annotate arrayalloc.h @ 5:5f3c32dc6e17

* Adjust comment syntax to permit Doxygen to generate HTML documentation; add Doxyfile
author Chris Cannam
date Wed, 06 Oct 2010 15:19:49 +0100
parents 6422640a802f
children 977f541d6683
rev   line source
xue@1 1 #ifndef ARRAYALLOC
xue@1 2 #define ARRAYALLOC
xue@1 3
Chris@5 4 /**
Chris@5 5 \file arrayalloc.h - 2D, 3D and 4D array memory allocation routines.
xue@1 6
xue@1 7 An x-dimensional array (x=2, 3, 4, ...) is managed as a single memory block hosting all records, plus
xue@1 8 an index block which is a (x-1)D array itself. Therefore a 2D array is allocated as two 1D arrays, a
xue@1 9 3D array is allocated as three 1D arrays, etc.
xue@1 10
xue@1 11 Examples:
xue@1 12 Alloc2(4, N, x) declares an array x[4][N] of double-precision floating points.
xue@1 13 Allocate3(int, K, L, M, x) allocates an array x[K][L][M] of integers and returns x as int***.
xue@1 14
xue@1 15 This file also includes a garbage collector class MList that works with arrays allcoated in this way.
xue@1 16 */
xue@1 17
xue@1 18
xue@1 19 #include <stdlib.h>
xue@1 20
xue@1 21 //2D array allocation macros for declaring an array of double
xue@1 22 #define Alloc2(M, N, x) \
xue@1 23 double **x=new double*[M]; x[0]=new double[(M)*(N)]; for (int _z=1; _z<M; _z++) x[_z]=&x[0][_z*(N)];
xue@1 24 #define Alloc2L(M, N, x, LIST) Alloc2(M, N, x); if (LIST) LIST->Add(x, 2);
xue@1 25 //2D array allocation macros for all data types
xue@1 26 #define Allocate2(INT, M, N, x) \
xue@1 27 x=new INT*[M]; x[0]=new INT[(M)*(N)]; for (int _z=1; _z<M; _z++) x[_z]=&x[0][_z*(N)];
xue@1 28 #define Allocate2L(INT, M, N, x, LIST) Allocate2(INT, M, N, x); if (LIST) LIST->Add(x, 2);
xue@1 29 //2D array deallocation macro
xue@1 30 #define DeAlloc2(x) {if (x) {delete[] (char*)(x[0]); delete[] x; x=0;}}
xue@1 31
xue@1 32 //3D array allocation macro for declaring an array of double
xue@1 33 #define Alloc3(L, M, N, x) \
xue@1 34 double*** x=new double**[L]; x[0]=new double*[(L)*(M)]; x[0][0]=new double[(L)*(M)*(N)]; \
xue@1 35 for (int _z=0; _z<L; _z++) {x[_z]=&x[0][_z*(M)]; x[_z][0]=&x[0][0][_z*(M)*(N)]; \
xue@1 36 for (int __z=1; __z<M; __z++) x[_z][__z]=&x[_z][0][__z*(N)]; }
xue@1 37 //3D array allocation macros for all data types
xue@1 38 #define Allocate3(INT, L, M, N, x) \
xue@1 39 x=new INT**[L]; x[0]=new INT*[(L)*(M)]; x[0][0]=new INT[(L)*(M)*(N)]; \
xue@1 40 for (int _z=0; _z<L; _z++) {x[_z]=&x[0][_z*(M)]; x[_z][0]=&x[0][0][_z*(M)*(N)]; \
xue@1 41 for (int __z=1; __z<M; __z++) x[_z][__z]=&x[_z][0][__z*(N)]; }
xue@1 42 #define Allocate3L(INT, M, N, O, x, LIST) Allocate3(INT, M, N, O, x); if (LIST) LIST->Add(x, 3);
xue@1 43 //3D array deallocation macro
xue@1 44 #define DeAlloc3(x) {if (x) {delete[] (char*)(x[0][0]); delete[] x[0]; delete[] x; x=0;}}
xue@1 45
xue@1 46 //4D array allocation macro for declaring an array of double
xue@1 47 #define Alloc4(L, M, N, O, x) \
xue@1 48 double**** x=new double***[L]; x[0]=new double**[(L)*(M)]; \
xue@1 49 x[0][0]=new double*[(L)*(M)*(N)]; x[0][0][0]=new double[(L)*(M)*(N)*(O)]; \
xue@1 50 for (int _z=0; _z<L; _z++){ \
xue@1 51 x[_z]=&x[0][_z*(M)]; x[_z][0]=&x[0][0][_z*(M)*(N)]; x[_z][0][0]=&x[0][0][0][_z*(M)*(N)*(O)]; \
xue@1 52 for (int __z=0; __z<M; __z++){ \
xue@1 53 x[_z][__z]=&x[_z][0][__z*(N)]; x[_z][__z][0]=&x[_z][0][0][__z*(N)*(O)]; \
xue@1 54 for (int ___z=1; ___z<N; ___z++) x[_z][__z][___z]=&d[_z][__z][0][___z*(O)]; }}
xue@1 55 //4D array deallocation macro
xue@1 56 #define DeAlloc4(x) {if (x) {delete[] (char*)(x[0][0][0]); delete[] x[0][0]; delete[] x[0]; delete[] x; x=0;}}
xue@1 57
xue@1 58
xue@1 59 /*
xue@1 60 MList is a garbage collector for arrays created using Alloc* or Allocate* (*=2, 3, 4). After being
xue@1 61 added to the list the arrays will be automatically freed when MList is deleted.
xue@1 62
xue@1 63 Using MList:
xue@1 64 Create an MList object and add all buffers (1D, 2D, 3D or 4D) to be recycled to the MList using
xue@1 65 MList::Add(...). Deleting the MList will recycle all the added buffers.
xue@1 66
xue@1 67 Example:
xue@1 68 Alloc2L(4, N, x, mlist) declares 2D array x and registers it with garbage collector mlist,so that x is
xue@1 69 freed when mlist is deleted.
xue@1 70 */
xue@1 71 class MList
xue@1 72 {
xue@1 73 public:
xue@1 74 int cap[4];
xue@1 75 int count[4];
xue@1 76 void** List[4];
xue@1 77 MList(){for (int i=0; i<4; i++) cap[i]=64, count[i]=0, List[i]=(void**)malloc(sizeof(void*)*cap[i]);}
xue@1 78 ~MList(){
xue@1 79 for (int i=0; i<count[0]; i++){delete[] (char*)(List[0][i]); List[0][i]=0;} free(List[0]);
xue@1 80 for (int i=0; i<count[1]; i++){void** tmp=(void**)List[1][i]; DeAlloc2(tmp); List[1][i]=0;} free(List[1]);
xue@1 81 for (int i=0; i<count[2]; i++){void*** tmp=(void***)List[2][i]; DeAlloc3(tmp); List[2][i]=0;} free(List[2]);
xue@1 82 for (int i=0; i<count[3]; i++){void**** tmp=(void****)List[3][i]; DeAlloc4(tmp); List[3][i]=0;} free(List[3]);}
xue@1 83 void __fastcall Add(void* item, int Dim){
xue@1 84 int Gr=Dim-1; if (count[Gr]==cap[Gr]) IncCap(Gr); List[Gr][count[Gr]++]=item;}
xue@1 85 void IncCap(int Gr){cap[Gr]+=64; List[Gr]=(void**)realloc(List[Gr], sizeof(void*)*cap[Gr]);}
xue@1 86 };
xue@1 87
xue@1 88 #endif