annotate SinSyn.cpp @ 1:6422640a802f

first upload
author Wen X <xue.wen@elec.qmul.ac.uk>
date Tue, 05 Oct 2010 10:45:57 +0100
parents
children
rev   line source
xue@1 1 //---------------------------------------------------------------------------
xue@1 2
xue@1 3
xue@1 4 #include "align8.h"
xue@1 5 #include "SinSyn.h"
xue@1 6 #include "splines.h"
xue@1 7
xue@1 8 //---------------------------------------------------------------------------
xue@1 9 /*
xue@1 10 function Sinuoid: original McAuley-Quatieri synthesizer interpolation between two measurement points.
xue@1 11
xue@1 12 In: T: length from measurement point 1 to measurement point 2
xue@1 13 a1, f1, p2: amplitude, frequency and phase angle at measurement point 1
xue@1 14 a2, f2, p2: amplitude, frequency and phase angle at measurement point 2
xue@1 15 ad: specifies if the resynthesized sinusoid is to be added to or to replace the contents of output buffer
xue@1 16 Out: data[T]: output buffer
xue@1 17 a[T], f[T], p[T]: resynthesized amplitude, frequency and phase
xue@1 18
xue@1 19 No return value.
xue@1 20 */
xue@1 21 void Sinusoid(double* data, int T, double a1, double a2, double f1, double f2, double p1, double p2, double* a, double* f, double* p, bool ad)
xue@1 22 {
xue@1 23 int M=floor(((p1-p2)/M_PI+(f1+f2)*T)/2.0+0.5);
xue@1 24 double b1=p2-p1-2*M_PI*(f1*T-M), b2=2*M_PI*(f2-f1);
xue@1 25 double pa=(3*b1/T-b2)/T, pb=(-2*b1/T+b2)/T/T, pc=2*M_PI*f1, pd=p1;
xue@1 26 double la=a1, da=(a2-a1)/T;
xue@1 27 if (ad)
xue@1 28 for (int t=0; t<T; t++)
xue@1 29 {
xue@1 30 double lp=pd+t*(pc+t*(pa+t*pb)), lf=(pc+2*pa*t+3*pb*t*t)/2/M_PI;
xue@1 31 data[t]+=la*cos(lp);
xue@1 32 a[t]=la;
xue@1 33 p[t]=lp;
xue@1 34 f[t]=lf;
xue@1 35 la=la+da;
xue@1 36 }
xue@1 37 else
xue@1 38 for (int t=0; t<T; t++)
xue@1 39 {
xue@1 40 double lp=pd+t*(pc+t*(pa+t*pb)), lf=(pc+2*pa*t+3*pb*t*t)/2/M_PI;
xue@1 41 data[t]=la*cos(lp);
xue@1 42 a[t]=la;
xue@1 43 p[t]=lp;
xue@1 44 f[t]=lf;
xue@1 45 la=la+da;
xue@1 46 }
xue@1 47 }//Sinusoid
xue@1 48
xue@1 49 /*
xue@1 50 function Sinuoid: original McAuley-Quatieri synthesizer interpolation between two measurement points,
xue@1 51 without returning interpolated sinusoid parameters.
xue@1 52
xue@1 53 In: T: length from measurement point 1 to measurement point 2
xue@1 54 a1, f1, p2: amplitude, frequency and phase angle at measurement point 1
xue@1 55 a2, f2, p2: amplitude, frequency and phase angle at measurement point 2
xue@1 56 ad: specifies if the resynthesized sinusoid is to be added to or to replace the contents of output buffer
xue@1 57 Out: data[T]: output buffer
xue@1 58
xue@1 59 No return value.
xue@1 60 */
xue@1 61 void Sinusoid(double* data, int T, double a1, double a2, double f1, double f2, double p1, double p2, bool ad)
xue@1 62 {
xue@1 63 int M=floor(((p1-p2)/M_PI+(f1+f2)*T)/2.0+0.5);
xue@1 64 double b1=p2-p1-2*M_PI*(f1*T-M), b2=2*M_PI*(f2-f1);
xue@1 65 double pa=(3*b1/T-b2)/T, pb=(-2*b1/T+b2)/T/T, pc=2*M_PI*f1, pd=p1;
xue@1 66 double la=a1, da=(a2-a1)/T;
xue@1 67 if (ad)
xue@1 68 for (int t=0; t<T; t++)
xue@1 69 {
xue@1 70 data[t]+=la*cos(pd+t*(pc+t*(pa+t*pb)));
xue@1 71 la=la+da;
xue@1 72 }
xue@1 73 else
xue@1 74 for (int t=0; t<T; t++)
xue@1 75 {
xue@1 76 data[t]=la*cos(pd+t*(pc+t*(pa+t*pb)));
xue@1 77 la=la+da;
xue@1 78 }
xue@1 79 }//Sinusoid
xue@1 80
xue@1 81 //---------------------------------------------------------------------------
xue@1 82 /*
xue@1 83 function Sinusoid_direct: synthesizes sinusoid over [CountSt, CountEn) from tronomial coefficients of
xue@1 84 amplitude and frequency, direct implementation.
xue@1 85
xue@1 86 In: CountSt, CountEn
xue@1 87 aa, ab, ac, ad: trinomial coefficients of amplitude
xue@1 88 fa, fb, fc, fd: trinomial coefficients of frequency
xue@1 89 p1: initial phase angle at 0 (NOT at CountSt)
xue@1 90 add: specifies if the resynthesized sinusoid is to be added to or to replace the content of output buffer
xue@1 91 Out: data[CountSt:CountEn-1]: output buffer.
xue@1 92 p1: phase angle at CountEn
xue@1 93
xue@1 94 No return value.
xue@1 95 */
xue@1 96 void Sinusoid_direct(double* data, int CountSt, int CountEn, double aa, double ab, double ac, double ad,
xue@1 97 double fa, double fb, double fc, double fd, double &p1, bool add)
xue@1 98 {
xue@1 99 int i; double a, ph;
xue@1 100 for (i=CountSt; i<CountEn; i++)
xue@1 101 {
xue@1 102 a=ad+i*(ac+i*(ab+i*aa));
xue@1 103 ph=p1+2*M_PI*i*(fd+i*((fc/2)+i*((fb/3)+i*fa/4)));
xue@1 104 if (add) data[i]+=a*cos(ph);
xue@1 105 else data[i]=a*cos(ph);
xue@1 106 }
xue@1 107 p1=p1+2*M_PI*i*(fd+i*((fc/2)+i*((fb/3)+i*fa/4)));
xue@1 108 }//Sinusoid
xue@1 109
xue@1 110 /*
xue@1 111 function Sinusoid: synthesizes sinusoid over [CountSt, CountEn) from tronomial coefficients of
xue@1 112 amplitude and frequency, recursive implementation.
xue@1 113
xue@1 114 In: CountSt, CountEn
xue@1 115 a3, a2, a1, a0: trinomial coefficients of amplitude
xue@1 116 f3, f2, f1, f0: trinomial coefficients of frequency
xue@1 117 ph: initial phase angle at 0 (NOT at CountSt)
xue@1 118 add: specifies if the resynthesized sinusoid is to be added to or to replace the content of output buffer
xue@1 119 Out: data[CountSt:CountEn-1]: output buffer.
xue@1 120 ph: phase angle at CountEn
xue@1 121
xue@1 122 No return value. This function requires 8-byte stack alignment for optimal speed.
xue@1 123 */
xue@1 124 void Sinusoid(double* data, int CountSt, int CountEn, double a3, double a2, double a1, double a0,
xue@1 125 double f3, double f2, double f1, double f0, double &ph, bool add)
xue@1 126 {
xue@1 127 int i;
xue@1 128 double a, da, dda, ddda, dph, ddph, dddph, ddddph,
xue@1 129 sph, cph, sdph, cdph, sddph, cddph, sdddph, cdddph, sddddph, cddddph,
xue@1 130 p0=ph, p1=2*M_PI*f0, p2=M_PI*f1, p3=2.0*M_PI*f2/3, p4=2.0*M_PI*f3/4, tmp;
xue@1 131 if (CountSt==0)
xue@1 132 {
xue@1 133 a=a0; da=a1+a2+a3; dda=2*a2+6*a3; ddda=6*a3;
xue@1 134 dph=p1+p2+p3+p4; ddph=2*p2+6*p3+14*p4; dddph=6*p3+36*p4; ddddph=24*p4;
xue@1 135 }
xue@1 136 else
xue@1 137 {
xue@1 138 a=a0+CountSt*(a1+CountSt*(a2+CountSt*a3));
xue@1 139 da=a1+a2+a3+CountSt*(2*a2+3*a3+CountSt*3*a3);
xue@1 140 dda=2*a2+6*a3+CountSt*6*a3; ddda=6*a3;
xue@1 141 ph=p0+CountSt*(p1+CountSt*(p2+CountSt*(p3+CountSt*p4)));
xue@1 142 dph=p1+p2+p3+p4+CountSt*(2*p2+3*p3+4*p4+CountSt*(3*p3+6*p4+CountSt*4*p4));
xue@1 143 ddph=2*p2+6*p3+14*p4+CountSt*(6*p3+24*p4+CountSt*12*p4);
xue@1 144 dddph=6*p3+36*p4+CountSt*24*p4; ddddph=24*p4;
xue@1 145 }
xue@1 146 sph=sin(ph), cph=cos(ph);
xue@1 147 sdph=sin(dph), cdph=cos(dph);
xue@1 148 sddph=sin(ddph), cddph=cos(ddph);
xue@1 149 sdddph=sin(dddph), cdddph=cos(dddph);
xue@1 150 sddddph=sin(ddddph), cddddph=cos(ddddph);
xue@1 151 if (add)
xue@1 152 {
xue@1 153 for (i=CountSt; i<CountEn; i++)
xue@1 154 {
xue@1 155 data[i]+=a*cph;
xue@1 156 a=a+da; da=da+dda; dda=dda+ddda;
xue@1 157 tmp=cph*cdph-sph*sdph; sph=sph*cdph+cph*sdph; cph=tmp;
xue@1 158 tmp=cdph*cddph-sdph*sddph; sdph=sdph*cddph+cdph*sddph; cdph=tmp;
xue@1 159 tmp=cddph*cdddph-sddph*sdddph; sddph=sddph*cdddph+cddph*sdddph; cddph=tmp;
xue@1 160 tmp=cdddph*cddddph-sdddph*sddddph; sdddph=sdddph*cddddph+cdddph*sddddph; cdddph=tmp;
xue@1 161 }
xue@1 162 }
xue@1 163 else
xue@1 164 {
xue@1 165 for (i=CountSt; i<CountEn; i++)
xue@1 166 {
xue@1 167 data[i]=a*cph;
xue@1 168 a=a+da; da=da+dda; dda=dda+ddda;
xue@1 169 tmp=cph*cdph-sph*sdph; sph=sph*cdph+cph*sdph; cph=tmp;
xue@1 170 tmp=cdph*cddph-sdph*sddph; sdph=sdph*cddph+cdph*sddph; cdph=tmp;
xue@1 171 tmp=cddph*cdddph-sddph*sdddph; sddph=sddph*cdddph+cddph*sdddph; cddph=tmp;
xue@1 172 tmp=cdddph*cddddph-sdddph*sddddph; sdddph=sdddph*cddddph+cdddph*sddddph; cdddph=tmp;
xue@1 173 }
xue@1 174 }
xue@1 175 ph=p0+CountEn*(p1+CountEn*(p2+CountEn*(p3+CountEn*p4)));
xue@1 176 }
xue@1 177
xue@1 178 /*
xue@1 179 function SinusoidExp: synthesizes complex sinusoid whose derivative log amplitude and frequency are
xue@1 180 trinomials
xue@1 181
xue@1 182 In: CountSt, CountEn
xue@1 183 a3, a2, a1, a0: trinomial coefficients for the derivative of log amplitude
xue@1 184 omg3, omg2, omg1, omg0: trinomial coefficients for angular frequency
xue@1 185 ea, ph: initial log amplitude and phase angle at 0
xue@1 186 add: specifies if the resynthesized sinusoid is to be added to or to replace the content of output buffer
xue@1 187 Out: data[CountSt:CountEn-1]: output buffer.
xue@1 188 ea, ph: log amplitude and phase angle at CountEn.
xue@1 189
xue@1 190 No return value.
xue@1 191 */
xue@1 192 void SinusoidExp(cdouble* data, int CountSt, int CountEn, double a3, double a2, double a1, double a0,
xue@1 193 double omg3, double omg2, double omg1, double omg0, double &ea, double &ph, bool add)
xue@1 194 {
xue@1 195 double e0=ea, e1=a0, e2=0.5*a1, e3=a2/3, e4=a3/4,
xue@1 196 p0=ph, p1=omg0, p2=0.5*omg1, p3=omg2/3, p4=omg3/4;
xue@1 197 if (add) for (int i=CountSt; i<CountEn; i++)
xue@1 198 {
xue@1 199 double lea=e0+i*(e1+i*(e2+i*(e3+i*e4)));
xue@1 200 double lph=p0+i*(p1+i*(p2+i*(p3+i*p4)));
xue@1 201 data[i]+=exp(cdouble(lea, lph));
xue@1 202 }
xue@1 203 else for (int i=CountSt; i<CountEn; i++)
xue@1 204 {
xue@1 205 double lea=e0+i*(e1+i*(e2+i*(e3+i*e4)));
xue@1 206 double lph=p0+i*(p1+i*(p2+i*(p3+i*p4)));
xue@1 207 data[i]=exp(cdouble(lea, lph));
xue@1 208 }
xue@1 209 ea=e0+CountEn*(e1+CountEn*(e2+CountEn*(e3+CountEn*e4)));
xue@1 210 ph=p0+CountEn*(p1+CountEn*(p2+CountEn*(p3+CountEn*p4)));
xue@1 211 }//SinusoidExp
xue@1 212
xue@1 213 /*
xue@1 214 function SinusoidExp: synthesizes complex sinusoid piece whose derivative logarithm is h[M]'lamda[M].
xue@1 215 This version also synthesizes its derivative.
xue@1 216
xue@1 217 In: h[M][T], dih[M][T]: basis functions and their difference-integrals
xue@1 218 lamda[M]: coefficients of h[M]
xue@1 219 tmpexp: inital logarithm at 0
xue@1 220 Out: s[T], ds[T]: synthesized sinusoid and its derivative
xue@1 221 tmpexp: logarithm at T
xue@1 222
xue@1 223 No return value.
xue@1 224 */
xue@1 225 void SinusoidExp(int T, cdouble* s, cdouble* ds, int M, cdouble* lamda, double** h, double** dih, cdouble& tmpexp)
xue@1 226 {
xue@1 227 for (int t=0; t<T; t++)
xue@1 228 {
xue@1 229 s[t]=exp(tmpexp);
xue@1 230 cdouble dexp=0, dR=0;
xue@1 231 for (int m=0; m<M; m++) dexp+=lamda[m]*dih[m][t], dR+=lamda[m]*h[m][t];
xue@1 232 tmpexp+=dexp;
xue@1 233 ds[t]=s[t]*dR;
xue@1 234 }
xue@1 235 }//SinusoidExp
xue@1 236
xue@1 237 /*
xue@1 238 function SinusoidExp: synthesizes complex sinusoid piece whose derivative logarithm is h[M]'lamda[M].
xue@1 239 This version does not synthesize its derivative.
xue@1 240
xue@1 241 In: dih[M][T]: difference of integrals of basis functions h[M]
xue@1 242 lamda[M]: coefficients of h[M]
xue@1 243 tmpexp: inital logarithm at 0
xue@1 244 Out: s[T]: synthesized sinusoid
xue@1 245 tmpexp: logarithm at T
xue@1 246
xue@1 247 No return value.
xue@1 248 */
xue@1 249 void SinusoidExp(int T, cdouble* s, int M, cdouble* lamda, double** dih, cdouble& tmpexp)
xue@1 250 {
xue@1 251 for (int t=0; t<T; t++)
xue@1 252 {
xue@1 253 s[t]=exp(tmpexp);
xue@1 254 cdouble dexp=0;
xue@1 255 for (int m=0; m<M; m++) dexp+=lamda[m]*dih[m][t];
xue@1 256 tmpexp+=dexp;
xue@1 257 }
xue@1 258 }//SinusoidExp
xue@1 259
xue@1 260 /*
xue@1 261 function SinusoidExpA: synthesizes complex sinusoid whose log amplitude and frequency are trinomials
xue@1 262
xue@1 263 In: CountSt, CountEn
xue@1 264 a3, a2, a1, a0: trinomial coefficients for log amplitude
xue@1 265 omg3, omg2, omg1, omg0: trinomial coefficients for angular frequency
xue@1 266 ph: initial phase angle at 0
xue@1 267 add: specifies if the resynthesized sinusoid is to be added to or to replace the content of output buffer
xue@1 268 Out: data[CountSt:CountEn-1]: output buffer.
xue@1 269 ph: phase angle at CountEn.
xue@1 270
xue@1 271 No return value.
xue@1 272 */
xue@1 273 void SinusoidExpA(cdouble* data, int CountSt, int CountEn, double a3, double a2, double a1, double a0,
xue@1 274 double omg3, double omg2, double omg1, double omg0, double &ph, bool add)
xue@1 275 {
xue@1 276 double p0=ph, p1=omg0, p2=0.5*omg1, p3=omg2/3, p4=omg3/4;
xue@1 277 if (add) for (int i=CountSt; i<CountEn; i++)
xue@1 278 {
xue@1 279 double lea=a0+i*(a1+i*(a2+i*a3));
xue@1 280 double lph=p0+i*(p1+i*(p2+i*(p3+i*p4)));
xue@1 281 data[i]+=exp(cdouble(lea, lph));
xue@1 282 }
xue@1 283 else for (int i=CountSt; i<CountEn; i++)
xue@1 284 {
xue@1 285 double lea=a0+i*(a1+i*(a2+i*a3));
xue@1 286 double lph=p0+i*(p1+i*(p2+i*(p3+i*p4)));
xue@1 287 data[i]=exp(cdouble(lea, lph));
xue@1 288 }
xue@1 289 ph=p0+CountEn*(p1+CountEn*(p2+CountEn*(p3+CountEn*p4)));
xue@1 290 }//SinusoidExpA
xue@1 291
xue@1 292 /*
xue@1 293 function SinusoidExpA: synthesizes complex sinusoid whose log amplitude and frequency are trinomials
xue@1 294 with phase angle specified at both ends.
xue@1 295
xue@1 296 In: CountSt, CountEn
xue@1 297 a3, a2, a1, a0: trinomial coefficients for log amplitude
xue@1 298 omg3, omg2, omg1, omg0: trinomial coefficients for angular frequency
xue@1 299 ph0, ph2: phase angles at 0 and CountEn.
xue@1 300 add: specifies if the resynthesized sinusoid is to be added to or to replace the content of output buffer
xue@1 301 Out: data[CountSt:CountEn-1]: output buffer.
xue@1 302
xue@1 303 No return value.
xue@1 304 */
xue@1 305 void SinusoidExpA(cdouble* data, int CountSt, int CountEn, double a3, double a2, double a1, double a0,
xue@1 306 double omg3, double omg2, double omg1, double omg0, double ph0, double ph2, bool add)
xue@1 307 {
xue@1 308 double p0=ph0, p1=omg0, p2=0.5*omg1, p3=omg2/3, p4=omg3/4;
xue@1 309 double pend=p0+CountEn*(p1+CountEn*(p2+CountEn*(p3+CountEn*p4)));
xue@1 310
xue@1 311 int k=floor((pend-ph2)/2/M_PI+0.5);
xue@1 312 double d=ph2-pend+2*M_PI*k;
xue@1 313 double _p=-2*d/CountEn/CountEn/CountEn;
xue@1 314 double _q=3*d/CountEn/CountEn;
xue@1 315
xue@1 316 if (add) for (int i=CountSt; i<CountEn; i++)
xue@1 317 {
xue@1 318 double lea=a0+i*(a1+i*(a2+i*a3));
xue@1 319 double lph=p0+i*(p1+i*(p2+i*(p3+i*p4)));
xue@1 320 data[i]+=exp(cdouble(lea, lph+(i*i*(_q+i*_p))));
xue@1 321 }
xue@1 322 else for (int i=CountSt; i<CountEn; i++)
xue@1 323 {
xue@1 324 double lea=a0+i*(a1+i*(a2+i*a3));
xue@1 325 double lph=p0+i*(p1+i*(p2+i*(p3+i*p4)));
xue@1 326 data[i]=exp(cdouble(lea, lph+(i*i*(_q+i*_p))));
xue@1 327 }
xue@1 328 }//SinusoidExpA
xue@1 329
xue@1 330 /*
xue@1 331 function SinusoidExpA: synthesizes complex sinusoid piece whose log amplitude is h[M]'p[M] and
xue@1 332 frequency is h[M]'q[M]. This version also synthesizes its derivative.
xue@1 333
xue@1 334 In: h[M][T], dh[M][T], dih[M][T]: basis functions and their derivatives and difference-integrals
xue@1 335 p[M], q[M]: real and imaginary parts of coefficients of h[M]
xue@1 336 tmpph: inital phase angle at 0
xue@1 337 Out: s[T], ds[T]: synthesized sinusoid and its derivative
xue@1 338 tmpph: phase angle at T
xue@1 339
xue@1 340 No return value.
xue@1 341 */
xue@1 342 void SinusoidExpA(int T, cdouble* s, cdouble* ds, int M, double* p, double* q, double** h, double** dh, double** dih, double& tmpph)
xue@1 343 {
xue@1 344 for (int t=0; t<T; t++)
xue@1 345 {
xue@1 346 double e=0, dph=0, drr=0, dri=0;
xue@1 347 for (int m=0; m<M; m++) e+=p[m]*h[m][t], dph+=q[m]*dih[m][t], drr+=p[m]*dh[m][t], dri+=q[m]*h[m][t];
xue@1 348 s[t]=exp(cdouble(e, tmpph));
xue@1 349 ds[t]=s[t]*cdouble(drr, dri);
xue@1 350 tmpph+=dph;
xue@1 351 }
xue@1 352 }//SinusoidExpA
xue@1 353
xue@1 354 /*
xue@1 355 function SinusoidExpA: synthesizes complex sinusoid piece whose log amplitude is h[M]'p[M] and
xue@1 356 frequency is h[M]'q[M]. This version does not synthesize its derivative.
xue@1 357
xue@1 358 In: h[M][T], dih[M][T]: basis functions and their difference-integrals
xue@1 359 p[M], q[M]: real and imaginary parts of coefficients of h[M]
xue@1 360 tmpph: inital phase angle at 0
xue@1 361 Out: s[T]: synthesized sinusoid
xue@1 362 tmpph: phase angle at T
xue@1 363
xue@1 364 No return value.
xue@1 365 */
xue@1 366 void SinusoidExpA(int T, cdouble* s, int M, double* p, double* q, double** h, double** dih, double& tmpph)
xue@1 367 {
xue@1 368 for (int t=0; t<T; t++)
xue@1 369 {
xue@1 370 double e=0, dph=0;
xue@1 371 for (int m=0; m<M; m++) e+=p[m]*h[m][t], dph+=q[m]*dih[m][t];
xue@1 372 s[t]=exp(cdouble(e, tmpph));
xue@1 373 tmpph+=dph;
xue@1 374 }
xue@1 375 }//SinusoidExpA
xue@1 376
xue@1 377 /*
xue@1 378 function SinusoidExpA: synthesizes complex sinusoid piece whose log amplitude is h[M]'p[M] and
xue@1 379 frequency is h[M]'q[M] with phase angle specified at both ends. This version does not synthesize its
xue@1 380 derivative.
xue@1 381
xue@1 382 In: h[M][T], dih[M][T]: basis functions and their difference-integrals
xue@1 383 p[M], q[M]: real and imaginary parts of coefficients of h[M]
xue@1 384 ph1, ph2: phase angles at 0 and T.
xue@1 385 Out: s[T]: synthesized sinusoid
xue@1 386
xue@1 387 No return value.
xue@1 388 */
xue@1 389 void SinusoidExpA(int T, cdouble* s, int M, double* p, double* q, double** h, double** dih, double ph1, double ph2)
xue@1 390 {
xue@1 391 double pend=ph1;
xue@1 392 for (int t=0; t<T; t++)
xue@1 393 {
xue@1 394 double dph=0;
xue@1 395 for (int m=0; m<M; m++) dph+=q[m]*dih[m][t];
xue@1 396 pend+=dph;
xue@1 397 }
xue@1 398
xue@1 399 int k=floor((pend-ph2)/2/M_PI+0.5);
xue@1 400 double d=ph2-pend+2*M_PI*k;
xue@1 401 double _p=-2*d/T/T/T;
xue@1 402 double _q=3*d/T/T;
xue@1 403
xue@1 404 double ph=ph1;
xue@1 405 for (int t=0; t<T; t++)
xue@1 406 {
xue@1 407 double e=0, dph=0;
xue@1 408 for (int m=0; m<M; m++) e+=p[m]*h[m][t], dph+=q[m]*dih[m][t];
xue@1 409 if (e>300) e=300;
xue@1 410 if (e<-300) e=-300;
xue@1 411 s[t]=exp(cdouble(e, ph+(t*t*(_q+t*_p))));
xue@1 412 ph+=dph;
xue@1 413 }
xue@1 414 }//SinusoidExpA
xue@1 415
xue@1 416 /*
xue@1 417 //This is not used any longer as the recursion does not seem to help saving computation with all its overheads.
xue@1 418 void SinusoidExp(cdouble* data, int CountSt, int CountEn, double a3, double a2, double a1, double a0,
xue@1 419 double omg3, double omg2, double omg1, double omg0, double &ea, double &ph, bool add)
xue@1 420 {
xue@1 421 int i;
xue@1 422 double dea, ddea, dddea, ddddea,
xue@1 423 dph, ddph, dddph, ddddph,
xue@1 424 sph, cph, sdph, cdph, sddph, cddph, sdddph, cdddph, sddddph, cddddph,
xue@1 425 e0=ea, e1=a0, e2=0.5*a1, e3=a2/3, e4=a3/4,
xue@1 426 p0=ph, p1=omg0, p2=0.5*omg1, p3=omg2/3, p4=omg3/4, tmp;
xue@1 427 if (CountSt==0)
xue@1 428 {
xue@1 429 dea=e1+e2+e3+e4; ddea=2*e2+6*e3+14*e4; dddea=6*e3+36*e4; ddddea=24*e3;
xue@1 430 dph=p1+p2+p3+p4; ddph=2*p2+6*p3+14*p4; dddph=6*p3+36*p4; ddddph=24*p4;
xue@1 431 }
xue@1 432 else
xue@1 433 {
xue@1 434 ea=e0+CountSt*(e1+CountSt*(e2+CountSt*(e3+CountSt*e4)));
xue@1 435 dea=e1+e2+e3+e4+CountSt*(2*e2+3*e3+4*e4+CountSt*(3*e3+6*e4+CountSt*4*e4));
xue@1 436 ddea=2*e2+6*e3+14*e4+CountSt*(6*e3+24*e4+CountSt*12*e4);
xue@1 437 dddea=6*e3+36*e4+CountSt*24*e4; ddddea=24*e4;
xue@1 438 ph=p0+CountSt*(p1+CountSt*(p2+CountSt*(p3+CountSt*p4)));
xue@1 439 dph=p1+p2+p3+p4+CountSt*(2*p2+3*p3+4*p4+CountSt*(3*p3+6*p4+CountSt*4*p4));
xue@1 440 ddph=2*p2+6*p3+14*p4+CountSt*(6*p3+24*p4+CountSt*12*p4);
xue@1 441 dddph=6*p3+36*p4+CountSt*24*p4; ddddph=24*p4;
xue@1 442 }
xue@1 443 sph=sin(ph), cph=cos(ph);
xue@1 444 sdph=sin(dph), cdph=cos(dph);
xue@1 445 sddph=sin(ddph), cddph=cos(ddph);
xue@1 446 sdddph=sin(dddph), cdddph=cos(dddph);
xue@1 447 sddddph=sin(ddddph), cddddph=cos(ddddph);
xue@1 448 if (add)
xue@1 449 {
xue@1 450 for (i=CountSt; i<CountEn; i++)
xue@1 451 {
xue@1 452 data[i]+=exp(ea)*cdouble(cph, sph);
xue@1 453 ea=ea+dea; dea=dea+ddea; ddea=ddea+dddea; dddea+dddea+ddddea;
xue@1 454 tmp=cph*cdph-sph*sdph; sph=sph*cdph+cph*sdph; cph=tmp;
xue@1 455 tmp=cdph*cddph-sdph*sddph; sdph=sdph*cddph+cdph*sddph; cdph=tmp;
xue@1 456 tmp=cddph*cdddph-sddph*sdddph; sddph=sddph*cdddph+cddph*sdddph; cddph=tmp;
xue@1 457 tmp=cdddph*cddddph-sdddph*sddddph; sdddph=sdddph*cddddph+cdddph*sddddph; cdddph=tmp;
xue@1 458 }
xue@1 459 }
xue@1 460 else
xue@1 461 {
xue@1 462 for (i=CountSt; i<CountEn; i++)
xue@1 463 {
xue@1 464 data[i]=exp(ea)*cdouble(cph, sph);
xue@1 465 ea=ea+dea; dea=dea+ddea; ddea=ddea+dddea; dddea+dddea+ddddea;
xue@1 466 tmp=cph*cdph-sph*sdph; sph=sph*cdph+cph*sdph; cph=tmp;
xue@1 467 tmp=cdph*cddph-sdph*sddph; sdph=sdph*cddph+cdph*sddph; cdph=tmp;
xue@1 468 tmp=cddph*cdddph-sddph*sdddph; sddph=sddph*cdddph+cddph*sdddph; cddph=tmp;
xue@1 469 tmp=cdddph*cddddph-sdddph*sddddph; sdddph=sdddph*cddddph+cdddph*sddddph; cdddph=tmp;
xue@1 470 }
xue@1 471 }
xue@1 472 ea=e0+CountEn*(e1+CountEn*(e2+CountEn*(e3+CountEn*e4)));
xue@1 473 ph=p0+CountEn*(p1+CountEn*(p2+CountEn*(p3+CountEn*p4)));
xue@1 474 } //*/
xue@1 475
xue@1 476 /*
xue@1 477 function Sinusoid: recursive cos-sin generator with trinomial frequency
xue@1 478
xue@1 479 In: CountSt, CountEn
xue@1 480 f3, f2, f1, f0: trinomial coefficients of frequency
xue@1 481 ph: initial phase angle at 0 (NOT at CountSt)
xue@1 482 Out: datar[CountSt:CountEn-1], datai[CountSt:CountEn-1]: synthesized pair of cosine and sine functions
xue@1 483 ph: phase angle at CountEn
xue@1 484
xue@1 485 No return value.
xue@1 486 */
xue@1 487 void Sinusoid(double* datar, double* datai, int CountSt, int CountEn, double f3, double f2, double f1, double f0, double &ph)
xue@1 488 {
xue@1 489 int i;
xue@1 490 double dph, ddph, dddph, ddddph,
xue@1 491 sph, cph, sdph, cdph, sddph, cddph, sdddph, cdddph, sddddph, cddddph,
xue@1 492 p0=ph, p1=2*M_PI*f0, p2=M_PI*f1, p3=2.0*M_PI*f2/3, p4=2.0*M_PI*f3/4, tmp;
xue@1 493 if (CountSt==0)
xue@1 494 {
xue@1 495 dph=p1+p2+p3+p4; ddph=2*p2+6*p3+14*p4; dddph=6*p3+36*p4; ddddph=24*p4;
xue@1 496 }
xue@1 497 else
xue@1 498 {
xue@1 499 ph=p0+CountSt*(p1+CountSt*(p2+CountSt*(p3+CountSt*p4)));
xue@1 500 dph=p1+p2+p3+p4+CountSt*(2*p2+3*p3+4*p4+CountSt*(3*p3+6*p4+CountSt*4*p4));
xue@1 501 ddph=2*p2+6*p3+14*p4+CountSt*(6*p3+24*p4+CountSt*12*p4);
xue@1 502 dddph=6*p3+36*p4+CountSt*24*p4; ddddph=24*p4;
xue@1 503 }
xue@1 504 sph=sin(ph), cph=cos(ph);
xue@1 505 sdph=sin(dph), cdph=cos(dph);
xue@1 506 sddph=sin(ddph), cddph=cos(ddph);
xue@1 507 sdddph=sin(dddph), cdddph=cos(dddph);
xue@1 508 sddddph=sin(ddddph), cddddph=cos(ddddph);
xue@1 509
xue@1 510 for (i=CountSt; i<CountEn; i++)
xue@1 511 {
xue@1 512 datar[i]=cph; datai[i]=sph;
xue@1 513 tmp=cph*cdph-sph*sdph; sph=sph*cdph+cph*sdph; cph=tmp;
xue@1 514 tmp=cdph*cddph-sdph*sddph; sdph=sdph*cddph+cdph*sddph; cdph=tmp;
xue@1 515 tmp=cddph*cdddph-sddph*sdddph; sddph=sddph*cdddph+cddph*sdddph; cddph=tmp;
xue@1 516 tmp=cdddph*cddddph-sdddph*sddddph; sdddph=sdddph*cddddph+cdddph*sddddph; cdddph=tmp;
xue@1 517 }
xue@1 518 ph=p0+CountEn*(p1+CountEn*(p2+CountEn*(p3+CountEn*p4)));
xue@1 519 }//Sinusoid*/
xue@1 520
xue@1 521 /*
xue@1 522 function Sinusoids: recursive harmonic multi-sinusoid generator
xue@1 523
xue@1 524 In: st, en
xue@1 525 M: number of partials
xue@1 526 a3[M], a2[M], a1[M], a0[M]: trinomial coefficients for partial amplitudes
xue@1 527 f3, f2, f1, f0: trinomial coefficients for fundamental frequency
xue@1 528 ph[M]: partial phases at 0.
xue@1 529 add: specifies if the resynthesized sinusoid is to be added to or to replace the content of output buffer
xue@1 530 Out: data[st:en-1]: output buffer.
xue@1 531 ph[M]: partial phases at en.
xue@1 532
xue@1 533 No return value.
xue@1 534 */
xue@1 535 void Sinusoids(int M, double* data, int st, int en, double* a3, double* a2, double* a1, double* a0, double f3, double f2, double f1, double f0, double* ph, bool add)
xue@1 536 {
xue@1 537 double dph, ddph, dddph, ddddph;
xue@1 538 double sdph, cdph, cdph2, sddph, cddph, sdddph, cdddph, sddddph, cddddph, sdmph, cdmph, sdm_1ph, cdm_1ph;
xue@1 539 double p0, p1, p2, p3, p4, tmp, tmp2;
xue@1 540 double *a=(double*)malloc8(sizeof(double)*M*6), *da=&a[M], *dda=&a[M*2], *ddda=&a[M*3],
xue@1 541 *sph=&a[M*4], *cph=&a[M*5];
xue@1 542
xue@1 543 for (int m=0; m<M; m++)
xue@1 544 {
xue@1 545 p0=ph[m], p1=2*M_PI*f0, p2=M_PI*f1, p3=2.0*M_PI*f2/3, p4=2.0*M_PI*f3/4;
xue@1 546 if (st==0)
xue@1 547 {
xue@1 548 a[m]=a0[m]; da[m]=a1[m]+a2[m]+a3[m]; dda[m]=2*a2[m]+6*a3[m]; ddda[m]=6*a3[m];
xue@1 549 }
xue@1 550 else
xue@1 551 {
xue@1 552 a[m]=a0[m]+st*(a1[m]+st*(a2[m]+st*a3[m]));
xue@1 553 da[m]=a1[m]+a2[m]+a3[m]+st*(2*a2[m]+3*a3[m]+st*3*a3[m]);
xue@1 554 dda[m]=2*a2[m]+6*a3[m]+st*6*a3[m]; ddda[m]=6*a3[m];
xue@1 555 ph[m]=p0+st*(p1+st*(p2+st*(p3+st*p4)));
xue@1 556 }
xue@1 557 sph[m]=sin(ph[m]), cph[m]=cos(ph[m]);
xue@1 558 ph[m]=p0+(m+1)*en*(p1+en*(p2+en*(p3+en*p4)));
xue@1 559 }
xue@1 560
xue@1 561 if (st==0)
xue@1 562 {
xue@1 563 dph=p1+p2+p3+p4; ddph=2*p2+6*p3+14*p4; dddph=6*p3+36*p4; ddddph=24*p4;
xue@1 564 }
xue@1 565 else
xue@1 566 {
xue@1 567 dph=p1+p2+p3+p4+st*(2*p2+3*p3+4*p4+st*(3*p3+6*p4+st*4*p4));
xue@1 568 ddph=2*p2+6*p3+14*p4+st*(6*p3+24*p4+st*12*p4);
xue@1 569 dddph=6*p3+36*p4+st*24*p4; ddddph=24*p4;
xue@1 570 }
xue@1 571 sdph=sin(dph), cdph=cos(dph);
xue@1 572 sddph=sin(ddph), cddph=cos(ddph);
xue@1 573 sdddph=sin(dddph), cdddph=cos(dddph);
xue@1 574 sddddph=sin(ddddph), cddddph=cos(ddddph);
xue@1 575
xue@1 576 if (add)
xue@1 577 {
xue@1 578 for (int i=st; i<en; i++)
xue@1 579 {
xue@1 580 data[i]+=a[0]*cph[0]; a[0]+=da[0]; da[0]+=dda[0]; dda[0]+=ddda[0];
xue@1 581 tmp=cph[0]*cdph-sph[0]*sdph; sph[0]=sph[0]*cdph+cph[0]*sdph; cph[0]=tmp;
xue@1 582 cdm_1ph=1, sdm_1ph=0, cdmph=cdph, sdmph=sdph, cdph2=2*cdph;
xue@1 583
xue@1 584 for (int m=1; m<M; m++)
xue@1 585 {
xue@1 586 data[i]+=a[m]*cph[m]; a[m]+=da[m]; da[m]+=dda[m]; dda[m]+=ddda[m];
xue@1 587 // asm{mov ecx,m} asm{mov eax,a} asm{fld qword ptr [eax+ecx*8]} asm{mov edx,cph} asm{fld qword ptr [edx+ecx*8]} asm{fmul st(0),st(1)} asm{mov edx,data} asm{mov ebx,i} asm{fadd qword ptr [edx+ebx*8]} asm{fstp qword ptr [edx+ebx*8]} asm{mov edx,da} asm{fld qword ptr [edx+ecx*8]} asm{fadd st(1),st(0)} asm{mov ebx,dda} asm{fld qword ptr [ebx+ecx*8]} asm{fadd st(1),st(0)} asm{mov edi,ddda} asm{fadd qword ptr [edi+ecx*8]} asm{fstp qword ptr [ebx+ecx*8]} asm{fstp qword ptr [edx+ecx*8]} asm{fstp qword ptr [eax+ecx*8]}
xue@1 588 tmp=cdmph, tmp2=sdmph;
xue@1 589 cdmph=cdmph*cdph2-cdm_1ph; sdmph=sdmph*cdph2-sdm_1ph;
xue@1 590 cdm_1ph=tmp, sdm_1ph=tmp2;
xue@1 591
xue@1 592 tmp=cph[m]*cdmph-sph[m]*sdmph; sph[m]=sph[m]*cdmph+cph[m]*sdmph; cph[m]=tmp;
xue@1 593 // asm{mov ecx,m} asm{mov eax,cph} asm{fld qword ptr [eax+ecx*8]} asm{mov edx,sph} asm{fld qword ptr [edx+ecx*8]} asm{fld st(1)} asm{fmul sdmph} asm{fld st(1)} asm{fmul sdmph} asm{fld cdmph} asm{fmul st(4),st(0)} asm{fmulp st(3),st(0)} asm{fsubp st(3),st(0)} asm{faddp} asm{fstp qword ptr [edx+ecx*8]} asm{fstp qword ptr [eax+ecx*8]}
xue@1 594 }
xue@1 595
xue@1 596 tmp=cdph*cddph-sdph*sddph; sdph=sdph*cddph+cdph*sddph; cdph=tmp;
xue@1 597 tmp=cddph*cdddph-sddph*sdddph; sddph=sddph*cdddph+cddph*sdddph; cddph=tmp;
xue@1 598 tmp=cdddph*cddddph-sdddph*sddddph; sdddph=sdddph*cddddph+cdddph*sddddph; cdddph=tmp;
xue@1 599 }
xue@1 600 }
xue@1 601 else
xue@1 602 {
xue@1 603 }
xue@1 604 free8(a);
xue@1 605 }//Sinusoids*/
xue@1 606
xue@1 607 /*
xue@1 608 function Sinusoid: synthesizes sinusoid piece from trinomial frequency and amplitude coefficients.
xue@1 609
xue@1 610 In: CountSt, CountEn
xue@1 611 aa, ab, ac, ad: trinomial coefficients of amplitude.
xue@1 612 fa, fb, fc, fd: trinomial coefficients of frequency.
xue@1 613 ph0, ph2: phase angles at 0 and CountEn.
xue@1 614 add: specifies if the resynthesized sinusoid is to be added to or to replace the content of output buffer
xue@1 615 Out: data[CountSt:CountEn-1]: output buffer.
xue@1 616
xue@1 617 No return value.
xue@1 618 */
xue@1 619 void Sinusoid(double* data, int CountSt, int CountEn, double aa, double ab, double ac, double ad,
xue@1 620 double fa, double fb, double fc, double fd, double ph0, double ph2, bool add)
xue@1 621 {
xue@1 622 double pend=ph0+2*M_PI*CountEn*(fd+CountEn*(fc/2+CountEn*(fb/3+CountEn*fa/4)));
xue@1 623 int k=floor((pend-ph2)/2/M_PI+0.5);
xue@1 624 double d=ph2-pend+2*M_PI*k;
xue@1 625 double p=-2*d/CountEn/CountEn/CountEn;
xue@1 626 double q=3*d/CountEn/CountEn, a, ph;
xue@1 627 for (int i=CountSt; i<CountEn; i++)
xue@1 628 {
xue@1 629 a=ad+i*(ac+i*(ab+i*aa)); if (a<0) a=0;
xue@1 630 ph=ph0+2*M_PI*i*(fd+i*((fc/2)+i*((fb/3)+i*fa/4)))+i*i*(q+i*p);
xue@1 631 if (add) data[i]+=a*cos(ph);
xue@1 632 else data[i]=a*cos(ph);
xue@1 633 }
xue@1 634 }//Sinusoid
xue@1 635
xue@1 636 /*
xue@1 637 function Sinusoid: synthesizes sinusoid piece from trinomial frequency and amplitude coefficients,
xue@1 638 returning sinusoid coefficients instead of waveform.
xue@1 639
xue@1 640 In: CountSt, CountEn
xue@1 641 aa, ab, ac, ad: trinomial coefficients of amplitude (or log amplitude if LogA=true)
xue@1 642 fa, fb, fc, fd: trinomial coefficients of frequency.
xue@1 643 ph0, ph2: phase angles at 0 and CountEn.
xue@1 644 LogA: specifies whether log amplitude or amplitude is a trinomial
xue@1 645 Out: f[CountSt:CountEn-1], a[CountSt:CountEn-1], ph[CountSt:CountEn-1]: synthesized sinusoid parameters
xue@1 646 da[CountSt:CountEn-1]: derivative of synthesized amplitude, optional
xue@1 647
xue@1 648 No return value.
xue@1 649 */
xue@1 650 void Sinusoid(double* f, double* a, double* ph, double* da, int CountSt, int CountEn, double aa, double ab,
xue@1 651 double ac, double ad, double fa, double fb, double fc, double fd, double ph0, double ph2, bool LogA)
xue@1 652 {
xue@1 653 double pend=ph0+2*M_PI*CountEn*(fd+CountEn*(fc/2+CountEn*(fb/3+CountEn*fa/4)));
xue@1 654 int k=floor((pend-ph2)/2/M_PI+0.5);
xue@1 655 double d=ph2-pend+2*M_PI*k;
xue@1 656 double p=-2*d/CountEn/CountEn/CountEn;
xue@1 657 double q=3*d/CountEn/CountEn;
xue@1 658 if (LogA) for (int i=CountSt; i<CountEn; i++)
xue@1 659 {
xue@1 660 a[i]=exp(ad+i*(ac+i*(ab+i*aa)));
xue@1 661 if (da) da[i]=a[i]*(ac+i*(2*ab+i*3*aa));
xue@1 662 f[i]=fd+i*(fc+i*(fb+i*fa))+i*(2*q+3*i*p)/(2*M_PI);
xue@1 663 ph[i]=ph0+2*M_PI*i*(fd+i*((fc/2)+i*((fb/3)+i*fa/4)))+i*i*(q+i*p);
xue@1 664 }
xue@1 665 else for (int i=CountSt; i<CountEn; i++)
xue@1 666 {
xue@1 667 a[i]=ad+i*(ac+i*(ab+i*aa));
xue@1 668 if (da) da[i]=ac+i*(2*ab+i*3*aa);
xue@1 669 f[i]=fd+i*(fc+i*(fb+i*fa))+i*(2*q+3*i*p)/(2*M_PI);
xue@1 670 ph[i]=ph0+2*M_PI*i*(fd+i*((fc/2)+i*((fb/3)+i*fa/4)))+i*i*(q+i*p);
xue@1 671 }
xue@1 672 }//Sinusoid
xue@1 673
xue@1 674 /*
xue@1 675 function Sinusoid: generates trinomial frequency and phase with phase correction.
xue@1 676
xue@1 677 In: CountSt, CountEn
xue@1 678 fa, fb, fc, fd: trinomial coefficients of frequency.
xue@1 679 ph0, ph2: phase angles at 0 and CountEn.
xue@1 680 Out: f[CountSt:CountEn-1], ph[CountSt:CountEn-1]: output buffers holding frequency and phase.
xue@1 681
xue@1 682 No return value.
xue@1 683 */
xue@1 684 void Sinusoid(double* f, double* ph, int CountSt, int CountEn, double fa, double fb,
xue@1 685 double fc, double fd, double ph0, double ph2)
xue@1 686 {
xue@1 687 double pend=ph0+2*M_PI*CountEn*(fd+CountEn*(fc/2+CountEn*(fb/3+CountEn*fa/4)));
xue@1 688 int k=floor((pend-ph2)/2/M_PI+0.5);
xue@1 689 double d=ph2-pend+2*M_PI*k;
xue@1 690 double p=-2*d/CountEn/CountEn/CountEn;
xue@1 691 double q=3*d/CountEn/CountEn;
xue@1 692 for (int i=CountSt; i<CountEn; i++)
xue@1 693 {
xue@1 694 f[i]=fd+i*(fc+i*(fb+i*fa))+i*(2*q+3*i*p)/(2*M_PI);
xue@1 695 ph[i]=ph0+2*M_PI*i*(fd+i*((fc/2)+i*((fb/3)+i*fa/4)))+i*i*(q+i*p);
xue@1 696 }
xue@1 697 }//Sinusoid
xue@1 698
xue@1 699 /*
xue@1 700 function SynthesizeSinusoid: synthesizes a time-varying sinusoid from a sequence of frequencies and amplitudes
xue@1 701
xue@1 702 In: xs[Fr]: measurement points, should be integers although *xs has double type.
xue@1 703 fs[Fr], as[Fr]: sequence of frequencies and amplitudes at xs[Fr]
xue@1 704 phs[0]: initial phase angle at (int)xs[0].
xue@1 705 dst, den: start and end time of synthesis, dst<=xs[0], den>=xs[Fr-1]
xue@1 706 add: specifies if the resynthesized sinusoid is to be added to or to replace the content of output buffer
xue@1 707 Out: xrec[0:den-dst-1]: output buffer hosting synthesized sinusoid from dst to den.
xue@1 708 phs[Fr]: phase angles at xs[Fr]
xue@1 709
xue@1 710 Returns pointer to xrec.
xue@1 711 */
xue@1 712 double* SynthesizeSinusoid(double* xrec, int dst, int den, double* phs, int Fr, double* xs, double* fs, double* as, bool add, bool* terminatetag)
xue@1 713 {
xue@1 714 double *f3=new double[Fr*8], *f2=&f3[Fr], *f1=&f3[Fr*2], *f0=&f3[Fr*3],
xue@1 715 *a3=&f3[Fr*4], *a2=&a3[Fr], *a1=&a3[Fr*2], *a0=&a3[Fr*3];
xue@1 716 CubicSpline(Fr-1, f3, f2, f1, f0, xs, fs, 1, 1);
xue@1 717 CubicSpline(Fr-1, a3, a2, a1, a0, xs, as, 1, 1);
xue@1 718 double ph=phs[0];
xue@1 719 for (int fr=0; fr<Fr-1; fr++)
xue@1 720 {
xue@1 721 phs[fr]=ph;
xue@1 722 ALIGN8(Sinusoid(&xrec[(int)xs[fr]-dst], 0, xs[fr+1]-xs[fr], a3[fr], a2[fr], a1[fr], a0[fr], f3[fr], f2[fr], f1[fr], f0[fr], ph, add);)
xue@1 723 if (terminatetag && *terminatetag) {delete[] f3; return 0;}
xue@1 724 }
xue@1 725 phs[Fr-1]=ph;
xue@1 726 ALIGN8(Sinusoid(&xrec[(int)xs[Fr-2]-dst], xs[Fr-1]-xs[Fr-2], den-xs[Fr-2], a3[Fr-2], a2[Fr-2], a1[Fr-2], a0[Fr-2], f3[Fr-2], f2[Fr-2], f1[Fr-2], f0[Fr-2], ph, add);
xue@1 727 Sinusoid(&xrec[(int)xs[0]-dst], dst-xs[0], 0, a3[0], a2[0], a1[0], a0[0], f3[0], f2[0], f1[0], f0[0], phs[0], add);)
xue@1 728 delete[] f3;
xue@1 729 return xrec;
xue@1 730 }//SynthesizeSinusoid
xue@1 731
xue@1 732 /*
xue@1 733 function ShiftTrinomial: shifts the origin of a trinomial from 0 to T
xue@1 734
xue@1 735 In: a3, a2, a1, a0.
xue@1 736 Out: b3, b2, b1, b0, so that a3*x^3+a2*x^2+a1*x+a0=b3(x-T)^3+b2(x-T)^2+b1(x-T)+b0
xue@1 737
xue@1 738 No return value.
xue@1 739 */
xue@1 740 void ShiftTrinomial(double T, double& b3, double& b2, double& b1, double& b0, double a3, double a2, double a1, double a0)
xue@1 741 {
xue@1 742 b3=a3;
xue@1 743 b2=a2+T*3*b3;
xue@1 744 b1=a1+T*(2*b2-T*3*b3);
xue@1 745 b0=a0+T*(b1-T*(b2-T*b3));
xue@1 746 }//ShiftTrinomial
xue@1 747
xue@1 748 /*
xue@1 749 function SynthesizeSinusoidP: synthesizes a time-varying sinusoid from a sequence of frequencies,
xue@1 750 amplitudes and phase angles
xue@1 751
xue@1 752 In: xs[Fr]: measurement points, should be integers although *xs has double type.
xue@1 753 fs[Fr], as[Fr], phs[Fr]: sequence of frequencies, amplitudes and phase angles at xs[Fr]
xue@1 754 dst, den: start and end time of synthesis, dst<=xs[0], den>=xs[Fr-1]
xue@1 755 add: specifies if the resynthesized sinusoid is to be added to or to replace the content of output
xue@1 756 buffer
xue@1 757 Out: xrecm[0:den-dst-1]: output buffer hosting synthesized sinusoid from dst to den.
xue@1 758
xue@1 759 Returns pointer to xrecm.
xue@1 760 */
xue@1 761 double* SynthesizeSinusoidP(double* xrecm, int dst, int den, double* phs, int Fr, double* xs, double* fs, double* as, bool add)
xue@1 762 {
xue@1 763 double *f3=new double[Fr*8], *f2=&f3[Fr], *f1=&f3[Fr*2], *f0=&f3[Fr*3],
xue@1 764 *a3=&f3[Fr*4], *a2=&a3[Fr], *a1=&a3[Fr*2], *a0=&a3[Fr*3];
xue@1 765 CubicSpline(Fr-1, f3, f2, f1, f0, xs, fs, 1, 1);
xue@1 766 CubicSpline(Fr-1, a3, a2, a1, a0, xs, as, 1, 1);
xue@1 767 for (int fr=0; fr<Fr-1; fr++) Sinusoid(&xrecm[(int)xs[fr]-dst], 0, xs[fr+1]-xs[fr], a3[fr], a2[fr], a1[fr], a0[fr], f3[fr], f2[fr], f1[fr], f0[fr], phs[fr], phs[fr+1], add);
xue@1 768 double tmpph=phs[0]; Sinusoid(&xrecm[(int)xs[0]-dst], dst-xs[0], 0, 0, 0, 0, a0[0], f3[0], f2[0], f1[0], f0[0], tmpph, add);
xue@1 769 //extend the trinomials on [xs[Fr-2], xs[Fr-1]) based at xs[Fr-2] to beyond xs[Fr-1] based at xs[Fr-1].
xue@1 770 tmpph=phs[Fr-1];
xue@1 771 ShiftTrinomial(xs[Fr-1]-xs[Fr-2], f3[Fr-1], f2[Fr-1], f1[Fr-1], f0[Fr-1], f3[Fr-2], f2[Fr-2], f1[Fr-2], f0[Fr-2]);
xue@1 772 ShiftTrinomial(xs[Fr-1]-xs[Fr-2], a3[Fr-1], a2[Fr-1], a1[Fr-1], a0[Fr-1], a3[Fr-2], a2[Fr-2], a1[Fr-2], a0[Fr-2]);
xue@1 773 Sinusoid(&xrecm[(int)xs[Fr-1]-dst], 0, den-xs[Fr-1], 0, 0, 0, a0[Fr-1], f3[Fr-1], f2[Fr-1], f1[Fr-1], f0[Fr-1], tmpph, add);
xue@1 774 delete[] f3;
xue@1 775 return xrecm;
xue@1 776 }//SynthesizeSinusoidP