annotate multires.cpp @ 5:5f3c32dc6e17

* Adjust comment syntax to permit Doxygen to generate HTML documentation; add Doxyfile
author Chris Cannam
date Wed, 06 Oct 2010 15:19:49 +0100
parents 6422640a802f
children 977f541d6683
rev   line source
xue@1 1 //---------------------------------------------------------------------------
xue@1 2
xue@1 3 #include <math.h>
xue@1 4 #include "multires.h"
xue@1 5 #include "arrayalloc.h"
xue@1 6 #include "procedures.h"
xue@1 7
Chris@5 8 /** \file multires.h */
Chris@5 9
xue@1 10 //---------------------------------------------------------------------------
xue@1 11
xue@1 12 //function xlogx(x): returns x*log(x)
xue@1 13 inline double xlogx(double x)
xue@1 14 {
xue@1 15 if (x==0) return 0;
xue@1 16 else return x*log(x);
xue@1 17 }//xlogx
xue@1 18
xue@1 19 //macro NORMAL_: a normalization step used for tiling
xue@1 20 #define NORMAL_(A, a) A=a*(A+log(a));
xue@1 21 // #define NORMAL_(A, a) A=a*a*A;
xue@1 22 // #define NORMAL_(A, a) A=sqrt(a)*A;
xue@1 23
Chris@5 24 /**
xue@1 25 function DoCutSpectrogramSquare: find optimal tiling of a square. This is a recursive procedure.
xue@1 26
xue@1 27 In: Specs[0][1][N], Specs[1][2][N/2], ..., Specs[log2(N)][N][1], multiresolution power spectrogram
xue@1 28 e[Res]: total power of each level, e[i] equals the sum of Specs[i][][]
xue@1 29 NN: maximal tile height
xue@1 30 Out: cuts[N-1]: the tiling result
xue@1 31 ents[Res]
xue@1 32
xue@1 33 Returns the entropy of the output tiling.
xue@1 34 */
xue@1 35 double DoCutSpectrogramSquare(int* cuts, double*** Specs, double* e, int N, int NN, bool Norm, double* ents)
xue@1 36 {
xue@1 37 double result;
xue@1 38 int Res=log2(N)+1;
xue@1 39
xue@1 40 if (N==1) // 1*1 only(no cuts), returns the sample function.
xue@1 41 {
xue@1 42 double sp00;
xue@1 43 if (e[0]!=0) sp00=Specs[0][0][0]/e[0]; else sp00=0;
xue@1 44 ents[0]=xlogx(sp00);
xue@1 45 return ents[0];
xue@1 46 }
xue@1 47 else if (N==2)
xue@1 48 {
xue@1 49 double sp00, sp01, sp10, sp11;
xue@1 50 if (e[0]!=0) sp00=Specs[0][0][0]/e[0], sp01=Specs[0][0][1]/e[0]; else sp00=sp01=0;
xue@1 51 if (e[1]!=0) sp10=Specs[1][0][0]/e[1], sp11=Specs[1][1][0]/e[1]; else sp10=sp11=0;
xue@1 52 double ent0=xlogx(sp00)+xlogx(sp01);
xue@1 53 double ent1=xlogx(sp10)+xlogx(sp11);
xue@1 54 if (ent0<ent1)
xue@1 55 {
xue@1 56 cuts[0]=1;
xue@1 57 ents[0]=0, ents[1]=ent1;
xue@1 58 }
xue@1 59 else
xue@1 60 {
xue@1 61 cuts[0]=0;
xue@1 62 ents[0]=ent0, ents[1]=0;
xue@1 63 }
xue@1 64 }
xue@1 65 else
xue@1 66 {
xue@1 67 int* tmpcuts=new int[N-2];
xue@1 68 int *lcuts, *rcuts;
xue@1 69 double ***lSpecs, ***rSpecs, *el, *er, ent0, ent1, a;
xue@1 70 double *entl0=new double[Res-1], *entr0=new double[Res-1],
xue@1 71 *entl1=new double[Res-1], *entr1=new double[Res-1];
xue@1 72 //vertical cuts: l->left half, r->right half
xue@1 73 if (N<=NN)
xue@1 74 {
xue@1 75 lcuts=&cuts[1], rcuts=&cuts[N/2];
xue@1 76 VSplitSpecs(N, Specs, lSpecs, rSpecs);
xue@1 77 el=new double[Res-1], er=new double[Res-1];
xue@1 78 memset(el, 0, sizeof(double)*(Res-1)); memset(er, 0, sizeof(double)*(Res-1));
xue@1 79 if (Norm)
xue@1 80 {
xue@1 81 //normalization
xue@1 82 for (int i=0, Fr=1, n=N/2; i<Res-1; i++, Fr*=2, n/=2)
xue@1 83 for (int j=0; j<Fr; j++) for (int k=0; k<n; k++)
xue@1 84 el[i]+=lSpecs[i][j][k], er[i]+=rSpecs[i][j][k];
xue@1 85 }
xue@1 86 else
xue@1 87 for (int i=0; i<Res-1; i++) el[i]=er[i]=1;
xue@1 88
xue@1 89 DoCutSpectrogramSquare(lcuts, lSpecs, el, N/2, NN, Norm, entl1);
xue@1 90 DoCutSpectrogramSquare(rcuts, rSpecs, er, N/2, NN, Norm, entr1);
xue@1 91
xue@1 92 ent1=0;
xue@1 93
xue@1 94 for (int i=0; i<Res-1; i++)
xue@1 95 {
xue@1 96 if (e[i]!=0)
xue@1 97 {
xue@1 98 a=el[i]/e[i]; if (a>0) {NORMAL_(entl1[i], a);} else entl1[i]=0; ent1=ent1+entl1[i];
xue@1 99 a=er[i]/e[i]; if (a>0) {NORMAL_(entr1[i], a);} else entr1[i]=0; ent1=ent1+entr1[i];
xue@1 100 }
xue@1 101 else
xue@1 102 entl1[i]=entr1[i]=0;
xue@1 103 }
xue@1 104
xue@1 105 DeAlloc2(lSpecs); DeAlloc2(rSpecs);
xue@1 106 delete[] el; delete[] er;
xue@1 107
xue@1 108 }
xue@1 109 //horizontal cuts: l->lower half, r->upper half
xue@1 110 lcuts=tmpcuts, rcuts=&tmpcuts[N/2-1];
xue@1 111 HSplitSpecs(N, Specs, lSpecs, rSpecs);
xue@1 112 el=new double[Res-1], er=new double[Res-1];
xue@1 113 memset(el, 0, sizeof(double)*(Res-1)); memset(er, 0, sizeof(double)*(Res-1));
xue@1 114 if (Norm)
xue@1 115 {
xue@1 116 //normalization
xue@1 117 for (int i=0, Fr=1, n=N/2; i<Res-1; i++, Fr*=2, n/=2)
xue@1 118 for (int j=0; j<Fr; j++) for (int k=0; k<n; k++)
xue@1 119 el[i]+=lSpecs[i][j][k], er[i]+=rSpecs[i][j][k];
xue@1 120 }
xue@1 121 else
xue@1 122 for (int i=0; i<Res-1; i++) el[i]=er[i]=1;
xue@1 123
xue@1 124 DoCutSpectrogramSquare(lcuts, lSpecs, el, N/2, NN, Norm, entl0);
xue@1 125 DoCutSpectrogramSquare(rcuts, rSpecs, er, N/2, NN, Norm, entr0);
xue@1 126
xue@1 127 ent0=0;
xue@1 128
xue@1 129 if (Norm)
xue@1 130 for (int i=0; i<Res-1; i++)
xue@1 131 {
xue@1 132 if (e[i]!=0)
xue@1 133 {
xue@1 134 a=el[i]/e[i]; if (a>0) {NORMAL_(entl0[i], a);} else entl0[i]=0; ent0=ent0+entl0[i];
xue@1 135 a=er[i]/e[i]; if (a>0) {NORMAL_(entr0[i], a);} else entr0[i]=0; ent0=ent0+entr0[i];
xue@1 136 }
xue@1 137 else
xue@1 138 entl0[i]=entr0[i]=0;
xue@1 139 }
xue@1 140
xue@1 141 DeAlloc2(lSpecs); DeAlloc2(rSpecs);
xue@1 142 delete[] el; delete[] er;
xue@1 143
xue@1 144 if (N<=NN && ent0<ent1)
xue@1 145 {
xue@1 146 cuts[0]=1;
xue@1 147 result=ent1;
xue@1 148 for (int i=0; i<Res-1; i++)
xue@1 149 {
xue@1 150 ents[i+1]=entl1[i]+entr1[i];
xue@1 151 }
xue@1 152 ents[0]=0;
xue@1 153 }
xue@1 154 else
xue@1 155 {
xue@1 156 memcpy(&cuts[1], tmpcuts, sizeof(int)*(N-2));
xue@1 157 cuts[0]=0;
xue@1 158 result=ent0;
xue@1 159 for (int i=0; i<Res-1; i++)
xue@1 160 {
xue@1 161 ents[i]=entl0[i]+entr0[i];
xue@1 162 }
xue@1 163 ents[Res-1]=0;
xue@1 164 }
xue@1 165
xue@1 166 delete[] tmpcuts;
xue@1 167 delete[] entl0; delete[] entl1; delete[] entr0; delete[] entr1;
xue@1 168 }
xue@1 169
xue@1 170 return result;
xue@1 171 }//DoCutSpectrogramSquare
xue@1 172
Chris@5 173 /**
xue@1 174 function DoMixSpectrogramSquare: renders a composite spectrogram on a pixel grid. This is a recursive
xue@1 175 procedure.
xue@1 176
xue@1 177 In: Specs[0][1][N], Specs[1][2][N/2], Specs[2][4][N/4], ..., Specs[][N][1]: multiresolution power
xue@1 178 spectrogram
xue@1 179 cuts[N-1]: tiling
xue@1 180 X, Y: dimensions of pixel grid to render
xue@1 181 Out: Spec[X][Y]: pixel grid rendered to represent the given spectrograms and tiling
xue@1 182
xue@1 183 No return value;
xue@1 184 */
xue@1 185 void DoMixSpectrogramSquare(double** Spec, int* cuts, double*** Specs, int N, bool Norm, int X=0, int Y=0)
xue@1 186 {
xue@1 187 if (X==0 && Y==0) X=Y=N;
xue@1 188
xue@1 189 if (N==1)
xue@1 190 {
xue@1 191 double value=Specs[0][0][0];//sqrt(Specs[0][0][0]);
xue@1 192 value=value;
xue@1 193 for (int x=0; x<X; x++) for (int y=0; y<Y; y++) Spec[x][y]=value;
xue@1 194 }
xue@1 195 else
xue@1 196 {
xue@1 197 double* e;
xue@1 198 int Res;
xue@1 199
xue@1 200 if (Norm)
xue@1 201 {
xue@1 202 //normalization
xue@1 203 Res=log2(N)+1;
xue@1 204 e=new double[Res];
xue@1 205 memset(e, 0, sizeof(double)*Res);
xue@1 206 for (int i=0, Fr=1, n=N; i<Res; i++, Fr*=2, n/=2)
xue@1 207 for (int j=0; j<Fr; j++)
xue@1 208 for (int k=0; k<n; k++)
xue@1 209 e[i]+=Specs[i][j][k];
xue@1 210 double em=e[0];
xue@1 211 for (int i=1; i<Res; i++)
xue@1 212 {
xue@1 213 if (e[i]>em) e[i]=em/e[i];
xue@1 214 else e[i]=1;
xue@1 215 if (e[i]>em) em=e[i];
xue@1 216 } e[0]=1;
xue@1 217 for (int i=0, Fr=1, n=N; i<Res; i++, Fr*=2, n/=2)
xue@1 218 {
xue@1 219 if (e[i]!=0 && e[1]!=1)
xue@1 220 for (int j=0; j<Fr; j++)
xue@1 221 for (int k=0; k<n; k++)
xue@1 222 Specs[i][j][k]*=e[i];
xue@1 223 }
xue@1 224 }
xue@1 225
xue@1 226 double **lSpec, **rSpec, ***lSpecs, ***rSpecs;
xue@1 227 if (cuts[0]) //1: vertical split
xue@1 228 {
xue@1 229 VSplitSpecs(N, Specs, lSpecs, rSpecs);
xue@1 230 VSplitSpec(X, Y, Spec, lSpec, rSpec);
xue@1 231 DoMixSpectrogramSquare(lSpec, &cuts[1], lSpecs, N/2, Norm, X/2, Y);
xue@1 232 DoMixSpectrogramSquare(rSpec, &cuts[N/2], rSpecs, N/2, Norm, X/2, Y);
xue@1 233 }
xue@1 234 else //0: horizontal split
xue@1 235 {
xue@1 236 HSplitSpecs(N, Specs, lSpecs, rSpecs);
xue@1 237 HSplitSpec(X, Y, Spec, lSpec, rSpec);
xue@1 238 DoMixSpectrogramSquare(lSpec, &cuts[1], lSpecs, N/2, Norm, X, Y/2);
xue@1 239 DoMixSpectrogramSquare(rSpec, &cuts[N/2], rSpecs, N/2, Norm, X, Y/2);
xue@1 240 }
xue@1 241
xue@1 242 if (Norm)
xue@1 243 {
xue@1 244 for (int i=0, Fr=1, n=N; i<Res; i++, Fr*=2, n/=2)
xue@1 245 {
xue@1 246 if (e[i]!=0 && e[1]!=1)
xue@1 247 for (int j=0; j<Fr; j++)
xue@1 248 for (int k=0; k<n; k++)
xue@1 249 Specs[i][j][k]/=e[i];
xue@1 250 }
xue@1 251 delete[] e;
xue@1 252 }
xue@1 253
xue@1 254 delete[] lSpec; delete[] rSpec; DeAlloc2(lSpecs); DeAlloc2(rSpecs);
xue@1 255 }
xue@1 256 }//DoMixSpectrogramSquare
xue@1 257
Chris@5 258 /**
xue@1 259 function DoMixSpectrogramSquare: retrieves a composite spectrogram as a vector. This is a recursive
xue@1 260 procedure.
xue@1 261
xue@1 262 In: Specs[0][1][N], Specs[1][2][N/2], Specs[2][4][N/4], ..., Specs[][N][1]: multiresolution power
xue@1 263 spectrogram
xue@1 264 cuts[N-1]: tiling
xue@1 265 Out: Spec[N]: composite spectrogram sampled fron Specs according to tiling cut[]
xue@1 266
xue@1 267 No return value;
xue@1 268 */
xue@1 269 void DoMixSpectrogramSquare(double* Spec, int* cuts, double*** Specs, int N, bool Norm)
xue@1 270 {
xue@1 271 // if (X==0 && Y==0) X=Y=N;
xue@1 272
xue@1 273 if (N==1)
xue@1 274 Spec[0]=Specs[0][0][0];//sqrt(Specs[0][0][0]);
xue@1 275 else
xue@1 276 {
xue@1 277 double* e;
xue@1 278 int Res;
xue@1 279
xue@1 280 //Norm=false;
xue@1 281 if (Norm)
xue@1 282 {
xue@1 283 //normalization
xue@1 284 Res=log2(N)+1;
xue@1 285 e=new double[Res];
xue@1 286 memset(e, 0, sizeof(double)*Res);
xue@1 287 for (int i=0, Fr=1, n=N; i<Res; i++, Fr*=2, n/=2)
xue@1 288 for (int j=0; j<Fr; j++)
xue@1 289 for (int k=0; k<n; k++)
xue@1 290 e[i]+=Specs[i][j][k];
xue@1 291 double em=e[0];
xue@1 292 for (int i=1; i<Res; i++)
xue@1 293 {
xue@1 294 if (e[i]>em) e[i]=em/e[i];
xue@1 295 else e[i]=1;
xue@1 296 if (e[i]>em) em=e[i];
xue@1 297 } e[0]=1;
xue@1 298 for (int i=0, Fr=1, n=N; i<Res; i++, Fr*=2, n/=2)
xue@1 299 {
xue@1 300 if (e[i]!=0 && e[i]!=1)
xue@1 301 for (int j=0; j<Fr; j++)
xue@1 302 for (int k=0; k<n; k++)
xue@1 303 Specs[i][j][k]*=e[i];
xue@1 304 }
xue@1 305 }
xue@1 306
xue@1 307 double ***lSpecs, ***rSpecs;
xue@1 308 if (cuts[0]) //1: vertical split
xue@1 309 {
xue@1 310 VSplitSpecs(N, Specs, lSpecs, rSpecs);
xue@1 311 DoMixSpectrogramSquare(Spec, &cuts[1], lSpecs, N/2, Norm);
xue@1 312 DoMixSpectrogramSquare(&Spec[N/2], &cuts[N/2], rSpecs, N/2, Norm);
xue@1 313 }
xue@1 314 else //0: horizontal split
xue@1 315 {
xue@1 316 HSplitSpecs(N, Specs, lSpecs, rSpecs);
xue@1 317 DoMixSpectrogramSquare(Spec, &cuts[1], lSpecs, N/2, Norm);
xue@1 318 DoMixSpectrogramSquare(&Spec[N/2], &cuts[N/2], rSpecs, N/2, Norm);
xue@1 319 }
xue@1 320
xue@1 321 if (Norm)
xue@1 322 {
xue@1 323 for (int i=0, Fr=1, n=N; i<Res; i++, Fr*=2, n/=2)
xue@1 324 {
xue@1 325 if (e[i]!=0 && e[1]!=1)
xue@1 326 for (int j=0; j<Fr; j++)
xue@1 327 for (int k=0; k<n; k++)
xue@1 328 Specs[i][j][k]/=e[i];
xue@1 329 }
xue@1 330 delete[] e;
xue@1 331 }
xue@1 332
xue@1 333 DeAlloc2(lSpecs); DeAlloc2(rSpecs);
xue@1 334 }
xue@1 335 }//DoMixSpectrogramSquare
xue@1 336
xue@1 337 //---------------------------------------------------------------------------
Chris@5 338 /**
xue@1 339 function HSplitSpec: split a spectrogram horizontally into lower and upper halves.
xue@1 340
xue@1 341 In: Spec[X][Y]: spectrogram to split
xue@1 342 Out: lSpec[X][Y/2], uSpec[X][Y/2]: the two half spectrograms
xue@1 343
xue@1 344 No return value. Both lSpec and uSpec are allocated anew. The caller is responsible to free these
xue@1 345 buffers.
xue@1 346 */
xue@1 347 void HSplitSpec(int X, int Y, double** Spec, double**& lSpec, double**& uSpec)
xue@1 348 {
xue@1 349 lSpec=new double*[X], uSpec=new double*[X];
xue@1 350 for (int i=0; i<X; i++)
xue@1 351 lSpec[i]=Spec[i], uSpec[i]=&Spec[i][Y/2];
xue@1 352 }//HSplitSpec
xue@1 353
Chris@5 354 /**
xue@1 355 function HSplitSpecs: split a multiresolution spectrogram horizontally into lower and upper halves
xue@1 356
xue@1 357 A full spectrogram array is given in log2(N)+1 spectrograms, with the base spec of 1*N, 1st octave of
xue@1 358 2*(N/2), ..., last octave of N*1. When this array is split into two spectrogram arrays horizontally,
xue@1 359 the last spec (with the highest time resolution). Each of the two new arrays is given in log2(N)
xue@1 360 spectrograms.
xue@1 361
xue@1 362 In: Specs[nRes+1][][]: multiresolution spectrogram
xue@1 363 Out: lSpecs[nRes][][], uSpecs[nRes][][], the two half multiresolution spectrograms
xue@1 364
xue@1 365 This function allocates two 2nd order arrays of double*, which the caller is responsible to free.
xue@1 366 */
xue@1 367 void HSplitSpecs(int N, double*** Specs, double***& lSpecs, double***& uSpecs)
xue@1 368 {
xue@1 369 int nRes=log2(N); // new number of resolutions
xue@1 370 lSpecs=new double**[nRes], uSpecs=new double**[nRes];
xue@1 371 lSpecs[0]=new double*[nRes*N/2], uSpecs[0]=new double*[nRes*N/2]; for (int i=1; i<nRes; i++) lSpecs[i]=&lSpecs[0][i*N/2], uSpecs[i]=&uSpecs[0][i*N/2];
xue@1 372 for (int i=0, Fr=1, n=N; i<nRes; i++, Fr*=2, n/=2)
xue@1 373 for (int j=0; j<Fr; j++) lSpecs[i][j]=Specs[i][j], uSpecs[i][j]=&Specs[i][j][n/2];
xue@1 374 }//HSplitSpecs
xue@1 375
xue@1 376 //---------------------------------------------------------------------------
Chris@5 377 /**
xue@1 378 function MixSpectrogramSquare: find composite spectrogram from multiresolution spectrogram,output as
xue@1 379 pixel grid
xue@1 380
xue@1 381 In: Specs[0][1][N], Specs[1][2][N/2], ..., Specs[Res-1][N][1], multiresolution spectrogram
xue@1 382 Out: Spec[N][N]: composite spectrogram as pixel grid (N time redundant)
xue@1 383 cuts[N-1] (optional): tiling
xue@1 384
xue@1 385 Returns entropy.
xue@1 386 */
xue@1 387 double MixSpectrogramSquare(double** Spec, double*** Specs, int N, int Res, bool Norm, bool NormMix, int* cuts=0)
xue@1 388 {
xue@1 389 int tRes=log2(N)+1;
xue@1 390 if (Res==0) Res=tRes;
xue@1 391 int NN=1<<(Res-1);
xue@1 392 bool createcuts=(cuts==0);
xue@1 393 if (createcuts) cuts=new int[N];
xue@1 394 double* e=new double[tRes], *ents=new double[tRes];
xue@1 395 //normalization
xue@1 396 memset(e, 0, sizeof(double)*Res);
xue@1 397 for (int i=0, Fr=1, n=N; i<tRes; i++, Fr*=2, n/=2)
xue@1 398 for (int j=0; j<Fr; j++)
xue@1 399 for (int k=0; k<n; k++)
xue@1 400 e[i]+=Specs[i][j][k];
xue@1 401
xue@1 402 if (!Norm)
xue@1 403 {
xue@1 404 for (int i=0, Fr=1, n=N; i<tRes; i++, Fr*=2, n/=2)
xue@1 405 {
xue@1 406 if (e[i]!=0 && e[i]!=1)
xue@1 407 for (int j=0; j<Fr; j++)
xue@1 408 for (int k=0; k<n; k++)
xue@1 409 Specs[i][j][k]/=e[i];
xue@1 410 }
xue@1 411 // for (int i=0; i<Res; i++) e[i]=1;
xue@1 412 }
xue@1 413
xue@1 414 double result=DoCutSpectrogramSquare(cuts, Specs, e, N, NN, Norm, ents);
xue@1 415 delete[] ents;
xue@1 416
xue@1 417 if (!Norm)
xue@1 418 {
xue@1 419 for (int i=0, Fr=1, n=N; i<tRes; i++, Fr*=2, n/=2)
xue@1 420 {
xue@1 421 if (e[i]!=0 && e[i]!=1)
xue@1 422 for (int j=0; j<Fr; j++)
xue@1 423 for (int k=0; k<n; k++)
xue@1 424 Specs[i][j][k]*=e[i];
xue@1 425 }
xue@1 426 }
xue@1 427 DoMixSpectrogramSquare(Spec, cuts, Specs, N, NormMix, N, N);
xue@1 428
xue@1 429 delete[] e;
xue@1 430 if (createcuts) delete[] cuts;
xue@1 431 return result;
xue@1 432 }//MixSpectrogramSquare
xue@1 433
xue@1 434 //---------------------------------------------------------------------------
Chris@5 435 /**
xue@1 436 function MixSpectrogramSquare: find composite spectrogram from multiresolution spectrogram,output as
xue@1 437 vectors
xue@1 438
xue@1 439 In: Specs[0][1][N], Specs[1][2][N/2], ..., Specs[Res-1][N][1], multiresolution spectrogram
xue@1 440 Out: spl[N-1], Spec[N]: composite spectrogram as tiling and value vectors
xue@1 441
xue@1 442 Returns entropy.
xue@1 443 */
xue@1 444 double MixSpectrogramSquare(int* spl, double* Spec, double*** Specs, int N, int Res, bool Norm, bool NormMix)
xue@1 445 {
xue@1 446 int tRes=log2(N)+1;
xue@1 447 if (Res==0) Res=tRes;
xue@1 448 int NN=1<<(Res-1);
xue@1 449
xue@1 450 double* e=new double[tRes], *ents=new double[tRes];
xue@1 451
xue@1 452 //normalization
xue@1 453 memset(e, 0, sizeof(double)*Res);
xue@1 454 for (int i=0, Fr=1, n=N; i<tRes; i++, Fr*=2, n/=2)
xue@1 455 for (int j=0; j<Fr; j++)
xue@1 456 for (int k=0; k<n; k++)
xue@1 457 e[i]+=Specs[i][j][k];
xue@1 458
xue@1 459 if (!Norm)
xue@1 460 {
xue@1 461 for (int i=0, Fr=1, n=N; i<tRes; i++, Fr*=2, n/=2)
xue@1 462 {
xue@1 463 if (e[i]!=0 && e[i]!=1)
xue@1 464 for (int j=0; j<Fr; j++)
xue@1 465 for (int k=0; k<n; k++)
xue@1 466 Specs[i][j][k]/=e[i];
xue@1 467 }
xue@1 468 // for (int i=0; i<Res; i++) e[i]=1;
xue@1 469 }
xue@1 470
xue@1 471 double result=DoCutSpectrogramSquare(spl, Specs, e, N, NN, Norm, ents);
xue@1 472 delete[] ents;
xue@1 473 if (!Norm)
xue@1 474 {
xue@1 475 for (int i=0, Fr=1, n=N; i<tRes; i++, Fr*=2, n/=2)
xue@1 476 {
xue@1 477 if (e[i]!=0 && e[i]!=1)
xue@1 478 for (int j=0; j<Fr; j++)
xue@1 479 for (int k=0; k<n; k++)
xue@1 480 Specs[i][j][k]*=e[i];
xue@1 481 }
xue@1 482 }
xue@1 483 DoMixSpectrogramSquare(Spec, spl, Specs, N, NormMix);
xue@1 484 return result;
xue@1 485 }//MixSpectrogramSquare
xue@1 486
xue@1 487 //---------------------------------------------------------------------------
Chris@5 488 /**
xue@1 489 function MixSpectrogramBlock: obtain the composite spectrogram of a waveform block as pixel grid.
xue@1 490
xue@1 491 This method deals with the effective duration of WID/2 samples of a frame of WID samples. The maximal
xue@1 492 frame width is WID, minimal frame width is wid. The spectrum with frame width WID (base) is given in
xue@1 493 lSpecs[0][0], the spectra with frame width WID/2 (1st octave) is given in lSpecs[1][0] & lSpecs[1][1],
xue@1 494 etc.
xue@1 495
xue@1 496 The output Spec[WID/wid][WID] is a spectrogram sampled from lSpecs, with a redundancy factor WID/wid.
xue@1 497 The sampling is optimized so that a maximal entropy is achieved globally. This maximal entropy is
xue@1 498 returned.
xue@1 499
xue@1 500 In: Specs[0][1][WID], Specs[1][2][WID/2], ..., Specs[Res-1][WID/wid][wid], multiresolution spectrogram
xue@1 501 Out: Spec[WID/wid][WID], composite spectrogram as pixel grid
xue@1 502 cuts[wid][WID/wid-1] (optional), tilings of the wid squares the block is divided into.
xue@1 503
xue@1 504 Returns entropy.
xue@1 505 */
xue@1 506 double MixSpectrogramBlock(double** Spec, double*** Specs, int WID, int wid, bool norm, bool normmix, int** cuts=0)
xue@1 507 {
xue@1 508 int N=WID/wid, Res=log2(WID/wid)+1;
xue@1 509 double result=0, **lSpec=new double*[N], ***lSpecs=new double**[Res];
xue@1 510 lSpecs[0]=new double*[Res*N]; for (int i=1; i<Res; i++) lSpecs[i]=&lSpecs[0][i*N];
xue@1 511
xue@1 512 bool createcuts=(cuts==0);
xue@1 513 if (createcuts)
xue@1 514 {
xue@1 515 cuts=new int*[wid];
xue@1 516 memset(cuts, 0, sizeof(int*)*wid);
xue@1 517 }
xue@1 518
xue@1 519 for (int i=0; i<wid; i++)
xue@1 520 {
xue@1 521 for (int j=0; j<N; j++)
xue@1 522 lSpec[j]=&Spec[j][i*N];
xue@1 523 for (int j=0, n=N, Fr=1; j<Res; j++, n/=2, Fr*=2)
xue@1 524 {
xue@1 525 for (int k=0; k<Fr; k++)
xue@1 526 lSpecs[j][k]=&Specs[j][k][i*n];
xue@1 527 }
xue@1 528
xue@1 529 int Log2N=log2(N);
xue@1 530 if (i==0)
xue@1 531 result+=MixSpectrogramSquare(lSpec, lSpecs, N, Log2N>2?(log2(N)-1):2, norm, normmix, cuts[i]);
xue@1 532 else if (i==1)
xue@1 533 result+=MixSpectrogramSquare(lSpec, lSpecs, N, Log2N>1?Log2N:2, norm, normmix, cuts[i]);
xue@1 534 else
xue@1 535 result+=MixSpectrogramSquare(lSpec, lSpecs, N, Log2N+1, norm, normmix, cuts[i]);
xue@1 536 }
xue@1 537 delete[] lSpec;
xue@1 538 DeAlloc2(lSpecs);
xue@1 539 if (createcuts) delete[] cuts;
xue@1 540 return result;
xue@1 541 }//MixSpectrogramBlock
xue@1 542
Chris@5 543 /**
xue@1 544 function MixSpectrogramBlock: obtain the composite spectrogram of a waveform block as vectors.
xue@1 545
xue@1 546 In: Specs[0][1][WID], Specs[1][2][WID/2], ..., Specs[Res-1][WID/wid][wid], multiresolution spectrogram
xue@1 547 Out: spl[WID], Spec[WID], composite spectrogram as tiling and value vectors. Each of the vectors is
xue@1 548 made up of $wid subvectors, each subvector pair describing a N*N block of the composite
xue@1 549 spectrogram.
xue@1 550
xue@1 551 Returns entropy.
xue@1 552 */
xue@1 553 double MixSpectrogramBlock(int* spl, double* Spec, double*** Specs, int WID, int wid, bool norm, bool normmix)
xue@1 554 {
xue@1 555 int N=WID/wid, Res=log2(WID/wid)+1, *lspl;
xue@1 556 double result=0, *lSpec, ***lSpecs=new double**[Res];
xue@1 557 lSpecs[0]=new double*[Res*N]; for (int i=1; i<Res; i++) lSpecs[i]=&lSpecs[0][i*N];
xue@1 558
xue@1 559 for (int i=0; i<wid; i++)
xue@1 560 {
xue@1 561 lspl=&spl[i*N];
xue@1 562 lSpec=&Spec[i*N];
xue@1 563 for (int j=0, n=N, Fr=1; j<Res; j++, n/=2, Fr*=2)
xue@1 564 {
xue@1 565 for (int k=0; k<Fr; k++)
xue@1 566 lSpecs[j][k]=&Specs[j][k][i*n];
xue@1 567 }
xue@1 568 int Log2N=log2(N);
xue@1 569 /*
xue@1 570 if (i==0)
xue@1 571 result+=MixSpectrogramSquare(lspl, lSpec, lSpecs, N, Log2N>2?(log2(N)-1):2, norm, normmix);
xue@1 572 else if (i==1)
xue@1 573 result+=MixSpectrogramSquare(lspl, lSpec, lSpecs, N, Log2N>1?Log2N:2, norm, normmix);
xue@1 574 else */
xue@1 575 result+=MixSpectrogramSquare(lspl, lSpec, lSpecs, N, Log2N+1, norm, normmix);
xue@1 576
xue@1 577 }
xue@1 578 DeAlloc2(lSpecs);
xue@1 579
xue@1 580 return result;
xue@1 581 }//MixSpectrogramBlock
xue@1 582
xue@1 583
xue@1 584 //---------------------------------------------------------------------------
Chris@5 585 /**
Chris@5 586 functions names as ...Block2(...) implement the same functions as the above directly without
xue@1 587 explicitly dividing the multiresolution spectrogram into square blocks.
xue@1 588 */
xue@1 589
Chris@5 590 /**
xue@1 591 function DoCutSpectrogramBlock2: find optimal tiling for a block
xue@1 592
xue@1 593 In: Specs[R0][x0:x0+x-1][Y0:Y0+Y-1], [R0+1][2x0:2x0+2x-1][Y0/2:Y0/2+Y/2-1],...,
xue@1 594 Specs[R0+?][Nx0:Nx0+Nx-1][Y0/N:Y0/N+Y/N-1], multiresolution spectrogram
xue@1 595 Out: spl[Y-1], tiling of this block
xue@1 596
xue@1 597 Returns entropy.
xue@1 598 */
xue@1 599 double DoCutSpectrogramBlock2(int* spl, double*** Specs, int Y, int R0, int x0, int Y0, int N, double& ene)
xue@1 600 {
xue@1 601 double ent=0;
xue@1 602 if (Y>N) //N=WID/wid, the actual square size
xue@1 603 {
xue@1 604 spl[0]=0;
xue@1 605 double ene1, ene2;
xue@1 606 ent+=DoCutSpectrogramBlock2(&spl[1], Specs, Y/2, R0, x0, Y0, N, ene1);
xue@1 607 ent+=DoCutSpectrogramBlock2(&spl[Y/2], Specs, Y/2, R0, x0, Y0+Y/2, N, ene2);
xue@1 608 ene=ene1+ene2;
xue@1 609 }
xue@1 610 else if (N==1)
xue@1 611 {
xue@1 612 double tmp=Specs[R0][x0][Y0];
xue@1 613 ene=tmp;
xue@1 614 ent=xlogx(tmp);
xue@1 615 }
xue@1 616 else //Y==N, the square case
xue@1 617 {
xue@1 618 double enel, ener, enet, eneb, entl, entr, entt, entb;
xue@1 619 int* tmpspl=new int[Y];
xue@1 620 entl=DoCutSpectrogramBlock2(&spl[1], Specs, Y/2, R0+1, 2*x0, Y0/2, N/2, enel);
xue@1 621 entr=DoCutSpectrogramBlock2(&spl[Y/2], Specs, Y/2, R0+1, 2*x0+1, Y0/2, N/2, ener);
xue@1 622 entb=DoCutSpectrogramBlock2(&tmpspl[1], Specs, Y/2, R0, x0, Y0, N/2, eneb);
xue@1 623 entt=DoCutSpectrogramBlock2(&tmpspl[Y/2], Specs, Y/2, R0, x0, Y0+Y/2, N/2, enet);
xue@1 624 double ene0=enet+eneb, ene1=enel+ener, ent0=entt+entb, ent1=entl+entr;
xue@1 625 //normalize
xue@1 626 double eneres=1-(ene0+ene1)/2, norment0, norment1;
xue@1 627 //double a0=1/(ene0+eneres), a1=1/(ene1+eneres);
xue@1 628 //quasi-global normalization
xue@1 629 norment0=(ent0-ene0*log(ene0+eneres))/(ene0+eneres), norment1=(ent1-ene1*log(ene1+eneres))/(ene1+eneres);
xue@1 630 //local normalization
xue@1 631 //if (ene0>0) norment0=ent0/ene0-log(ene0); else norment0=0; if (ene1>0) norment1=ent1/ene1-log(ene1); else norment1=0;
xue@1 632 if (norment1<norment0)
xue@1 633 {
xue@1 634 spl[0]=0;
xue@1 635 ent=ent0, ene=ene0;
xue@1 636 memcpy(&spl[1], &tmpspl[1], sizeof(int)*(Y-2));
xue@1 637 }
xue@1 638 else
xue@1 639 {
xue@1 640 spl[0]=1;
xue@1 641 ent=ent1, ene=ene1;
xue@1 642 }
xue@1 643 }
xue@1 644 return ent;
xue@1 645 }//DoCutSpectrogramBlock2
xue@1 646
Chris@5 647 /**
xue@1 648 function DoMixSpectrogramBlock2: sampling multiresolution spectrogram according to given tiling
xue@1 649
xue@1 650 In: Specs[R0][x0:x0+x-1][Y0:Y0+Y-1], [R0+1][2x0:2x0+2x-1][Y0/2:Y0/2+Y/2-1],...,
xue@1 651 Specs[R0+?][Nx0:Nx0+Nx-1][Y0/N:Y0/N+Y/N-1], multiresolution spectrogram
xue@1 652 spl[Y-1]; tiling of this block
xue@1 653 Out: Spec[Y], composite spectrogram as value vector
xue@1 654
xue@1 655 Returns 0.
xue@1 656 */
xue@1 657 double DoMixSpectrogramBlock2(int* spl, double* Spec, double*** Specs, int Y, int R0, int x0, int Y0, bool normmix, int res, double* e)
xue@1 658 {
xue@1 659 if (Y==1)
xue@1 660 {
xue@1 661 Spec[0]=Specs[R0][x0][Y0]*e[0];
xue@1 662 }
xue@1 663 else
xue@1 664 {
xue@1 665 double le[32];
xue@1 666 if (normmix && Y<(1<<res))
xue@1 667 {
xue@1 668 for (int i=0, j=1, k=Y; i<res; i++, j*=2, k/=2)
xue@1 669 {
xue@1 670 double lle=0;
xue@1 671 for (int fr=0; fr<j; fr++) for (int n=0; n<k; n++) lle+=Specs[i+R0][x0+fr][Y0+n]*Specs[i+R0][x0+fr][Y0+n];
xue@1 672 lle=sqrt(lle)*e[i];
xue@1 673 if (i==0) le[0]=lle;
xue@1 674 else if (lle>le[0]*2) le[i]=e[i]*le[0]*2/lle;
xue@1 675 else le[i]=e[i];
xue@1 676 }
xue@1 677 le[0]=e[0];
xue@1 678 }
xue@1 679 else
xue@1 680 {
xue@1 681 memcpy(le, e, sizeof(double)*res);
xue@1 682 }
xue@1 683
xue@1 684 if (spl[0]==0)
xue@1 685 {
xue@1 686 int newres;
xue@1 687 if (Y>=(1<<res)) newres=res;
xue@1 688 else newres=res-1;
xue@1 689 DoMixSpectrogramBlock2(&spl[1], Spec, Specs, Y/2, R0, x0, Y0, normmix, newres, le);
xue@1 690 DoMixSpectrogramBlock2(&spl[Y/2], &Spec[Y/2], Specs, Y/2, R0, x0, Y0+Y/2, normmix, newres, le);
xue@1 691 }
xue@1 692 else
xue@1 693 {
xue@1 694 DoMixSpectrogramBlock2(&spl[1], Spec, Specs, Y/2, R0+1, x0*2, Y0/2, normmix, res-1, &le[1]);
xue@1 695 DoMixSpectrogramBlock2(&spl[Y/2], &Spec[Y/2], Specs, Y/2, R0+1, x0*2+1, Y0/2, normmix, res-1, &le[1]);
xue@1 696 }
xue@1 697 }
xue@1 698 return 0;
xue@1 699 }//DoMixSpectrogramBlock2
xue@1 700
Chris@5 701 /**
xue@1 702 function MixSpectrogramBlock2: obtain the composite spectrogram of a waveform block as vectors.
xue@1 703
xue@1 704 In: Specs[0][1][WID], Specs[1][2][WID/2], ..., Specs[Res-1][WID/wid][wid], multiresolution spectrogram
xue@1 705 Out: spl[WID], Spec[WID], composite spectrogram as tiling and value vectors. Each of the
xue@1 706 vectors is made up of $wid subvectors, each subvector pair describing a N*N block of the
xue@1 707 composite spectrogram.
xue@1 708
xue@1 709 Returns entropy.
xue@1 710 */
xue@1 711 double MixSpectrogramBlock2(int* spl, double* Spec, double*** Specs, int WID, int wid, bool normmix)
xue@1 712 {
xue@1 713 double ene[32];
xue@1 714 //find the total energy and normalize
xue@1 715 for (int i=0, Fr=1, Wid=WID; Wid>=wid; i++, Fr*=2, Wid/=2)
xue@1 716 {
xue@1 717 double lene=0;
xue@1 718 for (int fr=0; fr<Fr; fr++) for (int k=0; k<Wid; k++) lene+=Specs[i][fr][k]*Specs[i][fr][k];
xue@1 719 ene[i]=lene;
xue@1 720 if (lene!=0)
xue@1 721 {
xue@1 722 double ilene=1.0/lene;
xue@1 723 for (int fr=0; fr<Fr; fr++) for (int k=0; k<Wid; k++) Specs[i][fr][k]=Specs[i][fr][k]*Specs[i][fr][k]*ilene;
xue@1 724 }
xue@1 725 }
xue@1 726
xue@1 727 double result=DoCutSpectrogramBlock2(spl, Specs, WID, 0, 0, 0, WID/wid, ene[31]);
xue@1 728
xue@1 729 //de-normalize
xue@1 730 for (int i=0, Fr=1, Wid=WID; Wid>=wid; i++, Fr*=2, Wid/=2)
xue@1 731 {
xue@1 732 double lene=ene[i];
xue@1 733 if (lene!=0)
xue@1 734 for (int fr=0; fr<Fr; fr++) for (int k=0; k<Wid; k++) Specs[i][fr][k]=sqrt(Specs[i][fr][k]*lene);
xue@1 735 }
xue@1 736
xue@1 737 double e[32]; for (int i=0; i<32; i++) e[i]=1;
xue@1 738 DoMixSpectrogramBlock2(spl, Spec, Specs, WID, 0, 0, 0, normmix, log2(WID/wid)+1, e);
xue@1 739 return result;
xue@1 740 }//MixSpectrogramBlock2
xue@1 741
xue@1 742 //---------------------------------------------------------------------------
Chris@5 743 /**
xue@1 744 function MixSpectrogram: obtain composite spectrogram from multiresolutin spectrogram as pixel grid
xue@1 745
xue@1 746 This method deals with Fr (base) frames of WID samples. Each base frame may be divided into 2 1st-
xue@1 747 octave frames, 4 2nd-octave frames, ..., etc. The spectrogram calculated on base frame is given in
xue@1 748 Specs[0] (Fr frames); that of 1st octave is given in Specs[1] (2*Fr frames); etc. The method resamples
xue@1 749 the spectrograms of different frame width into a single spectrogram so that the entropy is maximized
xue@1 750 globally.
xue@1 751
xue@1 752 The output Spec is a spectrogram of apparent resolution WID at hop size wid. It is a redundant
xue@1 753 representation, with equal values occupying blocks of size WID/wid.
xue@1 754
xue@1 755 In: Specs[0][Fr][WID], Specs[1][Fr*2][WID/2], ..., Specs[Res-1] [Fr*(WID/wid)][wid], multiresolution
xue@1 756 spectrogram
xue@1 757 Out: Spec[Fr*(WID/wid)][WID], composite spectrogram as pixel grid
xue@1 758 cuts[Fr][wid][N=Wid/wid], tilings of small square blocks
xue@1 759 Returns 0.
xue@1 760 */
xue@1 761 double MixSpectrogram(double** Spec, double*** Specs, int Fr, int WID, int wid, bool norm, bool normmix, int*** cuts)
xue@1 762 {
xue@1 763 //totally Fr frames of WID samples
xue@1 764 //each frame is divided into wid VERTICAL parts
xue@1 765 bool createcuts=(cuts==0);
xue@1 766 if (createcuts)
xue@1 767 {
xue@1 768 cuts=new int**[Fr];
xue@1 769 memset(cuts, 0, sizeof(int**)*Fr);
xue@1 770 }
xue@1 771 int Res=log2(WID/wid)+1;
xue@1 772 double*** lSpecs=new double**[Res];
xue@1 773 for (int i=0; i<Fr; i++)
xue@1 774 {
xue@1 775 for (int j=0, nfr=1; j<Res; j++, nfr*=2) lSpecs[j]=&Specs[j][i*nfr];
xue@1 776 MixSpectrogramBlock(&Spec[i*WID/wid], lSpecs, WID, wid, norm, normmix, cuts[i]);
xue@1 777 }
xue@1 778
xue@1 779 delete[] lSpecs;
xue@1 780 if (createcuts) delete[] cuts;
xue@1 781 return 0;
xue@1 782 }//MixSpectrogram
xue@1 783
Chris@5 784 /**
xue@1 785 function MixSpectrogram: obtain composite spectrogram from multiresolutin spectrogram as vectors
xue@1 786
xue@1 787 In: Specs[0][Fr][WID], Specs[1][Fr*2][WID/2], ..., Specs[Res-1] [Fr*(WID/wid)][wid], multiresolution
xue@1 788 spectrogram
xue@1 789 Out: spl[Fr][WID], Spec[Fr][WID], composite spectrogram as tiling and value vectors by frame.
xue@1 790
xue@1 791 Returns 0.
xue@1 792 */
xue@1 793 double MixSpectrogram(int** spl, double** Spec, double*** Specs, int Fr, int WID, int wid, bool norm, bool normmix)
xue@1 794 {
xue@1 795 //totally Fr frames of WID samples
xue@1 796 //each frame is divided into wid VERTICAL parts
xue@1 797 int Res=log2(WID/wid)+1;
xue@1 798 double*** lSpecs=new double**[Res];
xue@1 799 for (int i=0; i<Fr; i++)
xue@1 800 {
xue@1 801 for (int j=0, nfr=1; j<Res; j++, nfr*=2) lSpecs[j]=&Specs[j][i*nfr];
xue@1 802 MixSpectrogramBlock(spl[i], Spec[i], lSpecs, WID, wid, norm, normmix);
xue@1 803 // MixSpectrogramBlock2(spl[i], Spec[i], lSpecs, WID, wid, norm);
xue@1 804 }
xue@1 805
xue@1 806 delete[] lSpecs;
xue@1 807 return 0;
xue@1 808 }//MixSpectrogram
xue@1 809
xue@1 810 //---------------------------------------------------------------------------
Chris@5 811 /**
xue@1 812 function VSplitSpec: split a spectrogram vertically into left and right halves.
xue@1 813
xue@1 814 In: Spec[X][Y]: spectrogram to split
xue@1 815 Out: lSpec[X][Y/2], rSpec[X][Y/2]: the two half spectrograms
xue@1 816
xue@1 817 No return value. Both lSpec and rSpec are allocated anew. The caller is responsible to free these
xue@1 818 buffers.
xue@1 819 */
xue@1 820 void VSplitSpec(int X, int Y, double** Spec, double**& lSpec, double**& rSpec)
xue@1 821 {
xue@1 822 lSpec=new double*[X/2], rSpec=new double*[X/2];
xue@1 823 for(int i=0; i<X/2; i++)
xue@1 824 lSpec[i]=Spec[i], rSpec[i]=Spec[i+X/2];
xue@1 825 }//VSplitSpec
xue@1 826
Chris@5 827 /**
xue@1 828 function VSplitSpecs: split a multiresolution spectrogram vertically into left and right halves
xue@1 829
xue@1 830 A full spectrogram array is given in log2(N)+1 spectrograms, with the base spec of 1*N, 1st octave of
xue@1 831 2*(N/2), ..., last octave of N*1. When this array is split into two spectrogram arrays horizontally,
xue@1 832 the last spec (with the highest time resolution). Each of the two new arrays is given in log2(N)
xue@1 833 spectrograms.
xue@1 834
xue@1 835 In: Specs[nRes+1][][]: multiresolution spectrogram
xue@1 836 Out: lSpecs[nRes][][], rSpecs[nRes][][], the two half multiresolution spectrograms
xue@1 837
xue@1 838 This function allocates two 2nd order arrays of double*, which the caller is responsible to free.
xue@1 839 */
xue@1 840 void VSplitSpecs(int N, double*** Specs, double***& lSpecs, double***& rSpecs)
xue@1 841 {
xue@1 842 int nRes=log2(N); // new number of resolutions
xue@1 843 lSpecs=new double**[nRes], rSpecs=new double**[nRes];
xue@1 844 lSpecs[0]=new double*[nRes*N/2], rSpecs[0]=new double*[nRes*N/2]; for (int i=1; i<nRes; i++) lSpecs[i]=&lSpecs[0][i*N/2], rSpecs[i]=&rSpecs[0][i*N/2];
xue@1 845 for (int i=0, Fr=1; i<nRes; i++, Fr*=2)
xue@1 846 for (int j=0; j<Fr; j++)
xue@1 847 lSpecs[i][j]=Specs[i+1][j], rSpecs[i][j]=Specs[i+1][j+Fr];
xue@1 848 }//VSplitSpecs
xue@1 849
xue@1 850