-1], 0, 0, 0, a0[Fr-1], f3[Fr-1], f2[Fr-1], f1[Fr-1], f0[Fr-1], tmpph, add);
|
xue@1
|
775 delete[] f3;
|
xue@1
|
776 return xrecm;
|
xue@1
|
777 }//SynthesizeSinusoidP
|