Chris@0
|
1 /*
|
Chris@0
|
2 copyright (C) 2011 I. Irigaray, M. Rocamora
|
Chris@0
|
3
|
Chris@0
|
4 This program is free software: you can redistribute it and/or modify
|
Chris@0
|
5 it under the terms of the GNU General Public License as published by
|
Chris@0
|
6 the Free Software Foundation, either version 3 of the License, or
|
Chris@0
|
7 (at your option) any later version.
|
Chris@0
|
8
|
Chris@0
|
9 This program is distributed in the hope that it will be useful,
|
Chris@0
|
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
|
Chris@0
|
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
Chris@0
|
12 GNU General Public License for more details.
|
Chris@0
|
13
|
Chris@0
|
14 You should have received a copy of the GNU General Public License
|
Chris@0
|
15 along with this program. If not, see <http://www.gnu.org/licenses/>.
|
Chris@7
|
16 */
|
Chris@0
|
17
|
Chris@0
|
18 #include "FChTransformF0gram.h"
|
Chris@0
|
19 #include "FChTransformUtils.h"
|
Chris@0
|
20 #include <math.h>
|
Chris@0
|
21 #include <float.h>
|
Chris@14
|
22
|
Chris@19
|
23 #include <set>
|
Chris@19
|
24
|
Chris@14
|
25 #include "bqvec/Allocators.h"
|
Chris@14
|
26
|
Chris@14
|
27 using namespace breakfastquay;
|
Chris@14
|
28
|
Chris@21
|
29 //#define DEBUG
|
Chris@7
|
30
|
Chris@0
|
31 #define MAX(x, y) (((x) > (y)) ? (x) : (y))
|
Chris@0
|
32
|
Chris@15
|
33 FChTransformF0gram::FChTransformF0gram(ProcessingMode mode,
|
Chris@15
|
34 float inputSampleRate) :
|
Chris@7
|
35 Plugin(inputSampleRate),
|
Chris@15
|
36 m_processingMode(mode),
|
Chris@20
|
37 m_initialised(false),
|
Chris@20
|
38 m_stepSize(256),
|
Chris@20
|
39 m_blockSize(8192) {
|
Chris@0
|
40
|
Chris@0
|
41 m_fs = inputSampleRate;
|
Chris@0
|
42 // max frequency of interest (Hz)
|
Chris@0
|
43 m_fmax = 10000.f;
|
Chris@0
|
44 // warping parameters
|
Chris@12
|
45 m_warp_params.nsamps_twarp = 2048;
|
Chris@0
|
46 m_warp_params.alpha_max = 4;
|
Chris@0
|
47 m_warp_params.num_warps = 21;
|
Chris@0
|
48 m_warp_params.fact_over_samp = 2;
|
Chris@0
|
49 m_warp_params.alpha_dist = 0;
|
Chris@0
|
50 // f0 parameters
|
Chris@0
|
51 m_f0_params.f0min = 80.0;
|
Chris@0
|
52 m_f0_params.num_octs = 4;
|
Chris@0
|
53 m_f0_params.num_f0s_per_oct = 192;
|
Chris@0
|
54 m_f0_params.num_f0_hyps = 5;
|
Chris@0
|
55 m_f0_params.prefer = true;
|
Chris@0
|
56 m_f0_params.prefer_mean = 60;
|
Chris@0
|
57 m_f0_params.prefer_stdev = 18;
|
Chris@0
|
58 // glogs parameters
|
Chris@0
|
59 m_glogs_params.HP_logS = true;
|
Chris@0
|
60 m_glogs_params.att_subharms = 1;
|
Chris@7
|
61 // display parameters
|
Chris@15
|
62 m_f0gram_mode = BestBinOfAllDirections;
|
Chris@0
|
63
|
Chris@0
|
64 m_glogs_params.median_poly_coefs[0] = -0.000000058551680;
|
Chris@0
|
65 m_glogs_params.median_poly_coefs[1] = -0.000006945207775;
|
Chris@0
|
66 m_glogs_params.median_poly_coefs[2] = 0.002357223226588;
|
Chris@0
|
67
|
Chris@0
|
68 m_glogs_params.sigma_poly_coefs[0] = 0.000000092782308;
|
Chris@0
|
69 m_glogs_params.sigma_poly_coefs[1] = 0.000057283574898;
|
Chris@0
|
70 m_glogs_params.sigma_poly_coefs[2] = 0.022199903714288;
|
Chris@0
|
71
|
Chris@0
|
72 // number of fft points (controls zero-padding)
|
Chris@0
|
73 m_nfft = m_warp_params.nsamps_twarp;
|
Chris@0
|
74 // hop in samples
|
Chris@0
|
75 m_hop = m_warp_params.fact_over_samp * 256;
|
Chris@0
|
76
|
Chris@0
|
77 m_num_f0s = 0;
|
Chris@16
|
78 m_f0s = 0;
|
Chris@0
|
79 }
|
Chris@0
|
80
|
Chris@14
|
81 FChTransformF0gram::~FChTransformF0gram()
|
Chris@14
|
82 {
|
Chris@20
|
83 if (!m_initialised) {
|
Chris@14
|
84 return; // nothing was allocated
|
Chris@14
|
85 }
|
Chris@14
|
86
|
Chris@20
|
87 deallocate(m_inputBuffer);
|
Chris@20
|
88
|
Chris@14
|
89 deallocate(m_warpings.pos_int);
|
Chris@14
|
90 deallocate(m_warpings.pos_frac);
|
Chris@14
|
91 deallocate(m_warpings.chirp_rates);
|
Chris@14
|
92
|
Chris@14
|
93 clean_LPF();
|
Chris@14
|
94
|
Chris@14
|
95 deallocate(m_timeWindow);
|
Chris@14
|
96
|
Chris@14
|
97 deallocate(mp_HanningWindow);
|
Chris@14
|
98
|
Chris@14
|
99 // Warping
|
Chris@14
|
100 deallocate(x_warping);
|
Chris@14
|
101 delete fft_xwarping;
|
Chris@14
|
102 deallocate(m_absFanChirpTransform);
|
Chris@14
|
103 deallocate(m_auxFanChirpTransform);
|
Chris@14
|
104
|
Chris@14
|
105 // design_GLogS
|
Chris@14
|
106 deallocate(m_glogs_f0);
|
Chris@14
|
107 deallocate(m_glogs);
|
Chris@14
|
108 deallocate(m_glogs_n);
|
Chris@14
|
109 deallocate(m_glogs_index);
|
Chris@14
|
110 deallocate(m_glogs_posint);
|
Chris@14
|
111 deallocate(m_glogs_posfrac);
|
Chris@14
|
112 deallocate(m_glogs_interp);
|
Chris@14
|
113 deallocate(m_glogs_third_harmonic_posint);
|
Chris@14
|
114 deallocate(m_glogs_third_harmonic_posfrac);
|
Chris@14
|
115 deallocate(m_glogs_third_harmonic);
|
Chris@14
|
116 deallocate(m_glogs_fifth_harmonic_posint);
|
Chris@14
|
117 deallocate(m_glogs_fifth_harmonic_posfrac);
|
Chris@14
|
118 deallocate(m_glogs_fifth_harmonic);
|
Chris@14
|
119 deallocate(m_glogs_f0_preference_weights);
|
Chris@14
|
120 deallocate(m_glogs_median_correction);
|
Chris@14
|
121 deallocate(m_glogs_sigma_correction);
|
Chris@16
|
122
|
Chris@16
|
123 deallocate(m_f0s);
|
Chris@0
|
124 }
|
Chris@0
|
125
|
Chris@0
|
126 string
|
Chris@0
|
127 FChTransformF0gram::getIdentifier() const {
|
Chris@15
|
128 switch (m_processingMode) {
|
Chris@15
|
129 case ModeF0Gram: return "fchtransformf0gram";
|
Chris@15
|
130 case ModeSpectrogram: return "fchtransformspectrogram";
|
Chris@15
|
131 case ModeRoughSpectrogram: return "fchtransformrough";
|
Chris@15
|
132 }
|
Chris@17
|
133 throw std::logic_error("unknown mode");
|
Chris@0
|
134 }
|
Chris@0
|
135
|
Chris@0
|
136 string
|
Chris@0
|
137 FChTransformF0gram::getName() const {
|
Chris@15
|
138 switch (m_processingMode) {
|
Chris@15
|
139 case ModeF0Gram: return "Fan Chirp Transform F0gram";
|
Chris@15
|
140 case ModeSpectrogram: return "Fan Chirp Transform Spectrogram";
|
Chris@15
|
141 case ModeRoughSpectrogram: return "Fan Chirp Transform Rough Spectrogram";
|
Chris@15
|
142 }
|
Chris@17
|
143 throw std::logic_error("unknown mode");
|
Chris@0
|
144 }
|
Chris@0
|
145
|
Chris@0
|
146 string
|
Chris@0
|
147 FChTransformF0gram::getDescription() const {
|
Chris@15
|
148 switch (m_processingMode) {
|
Chris@15
|
149 case ModeF0Gram:
|
Chris@15
|
150 return "This plug-in produces a representation, called F0gram, which exhibits the salience of the fundamental frequency of the sound sources in the audio file. The computation of the F0gram makes use of the Fan Chirp Transform analysis. It is based on the article \"Fan chirp transform for music representation\" P. Cancela, E. Lopez, M. Rocamora, International Conference on Digital Audio Effects, 13th. DAFx-10. Graz, Austria - 6-10 Sep 2010.";
|
Chris@15
|
151 case ModeSpectrogram:
|
Chris@15
|
152 return "This plug-in produces a spectral representation of the audio using Fan Chirp Transform analysis.";
|
Chris@15
|
153 case ModeRoughSpectrogram:
|
Chris@15
|
154 return "This plug-in produces a more approximate spectral representation of the audio using Fan Chirp Transform analysis.";
|
Chris@15
|
155 }
|
Chris@17
|
156 throw std::logic_error("unknown mode");
|
Chris@0
|
157 }
|
Chris@0
|
158
|
Chris@0
|
159 string
|
Chris@0
|
160 FChTransformF0gram::getMaker() const {
|
Chris@0
|
161 // Your name here
|
Chris@0
|
162 return "Audio Processing Group \n Universidad de la Republica";
|
Chris@0
|
163 }
|
Chris@0
|
164
|
Chris@0
|
165 int
|
Chris@0
|
166 FChTransformF0gram::getPluginVersion() const {
|
Chris@0
|
167 // Increment this each time you release a version that behaves
|
Chris@0
|
168 // differently from the previous one
|
Chris@0
|
169 //
|
Chris@0
|
170 // 0 - initial version from scratch
|
Chris@15
|
171 return 1;
|
Chris@0
|
172 }
|
Chris@0
|
173
|
Chris@0
|
174 string
|
Chris@0
|
175 FChTransformF0gram::getCopyright() const {
|
Chris@0
|
176 // This function is not ideally named. It does not necessarily
|
Chris@0
|
177 // need to say who made the plugin -- getMaker does that -- but it
|
Chris@0
|
178 // should indicate the terms under which it is distributed. For
|
Chris@0
|
179 // example, "Copyright (year). All Rights Reserved", or "GPL"
|
Chris@0
|
180 return "copyright (C) 2011 GPL - Audio Processing Group, UdelaR";
|
Chris@0
|
181 }
|
Chris@0
|
182
|
Chris@0
|
183 FChTransformF0gram::InputDomain
|
Chris@0
|
184 FChTransformF0gram::getInputDomain() const {
|
Chris@0
|
185 return TimeDomain;
|
Chris@0
|
186 }
|
Chris@0
|
187
|
Chris@0
|
188 size_t FChTransformF0gram::getPreferredBlockSize() const {
|
Chris@20
|
189 // We do our own accumulating into blocks within process()
|
Chris@20
|
190 return m_blockSize/2;
|
Chris@0
|
191 }
|
Chris@0
|
192
|
Chris@0
|
193 size_t
|
Chris@0
|
194 FChTransformF0gram::getPreferredStepSize() const {
|
Chris@20
|
195 return m_stepSize;
|
Chris@0
|
196 }
|
Chris@0
|
197
|
Chris@0
|
198 size_t
|
Chris@0
|
199 FChTransformF0gram::getMinChannelCount() const {
|
Chris@0
|
200 return 1;
|
Chris@0
|
201 }
|
Chris@0
|
202
|
Chris@0
|
203 size_t
|
Chris@0
|
204 FChTransformF0gram::getMaxChannelCount() const {
|
Chris@0
|
205 return 1;
|
Chris@0
|
206 }
|
Chris@0
|
207
|
Chris@0
|
208 FChTransformF0gram::ParameterList
|
Chris@0
|
209 FChTransformF0gram::getParameterDescriptors() const {
|
Chris@0
|
210 ParameterList list;
|
Chris@0
|
211
|
Chris@0
|
212 // If the plugin has no adjustable parameters, return an empty
|
Chris@0
|
213 // list here (and there's no need to provide implementations of
|
Chris@0
|
214 // getParameter and setParameter in that case either).
|
Chris@0
|
215
|
Chris@0
|
216 // Note that it is your responsibility to make sure the parameters
|
Chris@0
|
217 // start off having their default values (e.g. in the constructor
|
Chris@0
|
218 // above). The host needs to know the default value so it can do
|
Chris@0
|
219 // things like provide a "reset to default" function, but it will
|
Chris@0
|
220 // not explicitly set your parameters to their defaults for you if
|
Chris@0
|
221 // they have not changed in the mean time.
|
Chris@0
|
222
|
Chris@0
|
223 // ============= WARPING PARAMETERS =============
|
Chris@0
|
224
|
Chris@0
|
225 ParameterDescriptor fmax;
|
Chris@0
|
226 fmax.identifier = "fmax";
|
Chris@0
|
227 fmax.name = "Maximum frequency";
|
Chris@0
|
228 fmax.description = "Maximum frequency of interest for the analysis.";
|
Chris@0
|
229 fmax.unit = "Hz";
|
Chris@0
|
230 fmax.minValue = 2000;
|
Chris@0
|
231 fmax.maxValue = 22050;
|
Chris@0
|
232 fmax.defaultValue = 10000;
|
Chris@0
|
233 fmax.isQuantized = true;
|
Chris@0
|
234 fmax.quantizeStep = 1.0;
|
Chris@0
|
235 list.push_back(fmax);
|
Chris@0
|
236
|
Chris@0
|
237 ParameterDescriptor nsamp;
|
Chris@0
|
238 nsamp.identifier = "nsamp";
|
Chris@0
|
239 nsamp.name = "Number of samples";
|
Chris@0
|
240 nsamp.description = "Number of samples of the time warped frame";
|
Chris@0
|
241 nsamp.unit = "samples";
|
Chris@0
|
242 nsamp.minValue = 128;
|
Chris@0
|
243 nsamp.maxValue = 4096;
|
Chris@0
|
244 nsamp.defaultValue = 2048;
|
Chris@0
|
245 nsamp.isQuantized = true;
|
Chris@0
|
246 nsamp.quantizeStep = 1.0;
|
Chris@0
|
247 list.push_back(nsamp);
|
Chris@0
|
248
|
Chris@0
|
249 ParameterDescriptor nfft;
|
Chris@0
|
250 nfft.identifier = "nfft";
|
Chris@0
|
251 nfft.name = "FFT number of points";
|
Chris@0
|
252 nfft.description = "Number of FFT points (controls zero-padding)";
|
Chris@0
|
253 nfft.unit = "samples";
|
Chris@0
|
254 nfft.minValue = 0;
|
Chris@0
|
255 nfft.maxValue = 4;
|
Chris@0
|
256 nfft.defaultValue = 3;
|
Chris@0
|
257 nfft.isQuantized = true;
|
Chris@0
|
258 nfft.quantizeStep = 1.0;
|
Chris@0
|
259 nfft.valueNames.push_back("256");
|
Chris@0
|
260 nfft.valueNames.push_back("512");
|
Chris@0
|
261 nfft.valueNames.push_back("1024");
|
Chris@0
|
262 nfft.valueNames.push_back("2048");
|
Chris@0
|
263 nfft.valueNames.push_back("4096");
|
Chris@0
|
264 nfft.valueNames.push_back("8192");
|
Chris@0
|
265 list.push_back(nfft);
|
Chris@0
|
266
|
Chris@0
|
267 ParameterDescriptor alpha_max;
|
Chris@0
|
268 alpha_max.identifier = "alpha_max";
|
Chris@0
|
269 alpha_max.name = "Maximum alpha value";
|
Chris@0
|
270 alpha_max.description = "Maximum value for the alpha parameter of the transform.";
|
Chris@0
|
271 alpha_max.unit = "Hz/s";
|
Chris@0
|
272 alpha_max.minValue = -10;
|
Chris@0
|
273 alpha_max.maxValue = 10;
|
Chris@0
|
274 alpha_max.defaultValue = 5;
|
Chris@0
|
275 alpha_max.isQuantized = true;
|
Chris@0
|
276 alpha_max.quantizeStep = 1.0;
|
Chris@0
|
277 list.push_back(alpha_max);
|
Chris@0
|
278
|
Chris@0
|
279 ParameterDescriptor num_warps;
|
Chris@0
|
280 num_warps.identifier = "num_warps";
|
Chris@0
|
281 num_warps.name = "Number of warpings";
|
Chris@0
|
282 num_warps.description = "Number of different warpings in the specified range (must be odd).";
|
Chris@0
|
283 num_warps.unit = "";
|
Chris@0
|
284 num_warps.minValue = 1;
|
Chris@0
|
285 num_warps.maxValue = 101;
|
Chris@0
|
286 num_warps.defaultValue = 21;
|
Chris@0
|
287 num_warps.isQuantized = true;
|
Chris@0
|
288 num_warps.quantizeStep = 2.0;
|
Chris@0
|
289 list.push_back(num_warps);
|
Chris@0
|
290
|
Chris@0
|
291 ParameterDescriptor alpha_dist;
|
Chris@0
|
292 alpha_dist.identifier = "alpha_dist";
|
Chris@0
|
293 alpha_dist.name = "alpha distribution";
|
Chris@0
|
294 alpha_dist.description = "Type of distribution of alpha values (linear or log).";
|
Chris@0
|
295 alpha_dist.unit = "";
|
Chris@0
|
296 alpha_dist.minValue = 0;
|
Chris@0
|
297 alpha_dist.maxValue = 1;
|
Chris@0
|
298 alpha_dist.defaultValue = 1;
|
Chris@0
|
299 alpha_dist.isQuantized = true;
|
Chris@0
|
300 alpha_dist.quantizeStep = 1.0;
|
Chris@0
|
301 // lin (0), log (1)
|
Chris@0
|
302 alpha_dist.valueNames.push_back("lin");
|
Chris@0
|
303 alpha_dist.valueNames.push_back("log");
|
Chris@0
|
304 list.push_back(alpha_dist);
|
Chris@0
|
305
|
Chris@0
|
306 // ============= F0-GRAM PARAMETERS =============
|
Chris@0
|
307
|
Chris@0
|
308 ParameterDescriptor f0min;
|
Chris@0
|
309 f0min.identifier = "f0min";
|
Chris@0
|
310 f0min.name = "min f0";
|
Chris@0
|
311 f0min.description = "Minimum fundamental frequency (f0) value.";
|
Chris@0
|
312 f0min.unit = "Hz";
|
Chris@0
|
313 f0min.minValue = 1;
|
Chris@0
|
314 f0min.maxValue = 500;
|
Chris@0
|
315 f0min.defaultValue = 80;
|
Chris@0
|
316 f0min.isQuantized = true;
|
Chris@0
|
317 f0min.quantizeStep = 1.0;
|
Chris@0
|
318 list.push_back(f0min);
|
Chris@0
|
319
|
Chris@0
|
320 ParameterDescriptor num_octs;
|
Chris@0
|
321 num_octs.identifier = "num_octs";
|
Chris@0
|
322 num_octs.name = "number of octaves";
|
Chris@0
|
323 num_octs.description = "Number of octaves for F0gram computation.";
|
Chris@0
|
324 num_octs.unit = "";
|
Chris@0
|
325 num_octs.minValue = 1;
|
Chris@0
|
326 num_octs.maxValue = 10;
|
Chris@0
|
327 num_octs.defaultValue = 4;
|
Chris@0
|
328 num_octs.isQuantized = true;
|
Chris@0
|
329 num_octs.quantizeStep = 1.0;
|
Chris@0
|
330 list.push_back(num_octs);
|
Chris@0
|
331
|
Chris@0
|
332 ParameterDescriptor num_f0_hyps;
|
Chris@0
|
333 num_f0_hyps.identifier = "num_f0_hyps";
|
Chris@0
|
334 num_f0_hyps.name = "number of f0 hypotesis";
|
Chris@0
|
335 num_f0_hyps.description = "Number of f0 hypotesis to extract.";
|
Chris@0
|
336 num_f0_hyps.unit = "";
|
Chris@0
|
337 num_f0_hyps.minValue = 1;
|
Chris@0
|
338 num_f0_hyps.maxValue = 100;
|
Chris@0
|
339 num_f0_hyps.defaultValue = 10;
|
Chris@0
|
340 num_f0_hyps.isQuantized = true;
|
Chris@0
|
341 num_f0_hyps.quantizeStep = 1.0;
|
Chris@0
|
342 list.push_back(num_f0_hyps);
|
Chris@0
|
343
|
Chris@0
|
344 ParameterDescriptor f0s_per_oct;
|
Chris@0
|
345 f0s_per_oct.identifier = "f0s_per_oct";
|
Chris@0
|
346 f0s_per_oct.name = "f0 values per octave";
|
Chris@0
|
347 f0s_per_oct.description = "Number of f0 values per octave.";
|
Chris@0
|
348 f0s_per_oct.unit = "";
|
Chris@0
|
349 f0s_per_oct.minValue = 12;
|
Chris@0
|
350 f0s_per_oct.maxValue = 768;
|
Chris@0
|
351 f0s_per_oct.defaultValue = 192;
|
Chris@0
|
352 f0s_per_oct.isQuantized = true;
|
Chris@0
|
353 f0s_per_oct.quantizeStep = 1.0;
|
Chris@0
|
354 list.push_back(f0s_per_oct);
|
Chris@0
|
355
|
Chris@0
|
356 ParameterDescriptor f0_prefer_fun;
|
Chris@0
|
357 f0_prefer_fun.identifier = "f0_prefer_fun";
|
Chris@0
|
358 f0_prefer_fun.name = "f0 preference function";
|
Chris@0
|
359 f0_prefer_fun.description = "Whether to use a f0 weighting function.";
|
Chris@0
|
360 f0_prefer_fun.unit = "";
|
Chris@0
|
361 f0_prefer_fun.minValue = 0;
|
Chris@0
|
362 f0_prefer_fun.maxValue = 1;
|
Chris@0
|
363 f0_prefer_fun.defaultValue = 1;
|
Chris@0
|
364 f0_prefer_fun.isQuantized = true;
|
Chris@0
|
365 f0_prefer_fun.quantizeStep = 1.0;
|
Chris@0
|
366 list.push_back(f0_prefer_fun);
|
Chris@0
|
367
|
Chris@0
|
368 ParameterDescriptor f0_prefer_mean;
|
Chris@0
|
369 f0_prefer_mean.identifier = "f0_prefer_mean";
|
Chris@0
|
370 f0_prefer_mean.name = "mean f0 preference function";
|
Chris@0
|
371 f0_prefer_mean.description = "Mean value for f0 weighting function (MIDI number).";
|
Chris@0
|
372 f0_prefer_mean.unit = "";
|
Chris@0
|
373 f0_prefer_mean.minValue = 1;
|
Chris@0
|
374 f0_prefer_mean.maxValue = 127;
|
Chris@0
|
375 f0_prefer_mean.defaultValue = 60;
|
Chris@0
|
376 f0_prefer_mean.isQuantized = true;
|
Chris@0
|
377 f0_prefer_mean.quantizeStep = 1.0;
|
Chris@0
|
378 list.push_back(f0_prefer_mean);
|
Chris@0
|
379
|
Chris@0
|
380 ParameterDescriptor f0_prefer_stdev;
|
Chris@0
|
381 f0_prefer_stdev.identifier = "f0_prefer_stdev";
|
Chris@0
|
382 f0_prefer_stdev.name = "stdev of f0 preference function";
|
Chris@0
|
383 f0_prefer_stdev.description = "Stdev for f0 weighting function (MIDI number).";
|
Chris@0
|
384 f0_prefer_stdev.unit = "";
|
Chris@0
|
385 f0_prefer_stdev.minValue = 1;
|
Chris@0
|
386 f0_prefer_stdev.maxValue = 127;
|
Chris@0
|
387 f0_prefer_stdev.defaultValue = 18;
|
Chris@0
|
388 f0_prefer_stdev.isQuantized = true;
|
Chris@0
|
389 f0_prefer_stdev.quantizeStep = 1.0;
|
Chris@0
|
390 list.push_back(f0_prefer_stdev);
|
Chris@0
|
391
|
Chris@0
|
392 ParameterDescriptor f0gram_mode;
|
Chris@0
|
393 f0gram_mode.identifier = "f0gram_mode";
|
Chris@0
|
394 f0gram_mode.name = "display mode of f0gram";
|
Chris@0
|
395 f0gram_mode.description = "Display all bins of the best direction, or the best bin for each direction.";
|
Chris@0
|
396 f0gram_mode.unit = "";
|
Chris@0
|
397 f0gram_mode.minValue = 0;
|
Chris@0
|
398 f0gram_mode.maxValue = 1;
|
Chris@0
|
399 f0gram_mode.defaultValue = 1;
|
Chris@0
|
400 f0gram_mode.isQuantized = true;
|
Chris@0
|
401 f0gram_mode.quantizeStep = 1.0;
|
Chris@0
|
402 list.push_back(f0gram_mode);
|
Chris@0
|
403
|
Chris@0
|
404 return list;
|
Chris@0
|
405 }
|
Chris@0
|
406
|
Chris@0
|
407 float
|
Chris@0
|
408 FChTransformF0gram::getParameter(string identifier) const {
|
Chris@0
|
409
|
Chris@0
|
410 if (identifier == "fmax") {
|
Chris@0
|
411 return m_fmax;
|
Chris@0
|
412 } else if (identifier == "nsamp") {
|
Chris@0
|
413 return m_warp_params.nsamps_twarp;
|
Chris@0
|
414 } else if (identifier == "alpha_max") {
|
Chris@0
|
415 return m_warp_params.alpha_max;
|
Chris@0
|
416 } else if (identifier == "num_warps") {
|
Chris@0
|
417 return m_warp_params.num_warps;
|
Chris@0
|
418 } else if (identifier == "alpha_dist") {
|
Chris@0
|
419 return m_warp_params.alpha_dist;
|
Chris@0
|
420 } else if (identifier == "nfft") {
|
Chris@0
|
421 return m_nfft;
|
Chris@0
|
422 } else if (identifier == "f0min") {
|
Chris@0
|
423 return m_f0_params.f0min;
|
Chris@0
|
424 } else if (identifier == "num_octs") {
|
Chris@0
|
425 return m_f0_params.num_octs;
|
Chris@0
|
426 } else if (identifier == "f0s_per_oct") {
|
Chris@0
|
427 return m_f0_params.num_f0s_per_oct;
|
Chris@0
|
428 } else if (identifier == "num_f0_hyps") {
|
Chris@0
|
429 return m_f0_params.num_f0_hyps;
|
Chris@0
|
430 } else if (identifier == "f0_prefer_fun") {
|
Chris@0
|
431 return m_f0_params.prefer;
|
Chris@0
|
432 } else if (identifier == "f0_prefer_mean") {
|
Chris@0
|
433 return m_f0_params.prefer_mean;
|
Chris@0
|
434 } else if (identifier == "f0_prefer_stdev") {
|
Chris@0
|
435 return m_f0_params.prefer_stdev;
|
Chris@7
|
436 } else if (identifier == "f0gram_mode") {
|
Chris@15
|
437 return m_f0gram_mode == BestBinOfAllDirections ? 1.0 : 0.0;
|
Chris@0
|
438 } else {
|
Chris@0
|
439 return 0.f;
|
Chris@0
|
440 }
|
Chris@0
|
441
|
Chris@0
|
442 }
|
Chris@0
|
443
|
Chris@15
|
444 void FChTransformF0gram::setParameter(string identifier, float value)
|
Chris@15
|
445 {
|
Chris@0
|
446 if (identifier == "fmax") {
|
Chris@0
|
447 m_fmax = value;
|
Chris@0
|
448 } else if (identifier == "nsamp") {
|
Chris@0
|
449 m_warp_params.nsamps_twarp = value;
|
Chris@0
|
450 } else if (identifier == "alpha_max") {
|
Chris@0
|
451 m_warp_params.alpha_max = value;
|
Chris@0
|
452 } else if (identifier == "num_warps") {
|
Chris@0
|
453 m_warp_params.num_warps = value;
|
Chris@0
|
454 } else if (identifier == "alpha_dist") {
|
Chris@0
|
455 m_warp_params.alpha_dist = value;
|
Chris@0
|
456 } else if (identifier == "nfft") {
|
Chris@0
|
457 m_nfft = value;
|
Chris@0
|
458 } else if (identifier == "f0min") {
|
Chris@0
|
459 m_f0_params.f0min = value;
|
Chris@0
|
460 } else if (identifier == "num_octs") {
|
Chris@0
|
461 m_f0_params.num_octs = value;
|
Chris@0
|
462 } else if (identifier == "f0s_per_oct") {
|
Chris@0
|
463 m_f0_params.num_f0s_per_oct = value;
|
Chris@0
|
464 } else if (identifier == "num_f0_hyps") {
|
Chris@0
|
465 m_f0_params.num_f0_hyps = value;
|
Chris@0
|
466 } else if (identifier == "f0_prefer_fun") {
|
Chris@0
|
467 m_f0_params.prefer = value;
|
Chris@0
|
468 } else if (identifier == "f0_prefer_mean") {
|
Chris@0
|
469 m_f0_params.prefer_mean = value;
|
Chris@0
|
470 } else if (identifier == "f0_prefer_stdev") {
|
Chris@0
|
471 m_f0_params.prefer_stdev = value;
|
Chris@0
|
472 } else if (identifier == "f0gram_mode") {
|
Chris@15
|
473 m_f0gram_mode = (value > 0.5 ?
|
Chris@15
|
474 BestBinOfAllDirections :
|
Chris@15
|
475 AllBinsOfBestDirection);
|
Chris@15
|
476 } else {
|
Chris@15
|
477 cerr << "WARNING: Unknown parameter id \""
|
Chris@15
|
478 << identifier << "\"" << endl;
|
Chris@0
|
479 }
|
Chris@0
|
480 }
|
Chris@0
|
481
|
Chris@0
|
482 FChTransformF0gram::ProgramList
|
Chris@0
|
483 FChTransformF0gram::getPrograms() const {
|
Chris@0
|
484 ProgramList list;
|
Chris@0
|
485 return list;
|
Chris@0
|
486 }
|
Chris@0
|
487
|
Chris@0
|
488 FChTransformF0gram::OutputList
|
Chris@0
|
489 FChTransformF0gram::getOutputDescriptors() const {
|
Chris@0
|
490
|
Chris@0
|
491 OutputList list;
|
Chris@0
|
492
|
Chris@16
|
493 vector<string> labels;
|
Chris@16
|
494 char label[100];
|
Chris@0
|
495
|
Chris@16
|
496 if (m_processingMode == ModeF0Gram) {
|
Chris@16
|
497
|
Chris@16
|
498 /* f0 values of F0gram grid as string values */
|
Chris@16
|
499 for (int i = 0; i < m_num_f0s; ++i) {
|
Chris@16
|
500 sprintf(label, "%4.2f Hz", m_f0s[i]);
|
Chris@16
|
501 labels.push_back(label);
|
Chris@16
|
502 }
|
Chris@16
|
503
|
Chris@16
|
504 /* The F0gram */
|
Chris@16
|
505 OutputDescriptor d;
|
Chris@16
|
506 d.identifier = "f0gram";
|
Chris@19
|
507 d.name = "F0gram";
|
Chris@19
|
508 d.description = "The salience of the different f0s in the signal.";
|
Chris@16
|
509 d.hasFixedBinCount = true;
|
Chris@16
|
510 d.binCount = m_f0_params.num_octs * m_f0_params.num_f0s_per_oct;
|
Chris@16
|
511 d.binNames = labels;
|
Chris@16
|
512 d.hasKnownExtents = false;
|
Chris@16
|
513 d.isQuantized = false;
|
Chris@16
|
514 d.sampleType = OutputDescriptor::OneSamplePerStep;
|
Chris@16
|
515 d.hasDuration = false;
|
Chris@16
|
516 list.push_back(d);
|
Chris@16
|
517
|
Chris@19
|
518 d.identifier = "pitch";
|
Chris@19
|
519 d.name = "Most salient pitch";
|
Chris@19
|
520 d.description = "The most salient f0 in the signal for each time step.";
|
Chris@19
|
521 d.unit = "Hz";
|
Chris@19
|
522 d.hasFixedBinCount = true;
|
Chris@19
|
523 d.binCount = 1;
|
Chris@19
|
524 d.binNames.clear();
|
Chris@19
|
525 d.hasKnownExtents = false;
|
Chris@19
|
526 d.isQuantized = false;
|
Chris@19
|
527 d.sampleType = OutputDescriptor::OneSamplePerStep;
|
Chris@19
|
528 d.hasDuration = false;
|
Chris@19
|
529 list.push_back(d);
|
Chris@19
|
530
|
Chris@16
|
531 } else {
|
Chris@16
|
532
|
Chris@16
|
533 for (int i = 0; i < m_warp_params.nsamps_twarp/2+1; ++i) {
|
Chris@16
|
534 double freq = i * (m_warpings.fs_warp / m_nfft);
|
Chris@16
|
535 sprintf(label, "%4.2f Hz", freq);
|
Chris@16
|
536 labels.push_back(label);
|
Chris@16
|
537 }
|
Chris@16
|
538
|
Chris@16
|
539 OutputDescriptor d;
|
Chris@16
|
540 d.identifier = "spectrogram";
|
Chris@16
|
541 d.name = "Spectrogram";
|
Chris@16
|
542 d.description = "Time/frequency spectrogram derived from the Fan Chirp Transform output";
|
Chris@16
|
543 d.hasFixedBinCount = true;
|
Chris@16
|
544 d.binCount = m_warp_params.nsamps_twarp/2+1;
|
Chris@16
|
545 d.binNames = labels;
|
Chris@16
|
546 d.hasKnownExtents = false;
|
Chris@16
|
547 d.isQuantized = false;
|
Chris@16
|
548 d.sampleType = OutputDescriptor::OneSamplePerStep;
|
Chris@16
|
549 d.hasDuration = false;
|
Chris@16
|
550 list.push_back(d);
|
Chris@0
|
551 }
|
Chris@16
|
552
|
Chris@0
|
553 return list;
|
Chris@0
|
554 }
|
Chris@0
|
555
|
Chris@0
|
556 bool
|
Chris@0
|
557 FChTransformF0gram::initialise(size_t channels, size_t stepSize, size_t blockSize) {
|
Chris@0
|
558 if (channels < getMinChannelCount() ||
|
Chris@20
|
559 channels > getMaxChannelCount() ||
|
Chris@20
|
560 blockSize != m_blockSize/2 ||
|
Chris@20
|
561 stepSize != m_stepSize) {
|
Chris@14
|
562 return false;
|
Chris@14
|
563 }
|
Chris@0
|
564
|
Chris@20
|
565 m_inputBuffer = allocate_and_zero<float>(m_blockSize);
|
Chris@20
|
566
|
Chris@0
|
567 // WARNING !!!
|
Chris@0
|
568 // these values in fact are determined by the sampling frequency m_fs
|
Chris@0
|
569 // the parameters used below correspond to default values i.e. m_fs = 44.100 Hz
|
Chris@0
|
570 //m_blockSize = 4 * m_warp_params.nsamps_twarp;
|
Chris@16
|
571 // m_stepSize = floor(m_hop / m_warp_params.fact_over_samp);
|
Chris@16
|
572
|
Chris@16
|
573 /* design of FChT */
|
Chris@16
|
574 design_FChT();
|
Chris@0
|
575
|
Chris@0
|
576 /* initialise m_glogs_params */
|
Chris@7
|
577 design_GLogS();
|
Chris@0
|
578
|
Chris@7
|
579 design_LPF();
|
Chris@0
|
580
|
Chris@7
|
581 design_time_window();
|
Chris@0
|
582
|
Chris@7
|
583 // Create Hanning window for warped signals
|
Chris@14
|
584 mp_HanningWindow = allocate<double>(m_warp_params.nsamps_twarp);
|
Chris@7
|
585 bool normalize = false;
|
Chris@14
|
586 Utils::hanning_window(mp_HanningWindow, m_warp_params.nsamps_twarp, normalize);
|
Chris@0
|
587
|
Chris@16
|
588 m_num_f0s = m_f0_params.num_octs * m_f0_params.num_f0s_per_oct;
|
Chris@16
|
589 m_f0s = allocate<double>(m_num_f0s);
|
Chris@16
|
590 for (int i = 0; i < m_num_f0s; ++i) {
|
Chris@16
|
591 m_f0s[i] = m_glogs_f0[m_glogs_init_f0s + i];
|
Chris@16
|
592 }
|
Chris@20
|
593
|
Chris@20
|
594 m_initialised = true;
|
Chris@0
|
595 return true;
|
Chris@0
|
596 }
|
Chris@0
|
597
|
Chris@0
|
598 void
|
Chris@0
|
599 FChTransformF0gram::design_GLogS() {
|
Chris@0
|
600
|
Chris@7
|
601 // total number & initial quantity of f0s
|
Chris@16
|
602
|
Chris@10
|
603 m_glogs_init_f0s = (int)(((double)m_f0_params.num_f0s_per_oct)*log2(5.0))+1;
|
Chris@7
|
604 m_glogs_num_f0s = (m_f0_params.num_octs+1)*m_f0_params.num_f0s_per_oct + m_glogs_init_f0s;
|
Chris@0
|
605
|
Chris@7
|
606 // Initialize arrays
|
Chris@14
|
607 m_glogs_f0 = allocate<double>(m_glogs_num_f0s);
|
Chris@14
|
608 m_glogs = allocate<double>(m_glogs_num_f0s*m_warp_params.num_warps);
|
Chris@14
|
609 m_glogs_n = allocate<int>(m_glogs_num_f0s);
|
Chris@14
|
610 m_glogs_index = allocate<int>(m_glogs_num_f0s);
|
Chris@0
|
611
|
Chris@7
|
612 // Compute f0 values
|
Chris@7
|
613 m_glogs_harmonic_count = 0;
|
Chris@7
|
614 double factor = (double)(m_warp_params.nsamps_twarp/2)/(double)(m_warp_params.nsamps_twarp/2+1);
|
Chris@10
|
615 for (int i = 0; i < m_glogs_num_f0s; i++) {
|
Chris@7
|
616 m_glogs_f0[i] = (m_f0_params.f0min/5.0)*pow(2.0,(double)i/(double)m_f0_params.num_f0s_per_oct);
|
Chris@7
|
617 // for every f0 compute number of partials less or equal than m_fmax.
|
Chris@7
|
618 m_glogs_n[i] = m_fmax*factor/m_glogs_f0[i];
|
Chris@7
|
619 m_glogs_index[i] = m_glogs_harmonic_count;
|
Chris@7
|
620 m_glogs_harmonic_count += m_glogs_n[i];
|
Chris@7
|
621 }
|
Chris@0
|
622
|
Chris@7
|
623 // Initialize arrays for interpolation
|
Chris@14
|
624 m_glogs_posint = allocate<int>(m_glogs_harmonic_count);
|
Chris@14
|
625 m_glogs_posfrac = allocate<double>(m_glogs_harmonic_count);
|
Chris@14
|
626 m_glogs_interp = allocate<double>(m_glogs_harmonic_count);
|
Chris@0
|
627
|
Chris@7
|
628 // Compute int & frac of interpolation positions
|
Chris@10
|
629 int aux_index = 0;
|
Chris@7
|
630 double aux_pos;
|
Chris@10
|
631 for (int i = 0; i < m_glogs_num_f0s; i++) {
|
Chris@10
|
632 for (int j = 1; j <= m_glogs_n[i]; j++) {
|
Chris@18
|
633 aux_pos = ((double)j * m_glogs_f0[i]) * ((double)(m_warp_params.nsamps_twarp))/m_warpings.fs_warp;
|
Chris@10
|
634 m_glogs_posint[aux_index] = (int)aux_pos;
|
Chris@7
|
635 m_glogs_posfrac[aux_index] = aux_pos - (double)m_glogs_posint[aux_index];
|
Chris@7
|
636 aux_index++;
|
Chris@7
|
637 }
|
Chris@7
|
638 }
|
Chris@0
|
639
|
Chris@7
|
640 // Third harmonic attenuation
|
Chris@7
|
641 double aux_third_harmonic;
|
Chris@14
|
642 m_glogs_third_harmonic_posint = allocate<int>((m_f0_params.num_octs+1)*m_f0_params.num_f0s_per_oct);
|
Chris@14
|
643 m_glogs_third_harmonic_posfrac = allocate<double>((m_f0_params.num_octs+1)*m_f0_params.num_f0s_per_oct);
|
Chris@10
|
644 for (int i = 0; i < (m_f0_params.num_octs+1)*m_f0_params.num_f0s_per_oct; i++) {
|
Chris@7
|
645 aux_third_harmonic = (double)i + (double)m_glogs_init_f0s - ((double)m_f0_params.num_f0s_per_oct)*log2(3.0);
|
Chris@10
|
646 m_glogs_third_harmonic_posint[i] = (int)aux_third_harmonic;
|
Chris@7
|
647 m_glogs_third_harmonic_posfrac[i] = aux_third_harmonic - (double)(m_glogs_third_harmonic_posint[i]);
|
Chris@7
|
648 }
|
Chris@14
|
649 m_glogs_third_harmonic = allocate<double>((m_f0_params.num_octs+1)*m_f0_params.num_f0s_per_oct);
|
Chris@0
|
650
|
Chris@7
|
651 // Fifth harmonic attenuation
|
Chris@7
|
652 double aux_fifth_harmonic;
|
Chris@14
|
653 m_glogs_fifth_harmonic_posint = allocate<int>((m_f0_params.num_octs+1)*m_f0_params.num_f0s_per_oct);
|
Chris@14
|
654 m_glogs_fifth_harmonic_posfrac = allocate<double>((m_f0_params.num_octs+1)*m_f0_params.num_f0s_per_oct);
|
Chris@10
|
655 for (int i = 0; i < (m_f0_params.num_octs+1)*m_f0_params.num_f0s_per_oct; i++) {
|
Chris@7
|
656 aux_fifth_harmonic = (double)i + (double)m_glogs_init_f0s - ((double)m_f0_params.num_f0s_per_oct)*log2(5.0);
|
Chris@10
|
657 m_glogs_fifth_harmonic_posint[i] = (int)aux_fifth_harmonic;
|
Chris@7
|
658 m_glogs_fifth_harmonic_posfrac[i] = aux_fifth_harmonic - (double)(m_glogs_fifth_harmonic_posint[i]);
|
Chris@7
|
659 }
|
Chris@14
|
660 m_glogs_fifth_harmonic = allocate<double>((m_f0_params.num_octs+1)*m_f0_params.num_f0s_per_oct);
|
Chris@0
|
661
|
Chris@7
|
662 // Normalization & attenuation windows
|
Chris@14
|
663 m_glogs_f0_preference_weights = allocate<double>(m_f0_params.num_octs*m_f0_params.num_f0s_per_oct);
|
Chris@14
|
664 m_glogs_median_correction = allocate<double>(m_f0_params.num_octs*m_f0_params.num_f0s_per_oct);
|
Chris@14
|
665 m_glogs_sigma_correction = allocate<double>(m_f0_params.num_octs*m_f0_params.num_f0s_per_oct);
|
Chris@7
|
666 double MIDI_value;
|
Chris@10
|
667 for (int i = 0; i < m_f0_params.num_octs*m_f0_params.num_f0s_per_oct; i++) {
|
Chris@7
|
668 MIDI_value = 69.0 + 12.0 * log2(m_glogs_f0[i + m_glogs_init_f0s]/440.0);
|
Chris@7
|
669 m_glogs_f0_preference_weights[i] = 1.0/sqrt(2.0*M_PI*m_f0_params.prefer_stdev*m_f0_params.prefer_stdev)*exp(-(MIDI_value-m_f0_params.prefer_mean)*(MIDI_value-m_f0_params.prefer_mean)/(2.0*m_f0_params.prefer_stdev*m_f0_params.prefer_stdev));
|
Chris@7
|
670 m_glogs_f0_preference_weights[i] = (0.01 + m_glogs_f0_preference_weights[i]) / (1.01);
|
Chris@0
|
671
|
Chris@7
|
672 m_glogs_median_correction[i] = m_glogs_params.median_poly_coefs[0]*(i+1.0)*(i+1.0) + m_glogs_params.median_poly_coefs[1]*(i+1.0) + m_glogs_params.median_poly_coefs[2];
|
Chris@7
|
673 m_glogs_sigma_correction[i] = 1.0 / (m_glogs_params.sigma_poly_coefs[0]*(i+1.0)*(i+1.0) + m_glogs_params.sigma_poly_coefs[1]*(i+1.0) + m_glogs_params.sigma_poly_coefs[2]);
|
Chris@7
|
674 }
|
Chris@0
|
675 }
|
Chris@0
|
676
|
Chris@0
|
677 void
|
Chris@0
|
678 FChTransformF0gram::design_FChT() {
|
Chris@0
|
679
|
Chris@0
|
680 /* ============= WARPING DESIGN ============= */
|
Chris@0
|
681
|
Chris@0
|
682 // sampling frequency after oversampling
|
Chris@0
|
683 m_warpings.fs_orig = m_warp_params.fact_over_samp * m_fs;
|
Chris@0
|
684
|
Chris@0
|
685 // number of samples of the original signal frame
|
Chris@0
|
686 m_warpings.nsamps_torig = 4 * m_warp_params.fact_over_samp * m_warp_params.nsamps_twarp;
|
Chris@0
|
687 // equivalent to: m_warpings.nsamps_torig = m_warp_params.fact_over_samp * m_blockSize;
|
Chris@0
|
688
|
Chris@0
|
689 // time instants of the original signal frame
|
Chris@14
|
690 double *t_orig = allocate<double>(m_warpings.nsamps_torig);
|
Chris@10
|
691 for (int ind = 0; ind < m_warpings.nsamps_torig; ind++) {
|
Chris@0
|
692 t_orig[ind] = ((double)(ind + 1) - (double)m_warpings.nsamps_torig / 2.0) / m_warpings.fs_orig;
|
Chris@0
|
693 }
|
Chris@0
|
694
|
Chris@0
|
695 // linear chirps warping definition as relative frequency deviation
|
Chris@7
|
696 //TODO
|
Chris@14
|
697 double *freq_relative = allocate<double>(m_warpings.nsamps_torig * m_warp_params.num_warps);
|
Chris@0
|
698 define_warps_linear_chirps(freq_relative, t_orig);
|
Chris@0
|
699
|
Chris@0
|
700 // maximum relative frequency deviation
|
Chris@0
|
701 double freq_relative_max = 0;
|
Chris@14
|
702 for (int i = 0; i < m_warpings.nsamps_torig; i++) {
|
Chris@14
|
703 for (int j = 0; j < m_warp_params.num_warps; j++) {
|
Chris@14
|
704 if (freq_relative_max < freq_relative[j * m_warpings.nsamps_torig + i]) {
|
Chris@0
|
705 freq_relative_max = freq_relative[j * m_warpings.nsamps_torig + i];
|
Chris@14
|
706 }
|
Chris@14
|
707 }
|
Chris@14
|
708 }
|
Chris@0
|
709
|
Chris@0
|
710 // sampling frequency of warped signal to be free of aliasing up to fmax
|
Chris@0
|
711 m_warpings.fs_warp = 2 * m_fmax * freq_relative_max;
|
Chris@0
|
712
|
Chris@0
|
713 // time instants of the warped signal frame
|
Chris@14
|
714 double *t_warp = allocate<double>(m_warp_params.nsamps_twarp);
|
Chris@10
|
715 for (int ind = 0; ind < m_warp_params.nsamps_twarp; ind++) {
|
Chris@0
|
716 t_warp[ind] = ((double)((int)(ind + 1)- (int)m_warp_params.nsamps_twarp / 2)) / (double)m_warpings.fs_warp;
|
Chris@0
|
717 }
|
Chris@0
|
718
|
Chris@0
|
719 // design of warpings for efficient interpolation
|
Chris@0
|
720 design_warps(freq_relative, t_orig, t_warp);
|
Chris@0
|
721
|
Chris@14
|
722 deallocate(freq_relative);
|
Chris@14
|
723 deallocate(t_orig);
|
Chris@14
|
724 deallocate(t_warp);
|
Chris@14
|
725
|
Chris@0
|
726 /* ============= FFTW PLAN DESIGN ============= */
|
Chris@7
|
727 // Initialize 2-d array for warped signals
|
Chris@14
|
728 x_warping = allocate<double>(m_warp_params.nsamps_twarp);
|
Chris@14
|
729 m_absFanChirpTransform = allocate<double>(m_warp_params.num_warps * (m_warp_params.nsamps_twarp/2 + 1));
|
Chris@14
|
730 m_auxFanChirpTransform = allocate<double>(2 * (m_warp_params.nsamps_twarp/2 + 1));
|
Chris@14
|
731 fft_xwarping = new FFTReal(m_warp_params.nsamps_twarp);
|
Chris@0
|
732 }
|
Chris@0
|
733
|
Chris@0
|
734 void
|
Chris@0
|
735 FChTransformF0gram::design_warps(double * freq_relative, double * t_orig, double * t_warp) {
|
Chris@0
|
736 /* the warping is done by interpolating the original signal in time instants
|
Chris@0
|
737 given by the desired frequency deviation, to do this, the interpolation
|
Chris@0
|
738 instants are stored in a structure as an integer index and a fractional value
|
Chris@0
|
739 hypothesis: sampling frequency at the central point equals the original
|
Chris@7
|
740 */
|
Chris@0
|
741
|
Chris@14
|
742 m_warpings.pos_int = allocate<int>(m_warp_params.num_warps * m_warp_params.nsamps_twarp);
|
Chris@14
|
743 m_warpings.pos_frac = allocate<double>(m_warp_params.num_warps * m_warp_params.nsamps_twarp);
|
Chris@0
|
744
|
Chris@7
|
745 // vector of phase values
|
Chris@14
|
746 double *phi = allocate<double>(m_warpings.nsamps_torig);
|
Chris@7
|
747 double aux;
|
Chris@0
|
748
|
Chris@7
|
749 // warped positions
|
Chris@14
|
750 double *pos1 = allocate<double>(m_warp_params.nsamps_twarp*m_warp_params.num_warps);
|
Chris@0
|
751
|
Chris@10
|
752 for (int i = 0; i < m_warp_params.num_warps; i++) {
|
Chris@0
|
753
|
Chris@7
|
754 // integration of relative frequency to obtain phase values
|
Chris@14
|
755 Utils::cumtrapz(t_orig, freq_relative + i*(m_warpings.nsamps_torig), m_warpings.nsamps_torig, phi);
|
Chris@0
|
756
|
Chris@7
|
757 // centering of phase values to force original frequency in the middle
|
Chris@7
|
758 aux = phi[m_warpings.nsamps_torig/2];
|
Chris@10
|
759 for (int j = 0; j < m_warpings.nsamps_torig; j++) {
|
Chris@7
|
760 phi[j] -= aux;
|
Chris@7
|
761 } //for
|
Chris@0
|
762
|
Chris@7
|
763 // interpolation of phase values to obtain warped positions
|
Chris@14
|
764 Utils::interp1(phi, t_orig, m_warpings.nsamps_torig, t_warp, pos1 + i*m_warp_params.nsamps_twarp, m_warp_params.nsamps_twarp);
|
Chris@0
|
765 }
|
Chris@0
|
766
|
Chris@0
|
767 // % previous sample index
|
Chris@0
|
768 // pos1_int = uint32(floor(pos1))';
|
Chris@0
|
769 // % integer corresponding to previous sample index in "c"
|
Chris@0
|
770 // warps.pos1_int = (pos1_int - uint32(1));
|
Chris@0
|
771 // % fractional value that defines the warped position
|
Chris@0
|
772 // warps.pos1_frac = (double(pos1)' - double(pos1_int));
|
Chris@0
|
773
|
Chris@10
|
774 for (int j = 0; j < m_warp_params.nsamps_twarp*m_warp_params.num_warps; j++) {
|
Chris@7
|
775 // previous sample index
|
Chris@7
|
776 pos1[j] = pos1[j]*m_warpings.fs_orig + m_warpings.nsamps_torig/2 + 1;
|
Chris@10
|
777 m_warpings.pos_int[j] = (int) pos1[j];
|
Chris@7
|
778 m_warpings.pos_frac[j] = pos1[j] - (double)(m_warpings.pos_int[j]);
|
Chris@7
|
779 } //for
|
Chris@0
|
780
|
Chris@14
|
781 deallocate(phi);
|
Chris@14
|
782 deallocate(pos1);
|
Chris@0
|
783 }
|
Chris@0
|
784
|
Chris@0
|
785 void
|
Chris@0
|
786 FChTransformF0gram::define_warps_linear_chirps(double * freq_relative, double * t_orig) {
|
Chris@0
|
787 /** define warps as relative frequency deviation from original frequency
|
Chris@7
|
788 t_orig : time vector
|
Chris@7
|
789 freq_relative : relative frequency deviations
|
Chris@7
|
790 */
|
Chris@0
|
791 if (m_warp_params.alpha_dist == 0) {
|
Chris@0
|
792
|
Chris@0
|
793 // linear alpha values spacing
|
Chris@14
|
794 m_warpings.chirp_rates = allocate<double>(m_warp_params.num_warps);
|
Chris@0
|
795 // WARNING m_warp_params.num_warps must be odd
|
Chris@0
|
796 m_warpings.chirp_rates[0] = -m_warp_params.alpha_max;
|
Chris@0
|
797 double increment = (double) m_warp_params.alpha_max / ((m_warp_params.num_warps - 1) / 2);
|
Chris@0
|
798
|
Chris@10
|
799 for (int ind = 1; ind < m_warp_params.num_warps; ind++) {
|
Chris@0
|
800 m_warpings.chirp_rates[ind] = m_warpings.chirp_rates[ind - 1] + increment;
|
Chris@0
|
801 }
|
Chris@0
|
802 // force zero value
|
Chris@0
|
803 m_warpings.chirp_rates[(int) ((m_warp_params.num_warps - 1) / 2)] = 0;
|
Chris@0
|
804
|
Chris@0
|
805 } else {
|
Chris@0
|
806 // log alpha values spacing
|
Chris@14
|
807 m_warpings.chirp_rates = allocate<double>(m_warp_params.num_warps);
|
Chris@0
|
808
|
Chris@0
|
809 // force zero value
|
Chris@0
|
810 int middle_point = (int) ((m_warp_params.num_warps - 1) / 2);
|
Chris@0
|
811 m_warpings.chirp_rates[middle_point] = 0;
|
Chris@0
|
812
|
Chris@0
|
813 double logMax = log10(m_warp_params.alpha_max + 1);
|
Chris@0
|
814 double increment = logMax / ((m_warp_params.num_warps - 1) / 2.0f);
|
Chris@0
|
815 double exponent = 0;
|
Chris@0
|
816
|
Chris@0
|
817 // fill positive values
|
Chris@0
|
818 int ind_log = middle_point;
|
Chris@10
|
819 for (int ind = 0; ind < (m_warp_params.num_warps + 1) / 2; ind++) {
|
Chris@0
|
820 m_warpings.chirp_rates[ind_log] = pow(10, exponent) - 1;
|
Chris@0
|
821 exponent += increment;
|
Chris@0
|
822 ind_log++;
|
Chris@0
|
823 }
|
Chris@0
|
824 // fill negative values
|
Chris@10
|
825 for (int ind = 0; ind < (m_warp_params.num_warps - 1) / 2; ind++) {
|
Chris@0
|
826 m_warpings.chirp_rates[ind] = -m_warpings.chirp_rates[m_warp_params.num_warps - 1 - ind];
|
Chris@0
|
827 }
|
Chris@0
|
828 }
|
Chris@0
|
829
|
Chris@0
|
830 // compute relative frequency deviation
|
Chris@14
|
831 for (int i = 0; i < m_warpings.nsamps_torig; i++) {
|
Chris@14
|
832 for (int j = 0; j < m_warp_params.num_warps; j++) {
|
Chris@0
|
833 freq_relative[j * m_warpings.nsamps_torig + i] = 1.0 + t_orig[i] * m_warpings.chirp_rates[j];
|
Chris@14
|
834 }
|
Chris@14
|
835 }
|
Chris@0
|
836 }
|
Chris@0
|
837
|
Chris@0
|
838 void
|
Chris@14
|
839 FChTransformF0gram::design_LPF()
|
Chris@14
|
840 {
|
Chris@14
|
841 double *lp_LPFWindow_aux = allocate<double>(m_blockSize/2+1);
|
Chris@14
|
842 mp_LPFWindow = allocate<double>(m_blockSize/2+1);
|
Chris@0
|
843
|
Chris@10
|
844 int i_max = (int) ((2.0*m_fmax/m_fs) * ( (double)m_blockSize / 2.0 + 1.0 ));
|
Chris@10
|
845 for (int i = 0; i < m_blockSize/2+1; i++) {
|
Chris@0
|
846 if (i >= i_max) {
|
Chris@0
|
847 lp_LPFWindow_aux[i] = 0.0;
|
Chris@0
|
848 } else {
|
Chris@0
|
849 lp_LPFWindow_aux[i] = 1.0;
|
Chris@0
|
850 }
|
Chris@0
|
851 }
|
Chris@14
|
852
|
Chris@14
|
853 LPF_time = allocate_and_zero<double>(m_warpings.nsamps_torig);
|
Chris@14
|
854 LPF_frequency = allocate_and_zero<double>(2 * (m_warpings.nsamps_torig/2 + 1));
|
Chris@14
|
855
|
Chris@14
|
856 fft_forward_LPF = new FFTReal(m_blockSize);
|
Chris@14
|
857 fft_inverse_LPF = new FFTReal(m_warpings.nsamps_torig);
|
Chris@0
|
858
|
Chris@10
|
859 int winWidth = 11;
|
Chris@14
|
860 double *lp_hanningWindow = allocate<double>(winWidth);
|
Chris@0
|
861 double accum=0;
|
Chris@10
|
862 for (int i = 0; i < winWidth; i++) {
|
Chris@0
|
863 lp_hanningWindow[i]=0.5*(1.0-cos(2*M_PI*(double)(i+1)/((double)winWidth+1.0)));
|
Chris@0
|
864 accum+=lp_hanningWindow[i];
|
Chris@0
|
865
|
Chris@0
|
866 }
|
Chris@10
|
867 for (int i = 0; i < winWidth; i++) { //window normalization
|
Chris@0
|
868 lp_hanningWindow[i]=lp_hanningWindow[i]/accum;
|
Chris@0
|
869 }
|
Chris@10
|
870 for (int i = 0; i < m_blockSize/2+1; i++) {
|
Chris@0
|
871 //if (((i-(winWidth-1)/2)<0)||(i+(winWidth-1))/2>m_blockSize/2-1) {//consideramos winWidth impar, si la ventana sale del arreglo se rellena con el valor origianl
|
Chris@7
|
872 if ( (i > (i_max + (winWidth-1)/2)) || (i <= (i_max - (winWidth-1)/2)) ) {
|
Chris@0
|
873 mp_LPFWindow[i]=lp_LPFWindow_aux[i];
|
Chris@0
|
874 } else {
|
Chris@0
|
875 accum=0;
|
Chris@10
|
876 for (int j = -((winWidth-1)/2); j <= (winWidth-1)/2; j++) {
|
Chris@0
|
877 accum+=lp_LPFWindow_aux[i-j]*lp_hanningWindow[j+(winWidth-1)/2];
|
Chris@7
|
878 }
|
Chris@0
|
879 mp_LPFWindow[i]=accum;
|
Chris@0
|
880 }
|
Chris@0
|
881 }
|
Chris@0
|
882
|
Chris@14
|
883 deallocate(lp_LPFWindow_aux);
|
Chris@14
|
884 deallocate(lp_hanningWindow);
|
Chris@0
|
885 }
|
Chris@0
|
886
|
Chris@14
|
887 void FChTransformF0gram::apply_LPF()
|
Chris@14
|
888 {
|
Chris@14
|
889 fft_forward_LPF->forward(LPF_time, LPF_frequency);
|
Chris@14
|
890
|
Chris@10
|
891 for (int i = 0; i < m_blockSize/2+1; i++) {
|
Chris@16
|
892 LPF_frequency[i*2] *= mp_LPFWindow[i];
|
Chris@16
|
893 LPF_frequency[i*2 + 1] *= mp_LPFWindow[i];
|
Chris@0
|
894 }
|
Chris@14
|
895
|
Chris@14
|
896 fft_inverse_LPF->inverse(LPF_frequency, LPF_time);
|
Chris@20
|
897
|
Chris@7
|
898 // TODO ver si hay que hacer fftshift para corregir la fase respecto al centro del frame.
|
Chris@7
|
899 // nota: ademÔs de aplicar el LPF, esta función resamplea la señal original.
|
Chris@0
|
900 }
|
Chris@0
|
901
|
Chris@14
|
902 void FChTransformF0gram::clean_LPF()
|
Chris@14
|
903 {
|
Chris@14
|
904 delete fft_forward_LPF;
|
Chris@14
|
905 delete fft_inverse_LPF;
|
Chris@14
|
906 deallocate(LPF_time);
|
Chris@14
|
907 deallocate(LPF_frequency);
|
Chris@14
|
908 deallocate(mp_LPFWindow);
|
Chris@0
|
909 }
|
Chris@0
|
910
|
Chris@14
|
911 void FChTransformF0gram::reset()
|
Chris@14
|
912 {
|
Chris@0
|
913 }
|
Chris@0
|
914
|
Chris@0
|
915 FChTransformF0gram::FeatureSet
|
Chris@5
|
916 FChTransformF0gram::process(const float *const *inputBuffers, Vamp::RealTime) {
|
Chris@0
|
917
|
Chris@20
|
918 if (!m_initialised) return FeatureSet();
|
Chris@20
|
919
|
Chris@7
|
920 /* PSEUDOCĆDIGO:
|
Chris@7
|
921 - Aplicar FFT al frame entero.
|
Chris@7
|
922 - Filtro pasabajos en frecuencia.
|
Chris@7
|
923 - FFT inversa al frame entero.
|
Chris@7
|
924 -----------------------------------------------------------------------------
|
Chris@7
|
925 - Para cada warp: *Si es un espectrograma direccional (un solo warp
|
Chris@7
|
926 => no es para cada warp sino para el elegido)
|
Chris@7
|
927 - Hacer la interpolación con interp1q.
|
Chris@7
|
928 - Aplicar la FFT al frame warpeado.
|
Chris@7
|
929 - (Opcional) GLogS.
|
Chris@7
|
930 - ...
|
Chris@7
|
931 */
|
Chris@0
|
932
|
Chris@0
|
933 //---------------------------------------------------------------------------
|
Chris@7
|
934 FeatureSet fs;
|
Chris@0
|
935
|
Chris@7
|
936 #ifdef DEBUG
|
Chris@16
|
937 fprintf(stderr, "\n ----- DEBUG INFORMATION ----- \n");
|
Chris@16
|
938 fprintf(stderr, " m_fs = %f Hz.\n",m_fs);
|
Chris@16
|
939 fprintf(stderr, " fs_orig = %f Hz.\n",m_warpings.fs_orig);
|
Chris@16
|
940 fprintf(stderr, " fs_warp = %f Hz.\n",m_warpings.fs_warp);
|
Chris@16
|
941 fprintf(stderr, " m_nfft = %d.\n",m_nfft);
|
Chris@16
|
942 fprintf(stderr, " m_blockSize = %d.\n",m_blockSize);
|
Chris@16
|
943 fprintf(stderr, " m_warpings.nsamps_torig = %d.\n",m_warpings.nsamps_torig);
|
Chris@16
|
944 fprintf(stderr, " m_warp_params.num_warps = %d.\n",m_warp_params.num_warps);
|
Chris@16
|
945 fprintf(stderr, " m_glogs_harmonic_count = %d.\n",m_glogs_harmonic_count);
|
Chris@7
|
946 #endif
|
Chris@0
|
947
|
Chris@20
|
948 for (int i = 0; i < m_blockSize - m_stepSize; ++i) {
|
Chris@20
|
949 m_inputBuffer[i] = m_inputBuffer[i + m_stepSize];
|
Chris@0
|
950 }
|
Chris@20
|
951 for (int i = 0; i < m_blockSize/2; ++i) {
|
Chris@20
|
952 m_inputBuffer[m_blockSize/2 + i] = inputBuffers[0][i];
|
Chris@20
|
953 }
|
Chris@20
|
954 for (int i = 0; i < m_blockSize; ++i) {
|
Chris@20
|
955 LPF_time[i] = m_inputBuffer[i] * m_timeWindow[i];
|
Chris@20
|
956 }
|
Chris@20
|
957 for (int i = 0; i < m_blockSize; ++i) {
|
Chris@20
|
958 LPF_time[m_blockSize + i] = 0.0;
|
Chris@20
|
959 }
|
Chris@20
|
960
|
Chris@7
|
961 apply_LPF();
|
Chris@7
|
962 // SeƱal filtrada queda en LPF_time
|
Chris@0
|
963
|
Chris@7
|
964 Feature feature;
|
Chris@0
|
965 feature.hasTimestamp = false;
|
Chris@0
|
966
|
Chris@15
|
967 if (m_processingMode == ModeRoughSpectrogram) {
|
Chris@15
|
968 feature.values = vector<float>(m_warp_params.nsamps_twarp/2+1, 0.f);
|
Chris@15
|
969 }
|
Chris@15
|
970
|
Chris@0
|
971 // ----------------------------------------------------------------------------------------------
|
Chris@0
|
972 // Hanning window & FFT for all warp directions
|
Chris@0
|
973
|
Chris@7
|
974 double max_glogs = -DBL_MAX;
|
Chris@10
|
975 int ind_max_glogs = 0;
|
Chris@0
|
976
|
Chris@10
|
977 for (int i_warp = 0; i_warp < m_warp_params.num_warps; i_warp++) {
|
Chris@16
|
978
|
Chris@7
|
979 // Interpolate
|
Chris@14
|
980 Utils::interp1q(LPF_time, (m_warpings.pos_int) + i_warp*m_warp_params.nsamps_twarp, m_warpings.pos_frac + i_warp*m_warp_params.nsamps_twarp, x_warping, m_warp_params.nsamps_twarp);
|
Chris@0
|
981
|
Chris@7
|
982 // Apply window
|
Chris@10
|
983 for (int i = 0; i < m_warp_params.nsamps_twarp; i++) {
|
Chris@7
|
984 x_warping[i] *= mp_HanningWindow[i];
|
Chris@7
|
985 }
|
Chris@0
|
986
|
Chris@7
|
987 // Transform
|
Chris@14
|
988 fft_xwarping->forward(x_warping, m_auxFanChirpTransform);
|
Chris@0
|
989
|
Chris@15
|
990 if (m_processingMode == ModeRoughSpectrogram) {
|
Chris@15
|
991 for (int i = 0; i < (m_warp_params.nsamps_twarp/2+1); i++) {
|
Chris@15
|
992 double abs = sqrt(m_auxFanChirpTransform[i*2]*m_auxFanChirpTransform[i*2]+m_auxFanChirpTransform[i*2+1]*m_auxFanChirpTransform[i*2+1]);
|
Chris@15
|
993 if (abs > feature.values[i]) {
|
Chris@15
|
994 feature.values[i] = abs;
|
Chris@15
|
995 }
|
Chris@15
|
996 }
|
Chris@15
|
997 continue;
|
Chris@15
|
998 }
|
Chris@15
|
999
|
Chris@7
|
1000 // Copy result
|
Chris@7
|
1001 double *aux_abs_fcht = m_absFanChirpTransform + i_warp*(m_warp_params.nsamps_twarp/2+1);
|
Chris@10
|
1002 for (int i = 0; i < (m_warp_params.nsamps_twarp/2+1); i++) {
|
Chris@14
|
1003 aux_abs_fcht[i] = log10(1.0 + 10.0*sqrt(m_auxFanChirpTransform[i*2]*m_auxFanChirpTransform[i*2]+m_auxFanChirpTransform[i*2+1]*m_auxFanChirpTransform[i*2+1]));
|
Chris@7
|
1004 }
|
Chris@0
|
1005
|
Chris@0
|
1006 // -----------------------------------------------------------------------------------------
|
Chris@0
|
1007 // GLogS
|
Chris@14
|
1008 Utils::interp1q(aux_abs_fcht, m_glogs_posint, m_glogs_posfrac, m_glogs_interp, m_glogs_harmonic_count);
|
Chris@10
|
1009 int glogs_ind = 0;
|
Chris@10
|
1010 for (int i = 0; i < m_glogs_num_f0s; i++) {
|
Chris@7
|
1011 double glogs_accum = 0;
|
Chris@10
|
1012 for (int j = 1; j <= m_glogs_n[i]; j++) {
|
Chris@7
|
1013 glogs_accum += m_glogs_interp[glogs_ind++];
|
Chris@7
|
1014 }
|
Chris@7
|
1015 m_glogs[i + i_warp*m_glogs_num_f0s] = glogs_accum/(double)m_glogs_n[i];
|
Chris@7
|
1016 }
|
Chris@0
|
1017
|
Chris@0
|
1018 // Sub/super harmonic correction
|
Chris@14
|
1019 Utils::interp1q(m_glogs + i_warp*m_glogs_num_f0s, m_glogs_third_harmonic_posint, m_glogs_third_harmonic_posfrac, m_glogs_third_harmonic, (m_f0_params.num_octs+1)*m_f0_params.num_f0s_per_oct);
|
Chris@14
|
1020 Utils::interp1q(m_glogs + i_warp*m_glogs_num_f0s, m_glogs_fifth_harmonic_posint, m_glogs_fifth_harmonic_posfrac, m_glogs_fifth_harmonic, (m_f0_params.num_octs+1)*m_f0_params.num_f0s_per_oct);
|
Chris@10
|
1021 for (int i = m_glogs_num_f0s-1; i >= m_glogs_init_f0s; i--) {
|
Chris@7
|
1022 m_glogs[i + i_warp*m_glogs_num_f0s] -= MAX(MAX(m_glogs[i-m_f0_params.num_f0s_per_oct + i_warp*m_glogs_num_f0s],m_glogs_third_harmonic[i-m_glogs_init_f0s]),m_glogs_fifth_harmonic[i-m_glogs_init_f0s]);
|
Chris@7
|
1023 }
|
Chris@10
|
1024 for (int i = m_glogs_init_f0s; i < m_glogs_num_f0s-m_f0_params.num_f0s_per_oct; i++) {
|
Chris@7
|
1025 m_glogs[i + i_warp*m_glogs_num_f0s] -= 0.3*m_glogs[i+m_f0_params.num_f0s_per_oct + i_warp*m_glogs_num_f0s];
|
Chris@7
|
1026 // Median, sigma $ weights correction
|
Chris@7
|
1027 m_glogs[i + i_warp*m_glogs_num_f0s] = (m_glogs[i + i_warp*m_glogs_num_f0s]-m_glogs_median_correction[i-m_glogs_init_f0s])*m_glogs_sigma_correction[i-m_glogs_init_f0s]*m_glogs_f0_preference_weights[i-m_glogs_init_f0s];
|
Chris@7
|
1028 }
|
Chris@0
|
1029
|
Chris@7
|
1030 // Look for maximum value to determine best direction
|
Chris@10
|
1031 for (int i = m_glogs_init_f0s; i < m_glogs_num_f0s-m_f0_params.num_f0s_per_oct; i++) {
|
Chris@7
|
1032 if (m_glogs[i + i_warp*m_glogs_num_f0s] > max_glogs) {
|
Chris@7
|
1033 max_glogs = m_glogs[i + i_warp*m_glogs_num_f0s];
|
Chris@7
|
1034 ind_max_glogs = i_warp;
|
Chris@7
|
1035 }
|
Chris@7
|
1036 }
|
Chris@7
|
1037 }
|
Chris@0
|
1038
|
Chris@15
|
1039 if (m_processingMode == ModeRoughSpectrogram) {
|
Chris@15
|
1040
|
Chris@15
|
1041 // already accumulated our return values in feature
|
Chris@19
|
1042 fs[0].push_back(feature);
|
Chris@15
|
1043
|
Chris@15
|
1044 } else if (m_processingMode == ModeSpectrogram) {
|
Chris@15
|
1045
|
Chris@15
|
1046 for (int i = 0; i < m_warp_params.nsamps_twarp/2+1; i++) {
|
Chris@15
|
1047 feature.values.push_back(pow(10.0, m_absFanChirpTransform[ind_max_glogs * (m_warp_params.nsamps_twarp/2+1) + i]) - 1.0);
|
Chris@15
|
1048 }
|
Chris@19
|
1049 fs[0].push_back(feature);
|
Chris@15
|
1050
|
Chris@15
|
1051 } else { // f0gram
|
Chris@15
|
1052
|
Chris@19
|
1053 int bestIndex = -1;
|
Chris@19
|
1054
|
Chris@15
|
1055 for (int i=m_glogs_init_f0s; i< m_glogs_num_f0s - m_f0_params.num_f0s_per_oct; i++) {
|
Chris@19
|
1056 double value = 0.0;
|
Chris@15
|
1057 switch (m_f0gram_mode) {
|
Chris@15
|
1058 case AllBinsOfBestDirection:
|
Chris@19
|
1059 value = m_glogs[i+(int)ind_max_glogs*(int)m_glogs_num_f0s];
|
Chris@15
|
1060 break;
|
Chris@15
|
1061 case BestBinOfAllDirections:
|
Chris@15
|
1062 max_glogs = -DBL_MAX;
|
Chris@15
|
1063 for (int i_warp = 0; i_warp < m_warp_params.num_warps; i_warp++) {
|
Chris@15
|
1064 if (m_glogs[i + i_warp*m_glogs_num_f0s] > max_glogs) {
|
Chris@15
|
1065 max_glogs = m_glogs[i + i_warp*m_glogs_num_f0s];
|
Chris@15
|
1066 ind_max_glogs = i_warp;
|
Chris@15
|
1067 }
|
Chris@7
|
1068 }
|
Chris@19
|
1069 value = max_glogs;
|
Chris@15
|
1070 break;
|
Chris@7
|
1071 }
|
Chris@19
|
1072 if (bestIndex < 0 || float(value) > feature.values[bestIndex]) {
|
Chris@19
|
1073 bestIndex = int(feature.values.size());
|
Chris@19
|
1074 }
|
Chris@19
|
1075 feature.values.push_back(float(value));
|
Chris@19
|
1076 }
|
Chris@19
|
1077
|
Chris@19
|
1078 fs[0].push_back(feature);
|
Chris@19
|
1079
|
Chris@19
|
1080 if (bestIndex >= 0) {
|
Chris@19
|
1081
|
Chris@19
|
1082 double bestValue = feature.values[bestIndex];
|
Chris@19
|
1083 set<double> ordered(feature.values.begin(), feature.values.end());
|
Chris@19
|
1084 vector<double> flattened(ordered.begin(), ordered.end());
|
Chris@19
|
1085 double median = flattened[flattened.size()/2];
|
Chris@19
|
1086 if (bestValue > median * 8.0) {
|
Chris@19
|
1087 Feature pfeature;
|
Chris@19
|
1088 pfeature.hasTimestamp = false;
|
Chris@19
|
1089 pfeature.values.push_back(m_f0s[bestIndex]);
|
Chris@19
|
1090 fs[1].push_back(pfeature);
|
Chris@19
|
1091 }
|
Chris@7
|
1092 }
|
Chris@7
|
1093 }
|
Chris@0
|
1094
|
Chris@7
|
1095 return fs;
|
Chris@0
|
1096 }
|
Chris@0
|
1097
|
Chris@0
|
1098 FChTransformF0gram::FeatureSet
|
Chris@0
|
1099 FChTransformF0gram::getRemainingFeatures() {
|
Chris@0
|
1100 return FeatureSet();
|
Chris@0
|
1101 }
|
Chris@0
|
1102
|
Chris@0
|
1103 void
|
Chris@0
|
1104 FChTransformF0gram::design_time_window() {
|
Chris@0
|
1105
|
Chris@20
|
1106 int transitionWidth = (int)m_blockSize/128 + 128;
|
Chris@14
|
1107 m_timeWindow = allocate<double>(m_blockSize);
|
Chris@14
|
1108 double *lp_transitionWindow = allocate<double>(transitionWidth);
|
Chris@0
|
1109
|
Chris@10
|
1110 for (int i = 0; i < m_blockSize; i++) {
|
Chris@7
|
1111 m_timeWindow[i] = 1.0;
|
Chris@7
|
1112 }
|
Chris@0
|
1113
|
Chris@10
|
1114 for (int i = 0; i < transitionWidth; i++) {
|
Chris@0
|
1115 lp_transitionWindow[i]=0.5*(1.0-cos(2*M_PI*(double)(i+1)/((double)transitionWidth+1.0)));
|
Chris@0
|
1116 }
|
Chris@0
|
1117
|
Chris@10
|
1118 for (int i = 0; i < transitionWidth/2; i++) {
|
Chris@7
|
1119 m_timeWindow[i] = lp_transitionWindow[i];
|
Chris@7
|
1120 m_timeWindow[m_blockSize-1-i] = lp_transitionWindow[transitionWidth-1-i];
|
Chris@7
|
1121 }
|
Chris@0
|
1122
|
Chris@7
|
1123 #ifdef DEBUG
|
Chris@7
|
1124 for (int i = 0; i < m_blockSize; i++) {
|
Chris@7
|
1125 if ((i<transitionWidth)) {
|
Chris@16
|
1126 fprintf(stderr, " m_timeWindow[%d] = %f.\n",i,m_timeWindow[i]);
|
Chris@7
|
1127 }
|
Chris@7
|
1128 }
|
Chris@7
|
1129 #endif
|
Chris@0
|
1130
|
Chris@14
|
1131 deallocate(lp_transitionWindow);
|
Chris@0
|
1132 }
|
Chris@0
|
1133
|