Mercurial > hg > x
view arrayalloc.h @ 1:6422640a802f
first upload
author | Wen X <xue.wen@elec.qmul.ac.uk> |
---|---|
date | Tue, 05 Oct 2010 10:45:57 +0100 |
parents | |
children | 5f3c32dc6e17 |
line wrap: on
line source
#ifndef ARRAYALLOC #define ARRAYALLOC /* arrayalloc.h - 2D, 3D and 4D array memory allocation routines. An x-dimensional array (x=2, 3, 4, ...) is managed as a single memory block hosting all records, plus an index block which is a (x-1)D array itself. Therefore a 2D array is allocated as two 1D arrays, a 3D array is allocated as three 1D arrays, etc. Examples: Alloc2(4, N, x) declares an array x[4][N] of double-precision floating points. Allocate3(int, K, L, M, x) allocates an array x[K][L][M] of integers and returns x as int***. This file also includes a garbage collector class MList that works with arrays allcoated in this way. */ #include <stdlib.h> //2D array allocation macros for declaring an array of double #define Alloc2(M, N, x) \ double **x=new double*[M]; x[0]=new double[(M)*(N)]; for (int _z=1; _z<M; _z++) x[_z]=&x[0][_z*(N)]; #define Alloc2L(M, N, x, LIST) Alloc2(M, N, x); if (LIST) LIST->Add(x, 2); //2D array allocation macros for all data types #define Allocate2(INT, M, N, x) \ x=new INT*[M]; x[0]=new INT[(M)*(N)]; for (int _z=1; _z<M; _z++) x[_z]=&x[0][_z*(N)]; #define Allocate2L(INT, M, N, x, LIST) Allocate2(INT, M, N, x); if (LIST) LIST->Add(x, 2); //2D array deallocation macro #define DeAlloc2(x) {if (x) {delete[] (char*)(x[0]); delete[] x; x=0;}} //3D array allocation macro for declaring an array of double #define Alloc3(L, M, N, x) \ double*** x=new double**[L]; x[0]=new double*[(L)*(M)]; x[0][0]=new double[(L)*(M)*(N)]; \ for (int _z=0; _z<L; _z++) {x[_z]=&x[0][_z*(M)]; x[_z][0]=&x[0][0][_z*(M)*(N)]; \ for (int __z=1; __z<M; __z++) x[_z][__z]=&x[_z][0][__z*(N)]; } //3D array allocation macros for all data types #define Allocate3(INT, L, M, N, x) \ x=new INT**[L]; x[0]=new INT*[(L)*(M)]; x[0][0]=new INT[(L)*(M)*(N)]; \ for (int _z=0; _z<L; _z++) {x[_z]=&x[0][_z*(M)]; x[_z][0]=&x[0][0][_z*(M)*(N)]; \ for (int __z=1; __z<M; __z++) x[_z][__z]=&x[_z][0][__z*(N)]; } #define Allocate3L(INT, M, N, O, x, LIST) Allocate3(INT, M, N, O, x); if (LIST) LIST->Add(x, 3); //3D array deallocation macro #define DeAlloc3(x) {if (x) {delete[] (char*)(x[0][0]); delete[] x[0]; delete[] x; x=0;}} //4D array allocation macro for declaring an array of double #define Alloc4(L, M, N, O, x) \ double**** x=new double***[L]; x[0]=new double**[(L)*(M)]; \ x[0][0]=new double*[(L)*(M)*(N)]; x[0][0][0]=new double[(L)*(M)*(N)*(O)]; \ for (int _z=0; _z<L; _z++){ \ x[_z]=&x[0][_z*(M)]; x[_z][0]=&x[0][0][_z*(M)*(N)]; x[_z][0][0]=&x[0][0][0][_z*(M)*(N)*(O)]; \ for (int __z=0; __z<M; __z++){ \ x[_z][__z]=&x[_z][0][__z*(N)]; x[_z][__z][0]=&x[_z][0][0][__z*(N)*(O)]; \ for (int ___z=1; ___z<N; ___z++) x[_z][__z][___z]=&d[_z][__z][0][___z*(O)]; }} //4D array deallocation macro #define DeAlloc4(x) {if (x) {delete[] (char*)(x[0][0][0]); delete[] x[0][0]; delete[] x[0]; delete[] x; x=0;}} /* MList is a garbage collector for arrays created using Alloc* or Allocate* (*=2, 3, 4). After being added to the list the arrays will be automatically freed when MList is deleted. Using MList: Create an MList object and add all buffers (1D, 2D, 3D or 4D) to be recycled to the MList using MList::Add(...). Deleting the MList will recycle all the added buffers. Example: Alloc2L(4, N, x, mlist) declares 2D array x and registers it with garbage collector mlist,so that x is freed when mlist is deleted. */ class MList { public: int cap[4]; int count[4]; void** List[4]; MList(){for (int i=0; i<4; i++) cap[i]=64, count[i]=0, List[i]=(void**)malloc(sizeof(void*)*cap[i]);} ~MList(){ for (int i=0; i<count[0]; i++){delete[] (char*)(List[0][i]); List[0][i]=0;} free(List[0]); for (int i=0; i<count[1]; i++){void** tmp=(void**)List[1][i]; DeAlloc2(tmp); List[1][i]=0;} free(List[1]); for (int i=0; i<count[2]; i++){void*** tmp=(void***)List[2][i]; DeAlloc3(tmp); List[2][i]=0;} free(List[2]); for (int i=0; i<count[3]; i++){void**** tmp=(void****)List[3][i]; DeAlloc4(tmp); List[3][i]=0;} free(List[3]);} void __fastcall Add(void* item, int Dim){ int Gr=Dim-1; if (count[Gr]==cap[Gr]) IncCap(Gr); List[Gr][count[Gr]++]=item;} void IncCap(int Gr){cap[Gr]+=64; List[Gr]=(void**)realloc(List[Gr], sizeof(void*)*cap[Gr]);} }; #endif