Mercurial > hg > x
view multires.cpp @ 1:6422640a802f
first upload
author | Wen X <xue.wen@elec.qmul.ac.uk> |
---|---|
date | Tue, 05 Oct 2010 10:45:57 +0100 |
parents | |
children | 5f3c32dc6e17 |
line wrap: on
line source
//--------------------------------------------------------------------------- #include <math.h> #include "multires.h" #include "arrayalloc.h" #include "procedures.h" //--------------------------------------------------------------------------- //function xlogx(x): returns x*log(x) inline double xlogx(double x) { if (x==0) return 0; else return x*log(x); }//xlogx //macro NORMAL_: a normalization step used for tiling #define NORMAL_(A, a) A=a*(A+log(a)); // #define NORMAL_(A, a) A=a*a*A; // #define NORMAL_(A, a) A=sqrt(a)*A; /* function DoCutSpectrogramSquare: find optimal tiling of a square. This is a recursive procedure. In: Specs[0][1][N], Specs[1][2][N/2], ..., Specs[log2(N)][N][1], multiresolution power spectrogram e[Res]: total power of each level, e[i] equals the sum of Specs[i][][] NN: maximal tile height Out: cuts[N-1]: the tiling result ents[Res] Returns the entropy of the output tiling. */ double DoCutSpectrogramSquare(int* cuts, double*** Specs, double* e, int N, int NN, bool Norm, double* ents) { double result; int Res=log2(N)+1; if (N==1) // 1*1 only(no cuts), returns the sample function. { double sp00; if (e[0]!=0) sp00=Specs[0][0][0]/e[0]; else sp00=0; ents[0]=xlogx(sp00); return ents[0]; } else if (N==2) { double sp00, sp01, sp10, sp11; if (e[0]!=0) sp00=Specs[0][0][0]/e[0], sp01=Specs[0][0][1]/e[0]; else sp00=sp01=0; if (e[1]!=0) sp10=Specs[1][0][0]/e[1], sp11=Specs[1][1][0]/e[1]; else sp10=sp11=0; double ent0=xlogx(sp00)+xlogx(sp01); double ent1=xlogx(sp10)+xlogx(sp11); if (ent0<ent1) { cuts[0]=1; ents[0]=0, ents[1]=ent1; } else { cuts[0]=0; ents[0]=ent0, ents[1]=0; } } else { int* tmpcuts=new int[N-2]; int *lcuts, *rcuts; double ***lSpecs, ***rSpecs, *el, *er, ent0, ent1, a; double *entl0=new double[Res-1], *entr0=new double[Res-1], *entl1=new double[Res-1], *entr1=new double[Res-1]; //vertical cuts: l->left half, r->right half if (N<=NN) { lcuts=&cuts[1], rcuts=&cuts[N/2]; VSplitSpecs(N, Specs, lSpecs, rSpecs); el=new double[Res-1], er=new double[Res-1]; memset(el, 0, sizeof(double)*(Res-1)); memset(er, 0, sizeof(double)*(Res-1)); if (Norm) { //normalization for (int i=0, Fr=1, n=N/2; i<Res-1; i++, Fr*=2, n/=2) for (int j=0; j<Fr; j++) for (int k=0; k<n; k++) el[i]+=lSpecs[i][j][k], er[i]+=rSpecs[i][j][k]; } else for (int i=0; i<Res-1; i++) el[i]=er[i]=1; DoCutSpectrogramSquare(lcuts, lSpecs, el, N/2, NN, Norm, entl1); DoCutSpectrogramSquare(rcuts, rSpecs, er, N/2, NN, Norm, entr1); ent1=0; for (int i=0; i<Res-1; i++) { if (e[i]!=0) { a=el[i]/e[i]; if (a>0) {NORMAL_(entl1[i], a);} else entl1[i]=0; ent1=ent1+entl1[i]; a=er[i]/e[i]; if (a>0) {NORMAL_(entr1[i], a);} else entr1[i]=0; ent1=ent1+entr1[i]; } else entl1[i]=entr1[i]=0; } DeAlloc2(lSpecs); DeAlloc2(rSpecs); delete[] el; delete[] er; } //horizontal cuts: l->lower half, r->upper half lcuts=tmpcuts, rcuts=&tmpcuts[N/2-1]; HSplitSpecs(N, Specs, lSpecs, rSpecs); el=new double[Res-1], er=new double[Res-1]; memset(el, 0, sizeof(double)*(Res-1)); memset(er, 0, sizeof(double)*(Res-1)); if (Norm) { //normalization for (int i=0, Fr=1, n=N/2; i<Res-1; i++, Fr*=2, n/=2) for (int j=0; j<Fr; j++) for (int k=0; k<n; k++) el[i]+=lSpecs[i][j][k], er[i]+=rSpecs[i][j][k]; } else for (int i=0; i<Res-1; i++) el[i]=er[i]=1; DoCutSpectrogramSquare(lcuts, lSpecs, el, N/2, NN, Norm, entl0); DoCutSpectrogramSquare(rcuts, rSpecs, er, N/2, NN, Norm, entr0); ent0=0; if (Norm) for (int i=0; i<Res-1; i++) { if (e[i]!=0) { a=el[i]/e[i]; if (a>0) {NORMAL_(entl0[i], a);} else entl0[i]=0; ent0=ent0+entl0[i]; a=er[i]/e[i]; if (a>0) {NORMAL_(entr0[i], a);} else entr0[i]=0; ent0=ent0+entr0[i]; } else entl0[i]=entr0[i]=0; } DeAlloc2(lSpecs); DeAlloc2(rSpecs); delete[] el; delete[] er; if (N<=NN && ent0<ent1) { cuts[0]=1; result=ent1; for (int i=0; i<Res-1; i++) { ents[i+1]=entl1[i]+entr1[i]; } ents[0]=0; } else { memcpy(&cuts[1], tmpcuts, sizeof(int)*(N-2)); cuts[0]=0; result=ent0; for (int i=0; i<Res-1; i++) { ents[i]=entl0[i]+entr0[i]; } ents[Res-1]=0; } delete[] tmpcuts; delete[] entl0; delete[] entl1; delete[] entr0; delete[] entr1; } return result; }//DoCutSpectrogramSquare /* function DoMixSpectrogramSquare: renders a composite spectrogram on a pixel grid. This is a recursive procedure. In: Specs[0][1][N], Specs[1][2][N/2], Specs[2][4][N/4], ..., Specs[][N][1]: multiresolution power spectrogram cuts[N-1]: tiling X, Y: dimensions of pixel grid to render Out: Spec[X][Y]: pixel grid rendered to represent the given spectrograms and tiling No return value; */ void DoMixSpectrogramSquare(double** Spec, int* cuts, double*** Specs, int N, bool Norm, int X=0, int Y=0) { if (X==0 && Y==0) X=Y=N; if (N==1) { double value=Specs[0][0][0];//sqrt(Specs[0][0][0]); value=value; for (int x=0; x<X; x++) for (int y=0; y<Y; y++) Spec[x][y]=value; } else { double* e; int Res; if (Norm) { //normalization Res=log2(N)+1; e=new double[Res]; memset(e, 0, sizeof(double)*Res); for (int i=0, Fr=1, n=N; i<Res; i++, Fr*=2, n/=2) for (int j=0; j<Fr; j++) for (int k=0; k<n; k++) e[i]+=Specs[i][j][k]; double em=e[0]; for (int i=1; i<Res; i++) { if (e[i]>em) e[i]=em/e[i]; else e[i]=1; if (e[i]>em) em=e[i]; } e[0]=1; for (int i=0, Fr=1, n=N; i<Res; i++, Fr*=2, n/=2) { if (e[i]!=0 && e[1]!=1) for (int j=0; j<Fr; j++) for (int k=0; k<n; k++) Specs[i][j][k]*=e[i]; } } double **lSpec, **rSpec, ***lSpecs, ***rSpecs; if (cuts[0]) //1: vertical split { VSplitSpecs(N, Specs, lSpecs, rSpecs); VSplitSpec(X, Y, Spec, lSpec, rSpec); DoMixSpectrogramSquare(lSpec, &cuts[1], lSpecs, N/2, Norm, X/2, Y); DoMixSpectrogramSquare(rSpec, &cuts[N/2], rSpecs, N/2, Norm, X/2, Y); } else //0: horizontal split { HSplitSpecs(N, Specs, lSpecs, rSpecs); HSplitSpec(X, Y, Spec, lSpec, rSpec); DoMixSpectrogramSquare(lSpec, &cuts[1], lSpecs, N/2, Norm, X, Y/2); DoMixSpectrogramSquare(rSpec, &cuts[N/2], rSpecs, N/2, Norm, X, Y/2); } if (Norm) { for (int i=0, Fr=1, n=N; i<Res; i++, Fr*=2, n/=2) { if (e[i]!=0 && e[1]!=1) for (int j=0; j<Fr; j++) for (int k=0; k<n; k++) Specs[i][j][k]/=e[i]; } delete[] e; } delete[] lSpec; delete[] rSpec; DeAlloc2(lSpecs); DeAlloc2(rSpecs); } }//DoMixSpectrogramSquare /* function DoMixSpectrogramSquare: retrieves a composite spectrogram as a vector. This is a recursive procedure. In: Specs[0][1][N], Specs[1][2][N/2], Specs[2][4][N/4], ..., Specs[][N][1]: multiresolution power spectrogram cuts[N-1]: tiling Out: Spec[N]: composite spectrogram sampled fron Specs according to tiling cut[] No return value; */ void DoMixSpectrogramSquare(double* Spec, int* cuts, double*** Specs, int N, bool Norm) { // if (X==0 && Y==0) X=Y=N; if (N==1) Spec[0]=Specs[0][0][0];//sqrt(Specs[0][0][0]); else { double* e; int Res; //Norm=false; if (Norm) { //normalization Res=log2(N)+1; e=new double[Res]; memset(e, 0, sizeof(double)*Res); for (int i=0, Fr=1, n=N; i<Res; i++, Fr*=2, n/=2) for (int j=0; j<Fr; j++) for (int k=0; k<n; k++) e[i]+=Specs[i][j][k]; double em=e[0]; for (int i=1; i<Res; i++) { if (e[i]>em) e[i]=em/e[i]; else e[i]=1; if (e[i]>em) em=e[i]; } e[0]=1; for (int i=0, Fr=1, n=N; i<Res; i++, Fr*=2, n/=2) { if (e[i]!=0 && e[i]!=1) for (int j=0; j<Fr; j++) for (int k=0; k<n; k++) Specs[i][j][k]*=e[i]; } } double ***lSpecs, ***rSpecs; if (cuts[0]) //1: vertical split { VSplitSpecs(N, Specs, lSpecs, rSpecs); DoMixSpectrogramSquare(Spec, &cuts[1], lSpecs, N/2, Norm); DoMixSpectrogramSquare(&Spec[N/2], &cuts[N/2], rSpecs, N/2, Norm); } else //0: horizontal split { HSplitSpecs(N, Specs, lSpecs, rSpecs); DoMixSpectrogramSquare(Spec, &cuts[1], lSpecs, N/2, Norm); DoMixSpectrogramSquare(&Spec[N/2], &cuts[N/2], rSpecs, N/2, Norm); } if (Norm) { for (int i=0, Fr=1, n=N; i<Res; i++, Fr*=2, n/=2) { if (e[i]!=0 && e[1]!=1) for (int j=0; j<Fr; j++) for (int k=0; k<n; k++) Specs[i][j][k]/=e[i]; } delete[] e; } DeAlloc2(lSpecs); DeAlloc2(rSpecs); } }//DoMixSpectrogramSquare //--------------------------------------------------------------------------- /* function HSplitSpec: split a spectrogram horizontally into lower and upper halves. In: Spec[X][Y]: spectrogram to split Out: lSpec[X][Y/2], uSpec[X][Y/2]: the two half spectrograms No return value. Both lSpec and uSpec are allocated anew. The caller is responsible to free these buffers. */ void HSplitSpec(int X, int Y, double** Spec, double**& lSpec, double**& uSpec) { lSpec=new double*[X], uSpec=new double*[X]; for (int i=0; i<X; i++) lSpec[i]=Spec[i], uSpec[i]=&Spec[i][Y/2]; }//HSplitSpec /* function HSplitSpecs: split a multiresolution spectrogram horizontally into lower and upper halves A full spectrogram array is given in log2(N)+1 spectrograms, with the base spec of 1*N, 1st octave of 2*(N/2), ..., last octave of N*1. When this array is split into two spectrogram arrays horizontally, the last spec (with the highest time resolution). Each of the two new arrays is given in log2(N) spectrograms. In: Specs[nRes+1][][]: multiresolution spectrogram Out: lSpecs[nRes][][], uSpecs[nRes][][], the two half multiresolution spectrograms This function allocates two 2nd order arrays of double*, which the caller is responsible to free. */ void HSplitSpecs(int N, double*** Specs, double***& lSpecs, double***& uSpecs) { int nRes=log2(N); // new number of resolutions lSpecs=new double**[nRes], uSpecs=new double**[nRes]; lSpecs[0]=new double*[nRes*N/2], uSpecs[0]=new double*[nRes*N/2]; for (int i=1; i<nRes; i++) lSpecs[i]=&lSpecs[0][i*N/2], uSpecs[i]=&uSpecs[0][i*N/2]; for (int i=0, Fr=1, n=N; i<nRes; i++, Fr*=2, n/=2) for (int j=0; j<Fr; j++) lSpecs[i][j]=Specs[i][j], uSpecs[i][j]=&Specs[i][j][n/2]; }//HSplitSpecs //--------------------------------------------------------------------------- /* function MixSpectrogramSquare: find composite spectrogram from multiresolution spectrogram,output as pixel grid In: Specs[0][1][N], Specs[1][2][N/2], ..., Specs[Res-1][N][1], multiresolution spectrogram Out: Spec[N][N]: composite spectrogram as pixel grid (N time redundant) cuts[N-1] (optional): tiling Returns entropy. */ double MixSpectrogramSquare(double** Spec, double*** Specs, int N, int Res, bool Norm, bool NormMix, int* cuts=0) { int tRes=log2(N)+1; if (Res==0) Res=tRes; int NN=1<<(Res-1); bool createcuts=(cuts==0); if (createcuts) cuts=new int[N]; double* e=new double[tRes], *ents=new double[tRes]; //normalization memset(e, 0, sizeof(double)*Res); for (int i=0, Fr=1, n=N; i<tRes; i++, Fr*=2, n/=2) for (int j=0; j<Fr; j++) for (int k=0; k<n; k++) e[i]+=Specs[i][j][k]; if (!Norm) { for (int i=0, Fr=1, n=N; i<tRes; i++, Fr*=2, n/=2) { if (e[i]!=0 && e[i]!=1) for (int j=0; j<Fr; j++) for (int k=0; k<n; k++) Specs[i][j][k]/=e[i]; } // for (int i=0; i<Res; i++) e[i]=1; } double result=DoCutSpectrogramSquare(cuts, Specs, e, N, NN, Norm, ents); delete[] ents; if (!Norm) { for (int i=0, Fr=1, n=N; i<tRes; i++, Fr*=2, n/=2) { if (e[i]!=0 && e[i]!=1) for (int j=0; j<Fr; j++) for (int k=0; k<n; k++) Specs[i][j][k]*=e[i]; } } DoMixSpectrogramSquare(Spec, cuts, Specs, N, NormMix, N, N); delete[] e; if (createcuts) delete[] cuts; return result; }//MixSpectrogramSquare //--------------------------------------------------------------------------- /* function MixSpectrogramSquare: find composite spectrogram from multiresolution spectrogram,output as vectors In: Specs[0][1][N], Specs[1][2][N/2], ..., Specs[Res-1][N][1], multiresolution spectrogram Out: spl[N-1], Spec[N]: composite spectrogram as tiling and value vectors Returns entropy. */ double MixSpectrogramSquare(int* spl, double* Spec, double*** Specs, int N, int Res, bool Norm, bool NormMix) { int tRes=log2(N)+1; if (Res==0) Res=tRes; int NN=1<<(Res-1); double* e=new double[tRes], *ents=new double[tRes]; //normalization memset(e, 0, sizeof(double)*Res); for (int i=0, Fr=1, n=N; i<tRes; i++, Fr*=2, n/=2) for (int j=0; j<Fr; j++) for (int k=0; k<n; k++) e[i]+=Specs[i][j][k]; if (!Norm) { for (int i=0, Fr=1, n=N; i<tRes; i++, Fr*=2, n/=2) { if (e[i]!=0 && e[i]!=1) for (int j=0; j<Fr; j++) for (int k=0; k<n; k++) Specs[i][j][k]/=e[i]; } // for (int i=0; i<Res; i++) e[i]=1; } double result=DoCutSpectrogramSquare(spl, Specs, e, N, NN, Norm, ents); delete[] ents; if (!Norm) { for (int i=0, Fr=1, n=N; i<tRes; i++, Fr*=2, n/=2) { if (e[i]!=0 && e[i]!=1) for (int j=0; j<Fr; j++) for (int k=0; k<n; k++) Specs[i][j][k]*=e[i]; } } DoMixSpectrogramSquare(Spec, spl, Specs, N, NormMix); return result; }//MixSpectrogramSquare //--------------------------------------------------------------------------- /* function MixSpectrogramBlock: obtain the composite spectrogram of a waveform block as pixel grid. This method deals with the effective duration of WID/2 samples of a frame of WID samples. The maximal frame width is WID, minimal frame width is wid. The spectrum with frame width WID (base) is given in lSpecs[0][0], the spectra with frame width WID/2 (1st octave) is given in lSpecs[1][0] & lSpecs[1][1], etc. The output Spec[WID/wid][WID] is a spectrogram sampled from lSpecs, with a redundancy factor WID/wid. The sampling is optimized so that a maximal entropy is achieved globally. This maximal entropy is returned. In: Specs[0][1][WID], Specs[1][2][WID/2], ..., Specs[Res-1][WID/wid][wid], multiresolution spectrogram Out: Spec[WID/wid][WID], composite spectrogram as pixel grid cuts[wid][WID/wid-1] (optional), tilings of the wid squares the block is divided into. Returns entropy. */ double MixSpectrogramBlock(double** Spec, double*** Specs, int WID, int wid, bool norm, bool normmix, int** cuts=0) { int N=WID/wid, Res=log2(WID/wid)+1; double result=0, **lSpec=new double*[N], ***lSpecs=new double**[Res]; lSpecs[0]=new double*[Res*N]; for (int i=1; i<Res; i++) lSpecs[i]=&lSpecs[0][i*N]; bool createcuts=(cuts==0); if (createcuts) { cuts=new int*[wid]; memset(cuts, 0, sizeof(int*)*wid); } for (int i=0; i<wid; i++) { for (int j=0; j<N; j++) lSpec[j]=&Spec[j][i*N]; for (int j=0, n=N, Fr=1; j<Res; j++, n/=2, Fr*=2) { for (int k=0; k<Fr; k++) lSpecs[j][k]=&Specs[j][k][i*n]; } int Log2N=log2(N); if (i==0) result+=MixSpectrogramSquare(lSpec, lSpecs, N, Log2N>2?(log2(N)-1):2, norm, normmix, cuts[i]); else if (i==1) result+=MixSpectrogramSquare(lSpec, lSpecs, N, Log2N>1?Log2N:2, norm, normmix, cuts[i]); else result+=MixSpectrogramSquare(lSpec, lSpecs, N, Log2N+1, norm, normmix, cuts[i]); } delete[] lSpec; DeAlloc2(lSpecs); if (createcuts) delete[] cuts; return result; }//MixSpectrogramBlock /* function MixSpectrogramBlock: obtain the composite spectrogram of a waveform block as vectors. In: Specs[0][1][WID], Specs[1][2][WID/2], ..., Specs[Res-1][WID/wid][wid], multiresolution spectrogram Out: spl[WID], Spec[WID], composite spectrogram as tiling and value vectors. Each of the vectors is made up of $wid subvectors, each subvector pair describing a N*N block of the composite spectrogram. Returns entropy. */ double MixSpectrogramBlock(int* spl, double* Spec, double*** Specs, int WID, int wid, bool norm, bool normmix) { int N=WID/wid, Res=log2(WID/wid)+1, *lspl; double result=0, *lSpec, ***lSpecs=new double**[Res]; lSpecs[0]=new double*[Res*N]; for (int i=1; i<Res; i++) lSpecs[i]=&lSpecs[0][i*N]; for (int i=0; i<wid; i++) { lspl=&spl[i*N]; lSpec=&Spec[i*N]; for (int j=0, n=N, Fr=1; j<Res; j++, n/=2, Fr*=2) { for (int k=0; k<Fr; k++) lSpecs[j][k]=&Specs[j][k][i*n]; } int Log2N=log2(N); /* if (i==0) result+=MixSpectrogramSquare(lspl, lSpec, lSpecs, N, Log2N>2?(log2(N)-1):2, norm, normmix); else if (i==1) result+=MixSpectrogramSquare(lspl, lSpec, lSpecs, N, Log2N>1?Log2N:2, norm, normmix); else */ result+=MixSpectrogramSquare(lspl, lSpec, lSpecs, N, Log2N+1, norm, normmix); } DeAlloc2(lSpecs); return result; }//MixSpectrogramBlock //--------------------------------------------------------------------------- /* Functions names as ...Block2(...) implement the same functions as the above directly without explicitly dividing the multiresolution spectrogram into square blocks. */ /* function DoCutSpectrogramBlock2: find optimal tiling for a block In: Specs[R0][x0:x0+x-1][Y0:Y0+Y-1], [R0+1][2x0:2x0+2x-1][Y0/2:Y0/2+Y/2-1],..., Specs[R0+?][Nx0:Nx0+Nx-1][Y0/N:Y0/N+Y/N-1], multiresolution spectrogram Out: spl[Y-1], tiling of this block Returns entropy. */ double DoCutSpectrogramBlock2(int* spl, double*** Specs, int Y, int R0, int x0, int Y0, int N, double& ene) { double ent=0; if (Y>N) //N=WID/wid, the actual square size { spl[0]=0; double ene1, ene2; ent+=DoCutSpectrogramBlock2(&spl[1], Specs, Y/2, R0, x0, Y0, N, ene1); ent+=DoCutSpectrogramBlock2(&spl[Y/2], Specs, Y/2, R0, x0, Y0+Y/2, N, ene2); ene=ene1+ene2; } else if (N==1) { double tmp=Specs[R0][x0][Y0]; ene=tmp; ent=xlogx(tmp); } else //Y==N, the square case { double enel, ener, enet, eneb, entl, entr, entt, entb; int* tmpspl=new int[Y]; entl=DoCutSpectrogramBlock2(&spl[1], Specs, Y/2, R0+1, 2*x0, Y0/2, N/2, enel); entr=DoCutSpectrogramBlock2(&spl[Y/2], Specs, Y/2, R0+1, 2*x0+1, Y0/2, N/2, ener); entb=DoCutSpectrogramBlock2(&tmpspl[1], Specs, Y/2, R0, x0, Y0, N/2, eneb); entt=DoCutSpectrogramBlock2(&tmpspl[Y/2], Specs, Y/2, R0, x0, Y0+Y/2, N/2, enet); double ene0=enet+eneb, ene1=enel+ener, ent0=entt+entb, ent1=entl+entr; //normalize double eneres=1-(ene0+ene1)/2, norment0, norment1; //double a0=1/(ene0+eneres), a1=1/(ene1+eneres); //quasi-global normalization norment0=(ent0-ene0*log(ene0+eneres))/(ene0+eneres), norment1=(ent1-ene1*log(ene1+eneres))/(ene1+eneres); //local normalization //if (ene0>0) norment0=ent0/ene0-log(ene0); else norment0=0; if (ene1>0) norment1=ent1/ene1-log(ene1); else norment1=0; if (norment1<norment0) { spl[0]=0; ent=ent0, ene=ene0; memcpy(&spl[1], &tmpspl[1], sizeof(int)*(Y-2)); } else { spl[0]=1; ent=ent1, ene=ene1; } } return ent; }//DoCutSpectrogramBlock2 /* function DoMixSpectrogramBlock2: sampling multiresolution spectrogram according to given tiling In: Specs[R0][x0:x0+x-1][Y0:Y0+Y-1], [R0+1][2x0:2x0+2x-1][Y0/2:Y0/2+Y/2-1],..., Specs[R0+?][Nx0:Nx0+Nx-1][Y0/N:Y0/N+Y/N-1], multiresolution spectrogram spl[Y-1]; tiling of this block Out: Spec[Y], composite spectrogram as value vector Returns 0. */ double DoMixSpectrogramBlock2(int* spl, double* Spec, double*** Specs, int Y, int R0, int x0, int Y0, bool normmix, int res, double* e) { if (Y==1) { Spec[0]=Specs[R0][x0][Y0]*e[0]; } else { double le[32]; if (normmix && Y<(1<<res)) { for (int i=0, j=1, k=Y; i<res; i++, j*=2, k/=2) { double lle=0; for (int fr=0; fr<j; fr++) for (int n=0; n<k; n++) lle+=Specs[i+R0][x0+fr][Y0+n]*Specs[i+R0][x0+fr][Y0+n]; lle=sqrt(lle)*e[i]; if (i==0) le[0]=lle; else if (lle>le[0]*2) le[i]=e[i]*le[0]*2/lle; else le[i]=e[i]; } le[0]=e[0]; } else { memcpy(le, e, sizeof(double)*res); } if (spl[0]==0) { int newres; if (Y>=(1<<res)) newres=res; else newres=res-1; DoMixSpectrogramBlock2(&spl[1], Spec, Specs, Y/2, R0, x0, Y0, normmix, newres, le); DoMixSpectrogramBlock2(&spl[Y/2], &Spec[Y/2], Specs, Y/2, R0, x0, Y0+Y/2, normmix, newres, le); } else { DoMixSpectrogramBlock2(&spl[1], Spec, Specs, Y/2, R0+1, x0*2, Y0/2, normmix, res-1, &le[1]); DoMixSpectrogramBlock2(&spl[Y/2], &Spec[Y/2], Specs, Y/2, R0+1, x0*2+1, Y0/2, normmix, res-1, &le[1]); } } return 0; }//DoMixSpectrogramBlock2 /* function MixSpectrogramBlock2: obtain the composite spectrogram of a waveform block as vectors. In: Specs[0][1][WID], Specs[1][2][WID/2], ..., Specs[Res-1][WID/wid][wid], multiresolution spectrogram Out: spl[WID], Spec[WID], composite spectrogram as tiling and value vectors. Each of the vectors is made up of $wid subvectors, each subvector pair describing a N*N block of the composite spectrogram. Returns entropy. */ double MixSpectrogramBlock2(int* spl, double* Spec, double*** Specs, int WID, int wid, bool normmix) { double ene[32]; //find the total energy and normalize for (int i=0, Fr=1, Wid=WID; Wid>=wid; i++, Fr*=2, Wid/=2) { double lene=0; for (int fr=0; fr<Fr; fr++) for (int k=0; k<Wid; k++) lene+=Specs[i][fr][k]*Specs[i][fr][k]; ene[i]=lene; if (lene!=0) { double ilene=1.0/lene; for (int fr=0; fr<Fr; fr++) for (int k=0; k<Wid; k++) Specs[i][fr][k]=Specs[i][fr][k]*Specs[i][fr][k]*ilene; } } double result=DoCutSpectrogramBlock2(spl, Specs, WID, 0, 0, 0, WID/wid, ene[31]); //de-normalize for (int i=0, Fr=1, Wid=WID; Wid>=wid; i++, Fr*=2, Wid/=2) { double lene=ene[i]; if (lene!=0) for (int fr=0; fr<Fr; fr++) for (int k=0; k<Wid; k++) Specs[i][fr][k]=sqrt(Specs[i][fr][k]*lene); } double e[32]; for (int i=0; i<32; i++) e[i]=1; DoMixSpectrogramBlock2(spl, Spec, Specs, WID, 0, 0, 0, normmix, log2(WID/wid)+1, e); return result; }//MixSpectrogramBlock2 //--------------------------------------------------------------------------- /* function MixSpectrogram: obtain composite spectrogram from multiresolutin spectrogram as pixel grid This method deals with Fr (base) frames of WID samples. Each base frame may be divided into 2 1st- octave frames, 4 2nd-octave frames, ..., etc. The spectrogram calculated on base frame is given in Specs[0] (Fr frames); that of 1st octave is given in Specs[1] (2*Fr frames); etc. The method resamples the spectrograms of different frame width into a single spectrogram so that the entropy is maximized globally. The output Spec is a spectrogram of apparent resolution WID at hop size wid. It is a redundant representation, with equal values occupying blocks of size WID/wid. In: Specs[0][Fr][WID], Specs[1][Fr*2][WID/2], ..., Specs[Res-1] [Fr*(WID/wid)][wid], multiresolution spectrogram Out: Spec[Fr*(WID/wid)][WID], composite spectrogram as pixel grid cuts[Fr][wid][N=Wid/wid], tilings of small square blocks Returns 0. */ double MixSpectrogram(double** Spec, double*** Specs, int Fr, int WID, int wid, bool norm, bool normmix, int*** cuts) { //totally Fr frames of WID samples //each frame is divided into wid VERTICAL parts bool createcuts=(cuts==0); if (createcuts) { cuts=new int**[Fr]; memset(cuts, 0, sizeof(int**)*Fr); } int Res=log2(WID/wid)+1; double*** lSpecs=new double**[Res]; for (int i=0; i<Fr; i++) { for (int j=0, nfr=1; j<Res; j++, nfr*=2) lSpecs[j]=&Specs[j][i*nfr]; MixSpectrogramBlock(&Spec[i*WID/wid], lSpecs, WID, wid, norm, normmix, cuts[i]); } delete[] lSpecs; if (createcuts) delete[] cuts; return 0; }//MixSpectrogram /* function MixSpectrogram: obtain composite spectrogram from multiresolutin spectrogram as vectors In: Specs[0][Fr][WID], Specs[1][Fr*2][WID/2], ..., Specs[Res-1] [Fr*(WID/wid)][wid], multiresolution spectrogram Out: spl[Fr][WID], Spec[Fr][WID], composite spectrogram as tiling and value vectors by frame. Returns 0. */ double MixSpectrogram(int** spl, double** Spec, double*** Specs, int Fr, int WID, int wid, bool norm, bool normmix) { //totally Fr frames of WID samples //each frame is divided into wid VERTICAL parts int Res=log2(WID/wid)+1; double*** lSpecs=new double**[Res]; for (int i=0; i<Fr; i++) { for (int j=0, nfr=1; j<Res; j++, nfr*=2) lSpecs[j]=&Specs[j][i*nfr]; MixSpectrogramBlock(spl[i], Spec[i], lSpecs, WID, wid, norm, normmix); // MixSpectrogramBlock2(spl[i], Spec[i], lSpecs, WID, wid, norm); } delete[] lSpecs; return 0; }//MixSpectrogram //--------------------------------------------------------------------------- /* function VSplitSpec: split a spectrogram vertically into left and right halves. In: Spec[X][Y]: spectrogram to split Out: lSpec[X][Y/2], rSpec[X][Y/2]: the two half spectrograms No return value. Both lSpec and rSpec are allocated anew. The caller is responsible to free these buffers. */ void VSplitSpec(int X, int Y, double** Spec, double**& lSpec, double**& rSpec) { lSpec=new double*[X/2], rSpec=new double*[X/2]; for(int i=0; i<X/2; i++) lSpec[i]=Spec[i], rSpec[i]=Spec[i+X/2]; }//VSplitSpec /* function VSplitSpecs: split a multiresolution spectrogram vertically into left and right halves A full spectrogram array is given in log2(N)+1 spectrograms, with the base spec of 1*N, 1st octave of 2*(N/2), ..., last octave of N*1. When this array is split into two spectrogram arrays horizontally, the last spec (with the highest time resolution). Each of the two new arrays is given in log2(N) spectrograms. In: Specs[nRes+1][][]: multiresolution spectrogram Out: lSpecs[nRes][][], rSpecs[nRes][][], the two half multiresolution spectrograms This function allocates two 2nd order arrays of double*, which the caller is responsible to free. */ void VSplitSpecs(int N, double*** Specs, double***& lSpecs, double***& rSpecs) { int nRes=log2(N); // new number of resolutions lSpecs=new double**[nRes], rSpecs=new double**[nRes]; lSpecs[0]=new double*[nRes*N/2], rSpecs[0]=new double*[nRes*N/2]; for (int i=1; i<nRes; i++) lSpecs[i]=&lSpecs[0][i*N/2], rSpecs[i]=&rSpecs[0][i*N/2]; for (int i=0, Fr=1; i<nRes; i++, Fr*=2) for (int j=0; j<Fr; j++) lSpecs[i][j]=Specs[i+1][j], rSpecs[i][j]=Specs[i+1][j+Fr]; }//VSplitSpecs