annotate FChTransformF0gram.cpp @ 21:37917af73ae9 spect

Some tidying
author Chris Cannam
date Thu, 04 Oct 2018 14:46:41 +0100
parents 7964cc5ad98f
children a1879532385e
rev   line source
Chris@0 1 /*
Chris@0 2 copyright (C) 2011 I. Irigaray, M. Rocamora
Chris@0 3
Chris@0 4 This program is free software: you can redistribute it and/or modify
Chris@0 5 it under the terms of the GNU General Public License as published by
Chris@0 6 the Free Software Foundation, either version 3 of the License, or
Chris@0 7 (at your option) any later version.
Chris@0 8
Chris@0 9 This program is distributed in the hope that it will be useful,
Chris@0 10 but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@0 11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@0 12 GNU General Public License for more details.
Chris@0 13
Chris@0 14 You should have received a copy of the GNU General Public License
Chris@0 15 along with this program. If not, see <http://www.gnu.org/licenses/>.
Chris@7 16 */
Chris@0 17
Chris@0 18 #include "FChTransformF0gram.h"
Chris@0 19 #include "FChTransformUtils.h"
Chris@0 20 #include <math.h>
Chris@0 21 #include <float.h>
Chris@14 22
Chris@19 23 #include <set>
Chris@19 24
Chris@14 25 #include "bqvec/Allocators.h"
Chris@14 26
Chris@14 27 using namespace breakfastquay;
Chris@14 28
Chris@21 29 //#define DEBUG
Chris@7 30
Chris@0 31 #define MAX(x, y) (((x) > (y)) ? (x) : (y))
Chris@0 32
Chris@15 33 FChTransformF0gram::FChTransformF0gram(ProcessingMode mode,
Chris@15 34 float inputSampleRate) :
Chris@7 35 Plugin(inputSampleRate),
Chris@15 36 m_processingMode(mode),
Chris@20 37 m_initialised(false),
Chris@20 38 m_stepSize(256),
Chris@20 39 m_blockSize(8192) {
Chris@0 40
Chris@0 41 m_fs = inputSampleRate;
Chris@0 42 // max frequency of interest (Hz)
Chris@0 43 m_fmax = 10000.f;
Chris@0 44 // warping parameters
Chris@12 45 m_warp_params.nsamps_twarp = 2048;
Chris@0 46 m_warp_params.alpha_max = 4;
Chris@0 47 m_warp_params.num_warps = 21;
Chris@0 48 m_warp_params.fact_over_samp = 2;
Chris@0 49 m_warp_params.alpha_dist = 0;
Chris@0 50 // f0 parameters
Chris@0 51 m_f0_params.f0min = 80.0;
Chris@0 52 m_f0_params.num_octs = 4;
Chris@0 53 m_f0_params.num_f0s_per_oct = 192;
Chris@0 54 m_f0_params.num_f0_hyps = 5;
Chris@0 55 m_f0_params.prefer = true;
Chris@0 56 m_f0_params.prefer_mean = 60;
Chris@0 57 m_f0_params.prefer_stdev = 18;
Chris@0 58 // glogs parameters
Chris@0 59 m_glogs_params.HP_logS = true;
Chris@0 60 m_glogs_params.att_subharms = 1;
Chris@7 61 // display parameters
Chris@15 62 m_f0gram_mode = BestBinOfAllDirections;
Chris@0 63
Chris@0 64 m_glogs_params.median_poly_coefs[0] = -0.000000058551680;
Chris@0 65 m_glogs_params.median_poly_coefs[1] = -0.000006945207775;
Chris@0 66 m_glogs_params.median_poly_coefs[2] = 0.002357223226588;
Chris@0 67
Chris@0 68 m_glogs_params.sigma_poly_coefs[0] = 0.000000092782308;
Chris@0 69 m_glogs_params.sigma_poly_coefs[1] = 0.000057283574898;
Chris@0 70 m_glogs_params.sigma_poly_coefs[2] = 0.022199903714288;
Chris@0 71
Chris@0 72 // number of fft points (controls zero-padding)
Chris@0 73 m_nfft = m_warp_params.nsamps_twarp;
Chris@0 74 // hop in samples
Chris@0 75 m_hop = m_warp_params.fact_over_samp * 256;
Chris@0 76
Chris@0 77 m_num_f0s = 0;
Chris@16 78 m_f0s = 0;
Chris@0 79 }
Chris@0 80
Chris@14 81 FChTransformF0gram::~FChTransformF0gram()
Chris@14 82 {
Chris@20 83 if (!m_initialised) {
Chris@14 84 return; // nothing was allocated
Chris@14 85 }
Chris@14 86
Chris@20 87 deallocate(m_inputBuffer);
Chris@20 88
Chris@14 89 deallocate(m_warpings.pos_int);
Chris@14 90 deallocate(m_warpings.pos_frac);
Chris@14 91 deallocate(m_warpings.chirp_rates);
Chris@14 92
Chris@14 93 clean_LPF();
Chris@14 94
Chris@14 95 deallocate(m_timeWindow);
Chris@14 96
Chris@14 97 deallocate(mp_HanningWindow);
Chris@14 98
Chris@14 99 // Warping
Chris@14 100 deallocate(x_warping);
Chris@14 101 delete fft_xwarping;
Chris@14 102 deallocate(m_absFanChirpTransform);
Chris@14 103 deallocate(m_auxFanChirpTransform);
Chris@14 104
Chris@14 105 // design_GLogS
Chris@14 106 deallocate(m_glogs_f0);
Chris@14 107 deallocate(m_glogs);
Chris@14 108 deallocate(m_glogs_n);
Chris@14 109 deallocate(m_glogs_index);
Chris@14 110 deallocate(m_glogs_posint);
Chris@14 111 deallocate(m_glogs_posfrac);
Chris@14 112 deallocate(m_glogs_interp);
Chris@14 113 deallocate(m_glogs_third_harmonic_posint);
Chris@14 114 deallocate(m_glogs_third_harmonic_posfrac);
Chris@14 115 deallocate(m_glogs_third_harmonic);
Chris@14 116 deallocate(m_glogs_fifth_harmonic_posint);
Chris@14 117 deallocate(m_glogs_fifth_harmonic_posfrac);
Chris@14 118 deallocate(m_glogs_fifth_harmonic);
Chris@14 119 deallocate(m_glogs_f0_preference_weights);
Chris@14 120 deallocate(m_glogs_median_correction);
Chris@14 121 deallocate(m_glogs_sigma_correction);
Chris@16 122
Chris@16 123 deallocate(m_f0s);
Chris@0 124 }
Chris@0 125
Chris@0 126 string
Chris@0 127 FChTransformF0gram::getIdentifier() const {
Chris@15 128 switch (m_processingMode) {
Chris@15 129 case ModeF0Gram: return "fchtransformf0gram";
Chris@15 130 case ModeSpectrogram: return "fchtransformspectrogram";
Chris@15 131 case ModeRoughSpectrogram: return "fchtransformrough";
Chris@15 132 }
Chris@17 133 throw std::logic_error("unknown mode");
Chris@0 134 }
Chris@0 135
Chris@0 136 string
Chris@0 137 FChTransformF0gram::getName() const {
Chris@15 138 switch (m_processingMode) {
Chris@15 139 case ModeF0Gram: return "Fan Chirp Transform F0gram";
Chris@15 140 case ModeSpectrogram: return "Fan Chirp Transform Spectrogram";
Chris@15 141 case ModeRoughSpectrogram: return "Fan Chirp Transform Rough Spectrogram";
Chris@15 142 }
Chris@17 143 throw std::logic_error("unknown mode");
Chris@0 144 }
Chris@0 145
Chris@0 146 string
Chris@0 147 FChTransformF0gram::getDescription() const {
Chris@15 148 switch (m_processingMode) {
Chris@15 149 case ModeF0Gram:
Chris@15 150 return "This plug-in produces a representation, called F0gram, which exhibits the salience of the fundamental frequency of the sound sources in the audio file. The computation of the F0gram makes use of the Fan Chirp Transform analysis. It is based on the article \"Fan chirp transform for music representation\" P. Cancela, E. Lopez, M. Rocamora, International Conference on Digital Audio Effects, 13th. DAFx-10. Graz, Austria - 6-10 Sep 2010.";
Chris@15 151 case ModeSpectrogram:
Chris@15 152 return "This plug-in produces a spectral representation of the audio using Fan Chirp Transform analysis.";
Chris@15 153 case ModeRoughSpectrogram:
Chris@15 154 return "This plug-in produces a more approximate spectral representation of the audio using Fan Chirp Transform analysis.";
Chris@15 155 }
Chris@17 156 throw std::logic_error("unknown mode");
Chris@0 157 }
Chris@0 158
Chris@0 159 string
Chris@0 160 FChTransformF0gram::getMaker() const {
Chris@0 161 // Your name here
Chris@0 162 return "Audio Processing Group \n Universidad de la Republica";
Chris@0 163 }
Chris@0 164
Chris@0 165 int
Chris@0 166 FChTransformF0gram::getPluginVersion() const {
Chris@0 167 // Increment this each time you release a version that behaves
Chris@0 168 // differently from the previous one
Chris@0 169 //
Chris@0 170 // 0 - initial version from scratch
Chris@15 171 return 1;
Chris@0 172 }
Chris@0 173
Chris@0 174 string
Chris@0 175 FChTransformF0gram::getCopyright() const {
Chris@0 176 // This function is not ideally named. It does not necessarily
Chris@0 177 // need to say who made the plugin -- getMaker does that -- but it
Chris@0 178 // should indicate the terms under which it is distributed. For
Chris@0 179 // example, "Copyright (year). All Rights Reserved", or "GPL"
Chris@0 180 return "copyright (C) 2011 GPL - Audio Processing Group, UdelaR";
Chris@0 181 }
Chris@0 182
Chris@0 183 FChTransformF0gram::InputDomain
Chris@0 184 FChTransformF0gram::getInputDomain() const {
Chris@0 185 return TimeDomain;
Chris@0 186 }
Chris@0 187
Chris@0 188 size_t FChTransformF0gram::getPreferredBlockSize() const {
Chris@20 189 // We do our own accumulating into blocks within process()
Chris@20 190 return m_blockSize/2;
Chris@0 191 }
Chris@0 192
Chris@0 193 size_t
Chris@0 194 FChTransformF0gram::getPreferredStepSize() const {
Chris@20 195 return m_stepSize;
Chris@0 196 }
Chris@0 197
Chris@0 198 size_t
Chris@0 199 FChTransformF0gram::getMinChannelCount() const {
Chris@0 200 return 1;
Chris@0 201 }
Chris@0 202
Chris@0 203 size_t
Chris@0 204 FChTransformF0gram::getMaxChannelCount() const {
Chris@0 205 return 1;
Chris@0 206 }
Chris@0 207
Chris@0 208 FChTransformF0gram::ParameterList
Chris@0 209 FChTransformF0gram::getParameterDescriptors() const {
Chris@0 210 ParameterList list;
Chris@0 211
Chris@0 212 // If the plugin has no adjustable parameters, return an empty
Chris@0 213 // list here (and there's no need to provide implementations of
Chris@0 214 // getParameter and setParameter in that case either).
Chris@0 215
Chris@0 216 // Note that it is your responsibility to make sure the parameters
Chris@0 217 // start off having their default values (e.g. in the constructor
Chris@0 218 // above). The host needs to know the default value so it can do
Chris@0 219 // things like provide a "reset to default" function, but it will
Chris@0 220 // not explicitly set your parameters to their defaults for you if
Chris@0 221 // they have not changed in the mean time.
Chris@0 222
Chris@0 223 // ============= WARPING PARAMETERS =============
Chris@0 224
Chris@0 225 ParameterDescriptor fmax;
Chris@0 226 fmax.identifier = "fmax";
Chris@0 227 fmax.name = "Maximum frequency";
Chris@0 228 fmax.description = "Maximum frequency of interest for the analysis.";
Chris@0 229 fmax.unit = "Hz";
Chris@0 230 fmax.minValue = 2000;
Chris@0 231 fmax.maxValue = 22050;
Chris@0 232 fmax.defaultValue = 10000;
Chris@0 233 fmax.isQuantized = true;
Chris@0 234 fmax.quantizeStep = 1.0;
Chris@0 235 list.push_back(fmax);
Chris@0 236
Chris@0 237 ParameterDescriptor nsamp;
Chris@0 238 nsamp.identifier = "nsamp";
Chris@0 239 nsamp.name = "Number of samples";
Chris@0 240 nsamp.description = "Number of samples of the time warped frame";
Chris@0 241 nsamp.unit = "samples";
Chris@0 242 nsamp.minValue = 128;
Chris@0 243 nsamp.maxValue = 4096;
Chris@0 244 nsamp.defaultValue = 2048;
Chris@0 245 nsamp.isQuantized = true;
Chris@0 246 nsamp.quantizeStep = 1.0;
Chris@0 247 list.push_back(nsamp);
Chris@0 248
Chris@0 249 ParameterDescriptor nfft;
Chris@0 250 nfft.identifier = "nfft";
Chris@0 251 nfft.name = "FFT number of points";
Chris@0 252 nfft.description = "Number of FFT points (controls zero-padding)";
Chris@0 253 nfft.unit = "samples";
Chris@0 254 nfft.minValue = 0;
Chris@0 255 nfft.maxValue = 4;
Chris@0 256 nfft.defaultValue = 3;
Chris@0 257 nfft.isQuantized = true;
Chris@0 258 nfft.quantizeStep = 1.0;
Chris@0 259 nfft.valueNames.push_back("256");
Chris@0 260 nfft.valueNames.push_back("512");
Chris@0 261 nfft.valueNames.push_back("1024");
Chris@0 262 nfft.valueNames.push_back("2048");
Chris@0 263 nfft.valueNames.push_back("4096");
Chris@0 264 nfft.valueNames.push_back("8192");
Chris@0 265 list.push_back(nfft);
Chris@0 266
Chris@0 267 ParameterDescriptor alpha_max;
Chris@0 268 alpha_max.identifier = "alpha_max";
Chris@0 269 alpha_max.name = "Maximum alpha value";
Chris@0 270 alpha_max.description = "Maximum value for the alpha parameter of the transform.";
Chris@0 271 alpha_max.unit = "Hz/s";
Chris@0 272 alpha_max.minValue = -10;
Chris@0 273 alpha_max.maxValue = 10;
Chris@0 274 alpha_max.defaultValue = 5;
Chris@0 275 alpha_max.isQuantized = true;
Chris@0 276 alpha_max.quantizeStep = 1.0;
Chris@0 277 list.push_back(alpha_max);
Chris@0 278
Chris@0 279 ParameterDescriptor num_warps;
Chris@0 280 num_warps.identifier = "num_warps";
Chris@0 281 num_warps.name = "Number of warpings";
Chris@0 282 num_warps.description = "Number of different warpings in the specified range (must be odd).";
Chris@0 283 num_warps.unit = "";
Chris@0 284 num_warps.minValue = 1;
Chris@0 285 num_warps.maxValue = 101;
Chris@0 286 num_warps.defaultValue = 21;
Chris@0 287 num_warps.isQuantized = true;
Chris@0 288 num_warps.quantizeStep = 2.0;
Chris@0 289 list.push_back(num_warps);
Chris@0 290
Chris@0 291 ParameterDescriptor alpha_dist;
Chris@0 292 alpha_dist.identifier = "alpha_dist";
Chris@0 293 alpha_dist.name = "alpha distribution";
Chris@0 294 alpha_dist.description = "Type of distribution of alpha values (linear or log).";
Chris@0 295 alpha_dist.unit = "";
Chris@0 296 alpha_dist.minValue = 0;
Chris@0 297 alpha_dist.maxValue = 1;
Chris@0 298 alpha_dist.defaultValue = 1;
Chris@0 299 alpha_dist.isQuantized = true;
Chris@0 300 alpha_dist.quantizeStep = 1.0;
Chris@0 301 // lin (0), log (1)
Chris@0 302 alpha_dist.valueNames.push_back("lin");
Chris@0 303 alpha_dist.valueNames.push_back("log");
Chris@0 304 list.push_back(alpha_dist);
Chris@0 305
Chris@0 306 // ============= F0-GRAM PARAMETERS =============
Chris@0 307
Chris@0 308 ParameterDescriptor f0min;
Chris@0 309 f0min.identifier = "f0min";
Chris@0 310 f0min.name = "min f0";
Chris@0 311 f0min.description = "Minimum fundamental frequency (f0) value.";
Chris@0 312 f0min.unit = "Hz";
Chris@0 313 f0min.minValue = 1;
Chris@0 314 f0min.maxValue = 500;
Chris@0 315 f0min.defaultValue = 80;
Chris@0 316 f0min.isQuantized = true;
Chris@0 317 f0min.quantizeStep = 1.0;
Chris@0 318 list.push_back(f0min);
Chris@0 319
Chris@0 320 ParameterDescriptor num_octs;
Chris@0 321 num_octs.identifier = "num_octs";
Chris@0 322 num_octs.name = "number of octaves";
Chris@0 323 num_octs.description = "Number of octaves for F0gram computation.";
Chris@0 324 num_octs.unit = "";
Chris@0 325 num_octs.minValue = 1;
Chris@0 326 num_octs.maxValue = 10;
Chris@0 327 num_octs.defaultValue = 4;
Chris@0 328 num_octs.isQuantized = true;
Chris@0 329 num_octs.quantizeStep = 1.0;
Chris@0 330 list.push_back(num_octs);
Chris@0 331
Chris@0 332 ParameterDescriptor num_f0_hyps;
Chris@0 333 num_f0_hyps.identifier = "num_f0_hyps";
Chris@0 334 num_f0_hyps.name = "number of f0 hypotesis";
Chris@0 335 num_f0_hyps.description = "Number of f0 hypotesis to extract.";
Chris@0 336 num_f0_hyps.unit = "";
Chris@0 337 num_f0_hyps.minValue = 1;
Chris@0 338 num_f0_hyps.maxValue = 100;
Chris@0 339 num_f0_hyps.defaultValue = 10;
Chris@0 340 num_f0_hyps.isQuantized = true;
Chris@0 341 num_f0_hyps.quantizeStep = 1.0;
Chris@0 342 list.push_back(num_f0_hyps);
Chris@0 343
Chris@0 344 ParameterDescriptor f0s_per_oct;
Chris@0 345 f0s_per_oct.identifier = "f0s_per_oct";
Chris@0 346 f0s_per_oct.name = "f0 values per octave";
Chris@0 347 f0s_per_oct.description = "Number of f0 values per octave.";
Chris@0 348 f0s_per_oct.unit = "";
Chris@0 349 f0s_per_oct.minValue = 12;
Chris@0 350 f0s_per_oct.maxValue = 768;
Chris@0 351 f0s_per_oct.defaultValue = 192;
Chris@0 352 f0s_per_oct.isQuantized = true;
Chris@0 353 f0s_per_oct.quantizeStep = 1.0;
Chris@0 354 list.push_back(f0s_per_oct);
Chris@0 355
Chris@0 356 ParameterDescriptor f0_prefer_fun;
Chris@0 357 f0_prefer_fun.identifier = "f0_prefer_fun";
Chris@0 358 f0_prefer_fun.name = "f0 preference function";
Chris@0 359 f0_prefer_fun.description = "Whether to use a f0 weighting function.";
Chris@0 360 f0_prefer_fun.unit = "";
Chris@0 361 f0_prefer_fun.minValue = 0;
Chris@0 362 f0_prefer_fun.maxValue = 1;
Chris@0 363 f0_prefer_fun.defaultValue = 1;
Chris@0 364 f0_prefer_fun.isQuantized = true;
Chris@0 365 f0_prefer_fun.quantizeStep = 1.0;
Chris@0 366 list.push_back(f0_prefer_fun);
Chris@0 367
Chris@0 368 ParameterDescriptor f0_prefer_mean;
Chris@0 369 f0_prefer_mean.identifier = "f0_prefer_mean";
Chris@0 370 f0_prefer_mean.name = "mean f0 preference function";
Chris@0 371 f0_prefer_mean.description = "Mean value for f0 weighting function (MIDI number).";
Chris@0 372 f0_prefer_mean.unit = "";
Chris@0 373 f0_prefer_mean.minValue = 1;
Chris@0 374 f0_prefer_mean.maxValue = 127;
Chris@0 375 f0_prefer_mean.defaultValue = 60;
Chris@0 376 f0_prefer_mean.isQuantized = true;
Chris@0 377 f0_prefer_mean.quantizeStep = 1.0;
Chris@0 378 list.push_back(f0_prefer_mean);
Chris@0 379
Chris@0 380 ParameterDescriptor f0_prefer_stdev;
Chris@0 381 f0_prefer_stdev.identifier = "f0_prefer_stdev";
Chris@0 382 f0_prefer_stdev.name = "stdev of f0 preference function";
Chris@0 383 f0_prefer_stdev.description = "Stdev for f0 weighting function (MIDI number).";
Chris@0 384 f0_prefer_stdev.unit = "";
Chris@0 385 f0_prefer_stdev.minValue = 1;
Chris@0 386 f0_prefer_stdev.maxValue = 127;
Chris@0 387 f0_prefer_stdev.defaultValue = 18;
Chris@0 388 f0_prefer_stdev.isQuantized = true;
Chris@0 389 f0_prefer_stdev.quantizeStep = 1.0;
Chris@0 390 list.push_back(f0_prefer_stdev);
Chris@0 391
Chris@0 392 ParameterDescriptor f0gram_mode;
Chris@0 393 f0gram_mode.identifier = "f0gram_mode";
Chris@0 394 f0gram_mode.name = "display mode of f0gram";
Chris@0 395 f0gram_mode.description = "Display all bins of the best direction, or the best bin for each direction.";
Chris@0 396 f0gram_mode.unit = "";
Chris@0 397 f0gram_mode.minValue = 0;
Chris@0 398 f0gram_mode.maxValue = 1;
Chris@0 399 f0gram_mode.defaultValue = 1;
Chris@0 400 f0gram_mode.isQuantized = true;
Chris@0 401 f0gram_mode.quantizeStep = 1.0;
Chris@0 402 list.push_back(f0gram_mode);
Chris@0 403
Chris@0 404 return list;
Chris@0 405 }
Chris@0 406
Chris@0 407 float
Chris@0 408 FChTransformF0gram::getParameter(string identifier) const {
Chris@0 409
Chris@0 410 if (identifier == "fmax") {
Chris@0 411 return m_fmax;
Chris@0 412 } else if (identifier == "nsamp") {
Chris@0 413 return m_warp_params.nsamps_twarp;
Chris@0 414 } else if (identifier == "alpha_max") {
Chris@0 415 return m_warp_params.alpha_max;
Chris@0 416 } else if (identifier == "num_warps") {
Chris@0 417 return m_warp_params.num_warps;
Chris@0 418 } else if (identifier == "alpha_dist") {
Chris@0 419 return m_warp_params.alpha_dist;
Chris@0 420 } else if (identifier == "nfft") {
Chris@0 421 return m_nfft;
Chris@0 422 } else if (identifier == "f0min") {
Chris@0 423 return m_f0_params.f0min;
Chris@0 424 } else if (identifier == "num_octs") {
Chris@0 425 return m_f0_params.num_octs;
Chris@0 426 } else if (identifier == "f0s_per_oct") {
Chris@0 427 return m_f0_params.num_f0s_per_oct;
Chris@0 428 } else if (identifier == "num_f0_hyps") {
Chris@0 429 return m_f0_params.num_f0_hyps;
Chris@0 430 } else if (identifier == "f0_prefer_fun") {
Chris@0 431 return m_f0_params.prefer;
Chris@0 432 } else if (identifier == "f0_prefer_mean") {
Chris@0 433 return m_f0_params.prefer_mean;
Chris@0 434 } else if (identifier == "f0_prefer_stdev") {
Chris@0 435 return m_f0_params.prefer_stdev;
Chris@7 436 } else if (identifier == "f0gram_mode") {
Chris@15 437 return m_f0gram_mode == BestBinOfAllDirections ? 1.0 : 0.0;
Chris@0 438 } else {
Chris@0 439 return 0.f;
Chris@0 440 }
Chris@0 441
Chris@0 442 }
Chris@0 443
Chris@15 444 void FChTransformF0gram::setParameter(string identifier, float value)
Chris@15 445 {
Chris@0 446 if (identifier == "fmax") {
Chris@0 447 m_fmax = value;
Chris@0 448 } else if (identifier == "nsamp") {
Chris@0 449 m_warp_params.nsamps_twarp = value;
Chris@0 450 } else if (identifier == "alpha_max") {
Chris@0 451 m_warp_params.alpha_max = value;
Chris@0 452 } else if (identifier == "num_warps") {
Chris@0 453 m_warp_params.num_warps = value;
Chris@0 454 } else if (identifier == "alpha_dist") {
Chris@0 455 m_warp_params.alpha_dist = value;
Chris@0 456 } else if (identifier == "nfft") {
Chris@0 457 m_nfft = value;
Chris@0 458 } else if (identifier == "f0min") {
Chris@0 459 m_f0_params.f0min = value;
Chris@0 460 } else if (identifier == "num_octs") {
Chris@0 461 m_f0_params.num_octs = value;
Chris@0 462 } else if (identifier == "f0s_per_oct") {
Chris@0 463 m_f0_params.num_f0s_per_oct = value;
Chris@0 464 } else if (identifier == "num_f0_hyps") {
Chris@0 465 m_f0_params.num_f0_hyps = value;
Chris@0 466 } else if (identifier == "f0_prefer_fun") {
Chris@0 467 m_f0_params.prefer = value;
Chris@0 468 } else if (identifier == "f0_prefer_mean") {
Chris@0 469 m_f0_params.prefer_mean = value;
Chris@0 470 } else if (identifier == "f0_prefer_stdev") {
Chris@0 471 m_f0_params.prefer_stdev = value;
Chris@0 472 } else if (identifier == "f0gram_mode") {
Chris@15 473 m_f0gram_mode = (value > 0.5 ?
Chris@15 474 BestBinOfAllDirections :
Chris@15 475 AllBinsOfBestDirection);
Chris@15 476 } else {
Chris@15 477 cerr << "WARNING: Unknown parameter id \""
Chris@15 478 << identifier << "\"" << endl;
Chris@0 479 }
Chris@0 480 }
Chris@0 481
Chris@0 482 FChTransformF0gram::ProgramList
Chris@0 483 FChTransformF0gram::getPrograms() const {
Chris@0 484 ProgramList list;
Chris@0 485 return list;
Chris@0 486 }
Chris@0 487
Chris@0 488 FChTransformF0gram::OutputList
Chris@0 489 FChTransformF0gram::getOutputDescriptors() const {
Chris@0 490
Chris@0 491 OutputList list;
Chris@0 492
Chris@16 493 vector<string> labels;
Chris@16 494 char label[100];
Chris@0 495
Chris@16 496 if (m_processingMode == ModeF0Gram) {
Chris@16 497
Chris@16 498 /* f0 values of F0gram grid as string values */
Chris@16 499 for (int i = 0; i < m_num_f0s; ++i) {
Chris@16 500 sprintf(label, "%4.2f Hz", m_f0s[i]);
Chris@16 501 labels.push_back(label);
Chris@16 502 }
Chris@16 503
Chris@16 504 /* The F0gram */
Chris@16 505 OutputDescriptor d;
Chris@16 506 d.identifier = "f0gram";
Chris@19 507 d.name = "F0gram";
Chris@19 508 d.description = "The salience of the different f0s in the signal.";
Chris@16 509 d.hasFixedBinCount = true;
Chris@16 510 d.binCount = m_f0_params.num_octs * m_f0_params.num_f0s_per_oct;
Chris@16 511 d.binNames = labels;
Chris@16 512 d.hasKnownExtents = false;
Chris@16 513 d.isQuantized = false;
Chris@16 514 d.sampleType = OutputDescriptor::OneSamplePerStep;
Chris@16 515 d.hasDuration = false;
Chris@16 516 list.push_back(d);
Chris@16 517
Chris@19 518 d.identifier = "pitch";
Chris@19 519 d.name = "Most salient pitch";
Chris@19 520 d.description = "The most salient f0 in the signal for each time step.";
Chris@19 521 d.unit = "Hz";
Chris@19 522 d.hasFixedBinCount = true;
Chris@19 523 d.binCount = 1;
Chris@19 524 d.binNames.clear();
Chris@19 525 d.hasKnownExtents = false;
Chris@19 526 d.isQuantized = false;
Chris@19 527 d.sampleType = OutputDescriptor::OneSamplePerStep;
Chris@19 528 d.hasDuration = false;
Chris@19 529 list.push_back(d);
Chris@19 530
Chris@16 531 } else {
Chris@16 532
Chris@16 533 for (int i = 0; i < m_warp_params.nsamps_twarp/2+1; ++i) {
Chris@16 534 double freq = i * (m_warpings.fs_warp / m_nfft);
Chris@16 535 sprintf(label, "%4.2f Hz", freq);
Chris@16 536 labels.push_back(label);
Chris@16 537 }
Chris@16 538
Chris@16 539 OutputDescriptor d;
Chris@16 540 d.identifier = "spectrogram";
Chris@16 541 d.name = "Spectrogram";
Chris@16 542 d.description = "Time/frequency spectrogram derived from the Fan Chirp Transform output";
Chris@16 543 d.hasFixedBinCount = true;
Chris@16 544 d.binCount = m_warp_params.nsamps_twarp/2+1;
Chris@16 545 d.binNames = labels;
Chris@16 546 d.hasKnownExtents = false;
Chris@16 547 d.isQuantized = false;
Chris@16 548 d.sampleType = OutputDescriptor::OneSamplePerStep;
Chris@16 549 d.hasDuration = false;
Chris@16 550 list.push_back(d);
Chris@0 551 }
Chris@16 552
Chris@0 553 return list;
Chris@0 554 }
Chris@0 555
Chris@0 556 bool
Chris@0 557 FChTransformF0gram::initialise(size_t channels, size_t stepSize, size_t blockSize) {
Chris@0 558 if (channels < getMinChannelCount() ||
Chris@20 559 channels > getMaxChannelCount() ||
Chris@20 560 blockSize != m_blockSize/2 ||
Chris@20 561 stepSize != m_stepSize) {
Chris@14 562 return false;
Chris@14 563 }
Chris@0 564
Chris@20 565 m_inputBuffer = allocate_and_zero<float>(m_blockSize);
Chris@20 566
Chris@0 567 // WARNING !!!
Chris@0 568 // these values in fact are determined by the sampling frequency m_fs
Chris@0 569 // the parameters used below correspond to default values i.e. m_fs = 44.100 Hz
Chris@0 570 //m_blockSize = 4 * m_warp_params.nsamps_twarp;
Chris@16 571 // m_stepSize = floor(m_hop / m_warp_params.fact_over_samp);
Chris@16 572
Chris@16 573 /* design of FChT */
Chris@16 574 design_FChT();
Chris@0 575
Chris@0 576 /* initialise m_glogs_params */
Chris@7 577 design_GLogS();
Chris@0 578
Chris@7 579 design_LPF();
Chris@0 580
Chris@7 581 design_time_window();
Chris@0 582
Chris@7 583 // Create Hanning window for warped signals
Chris@14 584 mp_HanningWindow = allocate<double>(m_warp_params.nsamps_twarp);
Chris@7 585 bool normalize = false;
Chris@14 586 Utils::hanning_window(mp_HanningWindow, m_warp_params.nsamps_twarp, normalize);
Chris@0 587
Chris@16 588 m_num_f0s = m_f0_params.num_octs * m_f0_params.num_f0s_per_oct;
Chris@16 589 m_f0s = allocate<double>(m_num_f0s);
Chris@16 590 for (int i = 0; i < m_num_f0s; ++i) {
Chris@16 591 m_f0s[i] = m_glogs_f0[m_glogs_init_f0s + i];
Chris@16 592 }
Chris@20 593
Chris@20 594 m_initialised = true;
Chris@0 595 return true;
Chris@0 596 }
Chris@0 597
Chris@0 598 void
Chris@0 599 FChTransformF0gram::design_GLogS() {
Chris@0 600
Chris@7 601 // total number & initial quantity of f0s
Chris@16 602
Chris@10 603 m_glogs_init_f0s = (int)(((double)m_f0_params.num_f0s_per_oct)*log2(5.0))+1;
Chris@7 604 m_glogs_num_f0s = (m_f0_params.num_octs+1)*m_f0_params.num_f0s_per_oct + m_glogs_init_f0s;
Chris@0 605
Chris@7 606 // Initialize arrays
Chris@14 607 m_glogs_f0 = allocate<double>(m_glogs_num_f0s);
Chris@14 608 m_glogs = allocate<double>(m_glogs_num_f0s*m_warp_params.num_warps);
Chris@14 609 m_glogs_n = allocate<int>(m_glogs_num_f0s);
Chris@14 610 m_glogs_index = allocate<int>(m_glogs_num_f0s);
Chris@0 611
Chris@7 612 // Compute f0 values
Chris@7 613 m_glogs_harmonic_count = 0;
Chris@7 614 double factor = (double)(m_warp_params.nsamps_twarp/2)/(double)(m_warp_params.nsamps_twarp/2+1);
Chris@10 615 for (int i = 0; i < m_glogs_num_f0s; i++) {
Chris@7 616 m_glogs_f0[i] = (m_f0_params.f0min/5.0)*pow(2.0,(double)i/(double)m_f0_params.num_f0s_per_oct);
Chris@7 617 // for every f0 compute number of partials less or equal than m_fmax.
Chris@7 618 m_glogs_n[i] = m_fmax*factor/m_glogs_f0[i];
Chris@7 619 m_glogs_index[i] = m_glogs_harmonic_count;
Chris@7 620 m_glogs_harmonic_count += m_glogs_n[i];
Chris@7 621 }
Chris@0 622
Chris@7 623 // Initialize arrays for interpolation
Chris@14 624 m_glogs_posint = allocate<int>(m_glogs_harmonic_count);
Chris@14 625 m_glogs_posfrac = allocate<double>(m_glogs_harmonic_count);
Chris@14 626 m_glogs_interp = allocate<double>(m_glogs_harmonic_count);
Chris@0 627
Chris@7 628 // Compute int & frac of interpolation positions
Chris@10 629 int aux_index = 0;
Chris@7 630 double aux_pos;
Chris@10 631 for (int i = 0; i < m_glogs_num_f0s; i++) {
Chris@10 632 for (int j = 1; j <= m_glogs_n[i]; j++) {
Chris@18 633 aux_pos = ((double)j * m_glogs_f0[i]) * ((double)(m_warp_params.nsamps_twarp))/m_warpings.fs_warp;
Chris@10 634 m_glogs_posint[aux_index] = (int)aux_pos;
Chris@7 635 m_glogs_posfrac[aux_index] = aux_pos - (double)m_glogs_posint[aux_index];
Chris@7 636 aux_index++;
Chris@7 637 }
Chris@7 638 }
Chris@0 639
Chris@7 640 // Third harmonic attenuation
Chris@7 641 double aux_third_harmonic;
Chris@14 642 m_glogs_third_harmonic_posint = allocate<int>((m_f0_params.num_octs+1)*m_f0_params.num_f0s_per_oct);
Chris@14 643 m_glogs_third_harmonic_posfrac = allocate<double>((m_f0_params.num_octs+1)*m_f0_params.num_f0s_per_oct);
Chris@10 644 for (int i = 0; i < (m_f0_params.num_octs+1)*m_f0_params.num_f0s_per_oct; i++) {
Chris@7 645 aux_third_harmonic = (double)i + (double)m_glogs_init_f0s - ((double)m_f0_params.num_f0s_per_oct)*log2(3.0);
Chris@10 646 m_glogs_third_harmonic_posint[i] = (int)aux_third_harmonic;
Chris@7 647 m_glogs_third_harmonic_posfrac[i] = aux_third_harmonic - (double)(m_glogs_third_harmonic_posint[i]);
Chris@7 648 }
Chris@14 649 m_glogs_third_harmonic = allocate<double>((m_f0_params.num_octs+1)*m_f0_params.num_f0s_per_oct);
Chris@0 650
Chris@7 651 // Fifth harmonic attenuation
Chris@7 652 double aux_fifth_harmonic;
Chris@14 653 m_glogs_fifth_harmonic_posint = allocate<int>((m_f0_params.num_octs+1)*m_f0_params.num_f0s_per_oct);
Chris@14 654 m_glogs_fifth_harmonic_posfrac = allocate<double>((m_f0_params.num_octs+1)*m_f0_params.num_f0s_per_oct);
Chris@10 655 for (int i = 0; i < (m_f0_params.num_octs+1)*m_f0_params.num_f0s_per_oct; i++) {
Chris@7 656 aux_fifth_harmonic = (double)i + (double)m_glogs_init_f0s - ((double)m_f0_params.num_f0s_per_oct)*log2(5.0);
Chris@10 657 m_glogs_fifth_harmonic_posint[i] = (int)aux_fifth_harmonic;
Chris@7 658 m_glogs_fifth_harmonic_posfrac[i] = aux_fifth_harmonic - (double)(m_glogs_fifth_harmonic_posint[i]);
Chris@7 659 }
Chris@14 660 m_glogs_fifth_harmonic = allocate<double>((m_f0_params.num_octs+1)*m_f0_params.num_f0s_per_oct);
Chris@0 661
Chris@7 662 // Normalization & attenuation windows
Chris@14 663 m_glogs_f0_preference_weights = allocate<double>(m_f0_params.num_octs*m_f0_params.num_f0s_per_oct);
Chris@14 664 m_glogs_median_correction = allocate<double>(m_f0_params.num_octs*m_f0_params.num_f0s_per_oct);
Chris@14 665 m_glogs_sigma_correction = allocate<double>(m_f0_params.num_octs*m_f0_params.num_f0s_per_oct);
Chris@7 666 double MIDI_value;
Chris@10 667 for (int i = 0; i < m_f0_params.num_octs*m_f0_params.num_f0s_per_oct; i++) {
Chris@7 668 MIDI_value = 69.0 + 12.0 * log2(m_glogs_f0[i + m_glogs_init_f0s]/440.0);
Chris@7 669 m_glogs_f0_preference_weights[i] = 1.0/sqrt(2.0*M_PI*m_f0_params.prefer_stdev*m_f0_params.prefer_stdev)*exp(-(MIDI_value-m_f0_params.prefer_mean)*(MIDI_value-m_f0_params.prefer_mean)/(2.0*m_f0_params.prefer_stdev*m_f0_params.prefer_stdev));
Chris@7 670 m_glogs_f0_preference_weights[i] = (0.01 + m_glogs_f0_preference_weights[i]) / (1.01);
Chris@0 671
Chris@7 672 m_glogs_median_correction[i] = m_glogs_params.median_poly_coefs[0]*(i+1.0)*(i+1.0) + m_glogs_params.median_poly_coefs[1]*(i+1.0) + m_glogs_params.median_poly_coefs[2];
Chris@7 673 m_glogs_sigma_correction[i] = 1.0 / (m_glogs_params.sigma_poly_coefs[0]*(i+1.0)*(i+1.0) + m_glogs_params.sigma_poly_coefs[1]*(i+1.0) + m_glogs_params.sigma_poly_coefs[2]);
Chris@7 674 }
Chris@0 675 }
Chris@0 676
Chris@0 677 void
Chris@0 678 FChTransformF0gram::design_FChT() {
Chris@0 679
Chris@0 680 /* ============= WARPING DESIGN ============= */
Chris@0 681
Chris@0 682 // sampling frequency after oversampling
Chris@0 683 m_warpings.fs_orig = m_warp_params.fact_over_samp * m_fs;
Chris@0 684
Chris@0 685 // number of samples of the original signal frame
Chris@0 686 m_warpings.nsamps_torig = 4 * m_warp_params.fact_over_samp * m_warp_params.nsamps_twarp;
Chris@0 687 // equivalent to: m_warpings.nsamps_torig = m_warp_params.fact_over_samp * m_blockSize;
Chris@0 688
Chris@0 689 // time instants of the original signal frame
Chris@14 690 double *t_orig = allocate<double>(m_warpings.nsamps_torig);
Chris@10 691 for (int ind = 0; ind < m_warpings.nsamps_torig; ind++) {
Chris@0 692 t_orig[ind] = ((double)(ind + 1) - (double)m_warpings.nsamps_torig / 2.0) / m_warpings.fs_orig;
Chris@0 693 }
Chris@0 694
Chris@0 695 // linear chirps warping definition as relative frequency deviation
Chris@7 696 //TODO
Chris@14 697 double *freq_relative = allocate<double>(m_warpings.nsamps_torig * m_warp_params.num_warps);
Chris@0 698 define_warps_linear_chirps(freq_relative, t_orig);
Chris@0 699
Chris@0 700 // maximum relative frequency deviation
Chris@0 701 double freq_relative_max = 0;
Chris@14 702 for (int i = 0; i < m_warpings.nsamps_torig; i++) {
Chris@14 703 for (int j = 0; j < m_warp_params.num_warps; j++) {
Chris@14 704 if (freq_relative_max < freq_relative[j * m_warpings.nsamps_torig + i]) {
Chris@0 705 freq_relative_max = freq_relative[j * m_warpings.nsamps_torig + i];
Chris@14 706 }
Chris@14 707 }
Chris@14 708 }
Chris@0 709
Chris@0 710 // sampling frequency of warped signal to be free of aliasing up to fmax
Chris@0 711 m_warpings.fs_warp = 2 * m_fmax * freq_relative_max;
Chris@0 712
Chris@0 713 // time instants of the warped signal frame
Chris@14 714 double *t_warp = allocate<double>(m_warp_params.nsamps_twarp);
Chris@10 715 for (int ind = 0; ind < m_warp_params.nsamps_twarp; ind++) {
Chris@0 716 t_warp[ind] = ((double)((int)(ind + 1)- (int)m_warp_params.nsamps_twarp / 2)) / (double)m_warpings.fs_warp;
Chris@0 717 }
Chris@0 718
Chris@0 719 // design of warpings for efficient interpolation
Chris@0 720 design_warps(freq_relative, t_orig, t_warp);
Chris@0 721
Chris@14 722 deallocate(freq_relative);
Chris@14 723 deallocate(t_orig);
Chris@14 724 deallocate(t_warp);
Chris@14 725
Chris@0 726 /* ============= FFTW PLAN DESIGN ============= */
Chris@7 727 // Initialize 2-d array for warped signals
Chris@14 728 x_warping = allocate<double>(m_warp_params.nsamps_twarp);
Chris@14 729 m_absFanChirpTransform = allocate<double>(m_warp_params.num_warps * (m_warp_params.nsamps_twarp/2 + 1));
Chris@14 730 m_auxFanChirpTransform = allocate<double>(2 * (m_warp_params.nsamps_twarp/2 + 1));
Chris@14 731 fft_xwarping = new FFTReal(m_warp_params.nsamps_twarp);
Chris@0 732 }
Chris@0 733
Chris@0 734 void
Chris@0 735 FChTransformF0gram::design_warps(double * freq_relative, double * t_orig, double * t_warp) {
Chris@0 736 /* the warping is done by interpolating the original signal in time instants
Chris@0 737 given by the desired frequency deviation, to do this, the interpolation
Chris@0 738 instants are stored in a structure as an integer index and a fractional value
Chris@0 739 hypothesis: sampling frequency at the central point equals the original
Chris@7 740 */
Chris@0 741
Chris@14 742 m_warpings.pos_int = allocate<int>(m_warp_params.num_warps * m_warp_params.nsamps_twarp);
Chris@14 743 m_warpings.pos_frac = allocate<double>(m_warp_params.num_warps * m_warp_params.nsamps_twarp);
Chris@0 744
Chris@7 745 // vector of phase values
Chris@14 746 double *phi = allocate<double>(m_warpings.nsamps_torig);
Chris@7 747 double aux;
Chris@0 748
Chris@7 749 // warped positions
Chris@14 750 double *pos1 = allocate<double>(m_warp_params.nsamps_twarp*m_warp_params.num_warps);
Chris@0 751
Chris@10 752 for (int i = 0; i < m_warp_params.num_warps; i++) {
Chris@0 753
Chris@7 754 // integration of relative frequency to obtain phase values
Chris@14 755 Utils::cumtrapz(t_orig, freq_relative + i*(m_warpings.nsamps_torig), m_warpings.nsamps_torig, phi);
Chris@0 756
Chris@7 757 // centering of phase values to force original frequency in the middle
Chris@7 758 aux = phi[m_warpings.nsamps_torig/2];
Chris@10 759 for (int j = 0; j < m_warpings.nsamps_torig; j++) {
Chris@7 760 phi[j] -= aux;
Chris@7 761 } //for
Chris@0 762
Chris@7 763 // interpolation of phase values to obtain warped positions
Chris@14 764 Utils::interp1(phi, t_orig, m_warpings.nsamps_torig, t_warp, pos1 + i*m_warp_params.nsamps_twarp, m_warp_params.nsamps_twarp);
Chris@0 765 }
Chris@0 766
Chris@0 767 // % previous sample index
Chris@0 768 // pos1_int = uint32(floor(pos1))';
Chris@0 769 // % integer corresponding to previous sample index in "c"
Chris@0 770 // warps.pos1_int = (pos1_int - uint32(1));
Chris@0 771 // % fractional value that defines the warped position
Chris@0 772 // warps.pos1_frac = (double(pos1)' - double(pos1_int));
Chris@0 773
Chris@10 774 for (int j = 0; j < m_warp_params.nsamps_twarp*m_warp_params.num_warps; j++) {
Chris@7 775 // previous sample index
Chris@7 776 pos1[j] = pos1[j]*m_warpings.fs_orig + m_warpings.nsamps_torig/2 + 1;
Chris@10 777 m_warpings.pos_int[j] = (int) pos1[j];
Chris@7 778 m_warpings.pos_frac[j] = pos1[j] - (double)(m_warpings.pos_int[j]);
Chris@7 779 } //for
Chris@0 780
Chris@14 781 deallocate(phi);
Chris@14 782 deallocate(pos1);
Chris@0 783 }
Chris@0 784
Chris@0 785 void
Chris@0 786 FChTransformF0gram::define_warps_linear_chirps(double * freq_relative, double * t_orig) {
Chris@0 787 /** define warps as relative frequency deviation from original frequency
Chris@7 788 t_orig : time vector
Chris@7 789 freq_relative : relative frequency deviations
Chris@7 790 */
Chris@0 791 if (m_warp_params.alpha_dist == 0) {
Chris@0 792
Chris@0 793 // linear alpha values spacing
Chris@14 794 m_warpings.chirp_rates = allocate<double>(m_warp_params.num_warps);
Chris@0 795 // WARNING m_warp_params.num_warps must be odd
Chris@0 796 m_warpings.chirp_rates[0] = -m_warp_params.alpha_max;
Chris@0 797 double increment = (double) m_warp_params.alpha_max / ((m_warp_params.num_warps - 1) / 2);
Chris@0 798
Chris@10 799 for (int ind = 1; ind < m_warp_params.num_warps; ind++) {
Chris@0 800 m_warpings.chirp_rates[ind] = m_warpings.chirp_rates[ind - 1] + increment;
Chris@0 801 }
Chris@0 802 // force zero value
Chris@0 803 m_warpings.chirp_rates[(int) ((m_warp_params.num_warps - 1) / 2)] = 0;
Chris@0 804
Chris@0 805 } else {
Chris@0 806 // log alpha values spacing
Chris@14 807 m_warpings.chirp_rates = allocate<double>(m_warp_params.num_warps);
Chris@0 808
Chris@0 809 // force zero value
Chris@0 810 int middle_point = (int) ((m_warp_params.num_warps - 1) / 2);
Chris@0 811 m_warpings.chirp_rates[middle_point] = 0;
Chris@0 812
Chris@0 813 double logMax = log10(m_warp_params.alpha_max + 1);
Chris@0 814 double increment = logMax / ((m_warp_params.num_warps - 1) / 2.0f);
Chris@0 815 double exponent = 0;
Chris@0 816
Chris@0 817 // fill positive values
Chris@0 818 int ind_log = middle_point;
Chris@10 819 for (int ind = 0; ind < (m_warp_params.num_warps + 1) / 2; ind++) {
Chris@0 820 m_warpings.chirp_rates[ind_log] = pow(10, exponent) - 1;
Chris@0 821 exponent += increment;
Chris@0 822 ind_log++;
Chris@0 823 }
Chris@0 824 // fill negative values
Chris@10 825 for (int ind = 0; ind < (m_warp_params.num_warps - 1) / 2; ind++) {
Chris@0 826 m_warpings.chirp_rates[ind] = -m_warpings.chirp_rates[m_warp_params.num_warps - 1 - ind];
Chris@0 827 }
Chris@0 828 }
Chris@0 829
Chris@0 830 // compute relative frequency deviation
Chris@14 831 for (int i = 0; i < m_warpings.nsamps_torig; i++) {
Chris@14 832 for (int j = 0; j < m_warp_params.num_warps; j++) {
Chris@0 833 freq_relative[j * m_warpings.nsamps_torig + i] = 1.0 + t_orig[i] * m_warpings.chirp_rates[j];
Chris@14 834 }
Chris@14 835 }
Chris@0 836 }
Chris@0 837
Chris@0 838 void
Chris@14 839 FChTransformF0gram::design_LPF()
Chris@14 840 {
Chris@14 841 double *lp_LPFWindow_aux = allocate<double>(m_blockSize/2+1);
Chris@14 842 mp_LPFWindow = allocate<double>(m_blockSize/2+1);
Chris@0 843
Chris@10 844 int i_max = (int) ((2.0*m_fmax/m_fs) * ( (double)m_blockSize / 2.0 + 1.0 ));
Chris@10 845 for (int i = 0; i < m_blockSize/2+1; i++) {
Chris@0 846 if (i >= i_max) {
Chris@0 847 lp_LPFWindow_aux[i] = 0.0;
Chris@0 848 } else {
Chris@0 849 lp_LPFWindow_aux[i] = 1.0;
Chris@0 850 }
Chris@0 851 }
Chris@14 852
Chris@14 853 LPF_time = allocate_and_zero<double>(m_warpings.nsamps_torig);
Chris@14 854 LPF_frequency = allocate_and_zero<double>(2 * (m_warpings.nsamps_torig/2 + 1));
Chris@14 855
Chris@14 856 fft_forward_LPF = new FFTReal(m_blockSize);
Chris@14 857 fft_inverse_LPF = new FFTReal(m_warpings.nsamps_torig);
Chris@0 858
Chris@10 859 int winWidth = 11;
Chris@14 860 double *lp_hanningWindow = allocate<double>(winWidth);
Chris@0 861 double accum=0;
Chris@10 862 for (int i = 0; i < winWidth; i++) {
Chris@0 863 lp_hanningWindow[i]=0.5*(1.0-cos(2*M_PI*(double)(i+1)/((double)winWidth+1.0)));
Chris@0 864 accum+=lp_hanningWindow[i];
Chris@0 865
Chris@0 866 }
Chris@10 867 for (int i = 0; i < winWidth; i++) { //window normalization
Chris@0 868 lp_hanningWindow[i]=lp_hanningWindow[i]/accum;
Chris@0 869 }
Chris@10 870 for (int i = 0; i < m_blockSize/2+1; i++) {
Chris@0 871 //if (((i-(winWidth-1)/2)<0)||(i+(winWidth-1))/2>m_blockSize/2-1) {//consideramos winWidth impar, si la ventana sale del arreglo se rellena con el valor origianl
Chris@7 872 if ( (i > (i_max + (winWidth-1)/2)) || (i <= (i_max - (winWidth-1)/2)) ) {
Chris@0 873 mp_LPFWindow[i]=lp_LPFWindow_aux[i];
Chris@0 874 } else {
Chris@0 875 accum=0;
Chris@10 876 for (int j = -((winWidth-1)/2); j <= (winWidth-1)/2; j++) {
Chris@0 877 accum+=lp_LPFWindow_aux[i-j]*lp_hanningWindow[j+(winWidth-1)/2];
Chris@7 878 }
Chris@0 879 mp_LPFWindow[i]=accum;
Chris@0 880 }
Chris@0 881 }
Chris@0 882
Chris@14 883 deallocate(lp_LPFWindow_aux);
Chris@14 884 deallocate(lp_hanningWindow);
Chris@0 885 }
Chris@0 886
Chris@14 887 void FChTransformF0gram::apply_LPF()
Chris@14 888 {
Chris@14 889 fft_forward_LPF->forward(LPF_time, LPF_frequency);
Chris@14 890
Chris@10 891 for (int i = 0; i < m_blockSize/2+1; i++) {
Chris@16 892 LPF_frequency[i*2] *= mp_LPFWindow[i];
Chris@16 893 LPF_frequency[i*2 + 1] *= mp_LPFWindow[i];
Chris@0 894 }
Chris@14 895
Chris@14 896 fft_inverse_LPF->inverse(LPF_frequency, LPF_time);
Chris@20 897
Chris@7 898 // TODO ver si hay que hacer fftshift para corregir la fase respecto al centro del frame.
Chris@7 899 // nota: ademÔs de aplicar el LPF, esta función resamplea la señal original.
Chris@0 900 }
Chris@0 901
Chris@14 902 void FChTransformF0gram::clean_LPF()
Chris@14 903 {
Chris@14 904 delete fft_forward_LPF;
Chris@14 905 delete fft_inverse_LPF;
Chris@14 906 deallocate(LPF_time);
Chris@14 907 deallocate(LPF_frequency);
Chris@14 908 deallocate(mp_LPFWindow);
Chris@0 909 }
Chris@0 910
Chris@14 911 void FChTransformF0gram::reset()
Chris@14 912 {
Chris@0 913 }
Chris@0 914
Chris@0 915 FChTransformF0gram::FeatureSet
Chris@5 916 FChTransformF0gram::process(const float *const *inputBuffers, Vamp::RealTime) {
Chris@0 917
Chris@20 918 if (!m_initialised) return FeatureSet();
Chris@20 919
Chris@7 920 /* PSEUDOCƓDIGO:
Chris@7 921 - Aplicar FFT al frame entero.
Chris@7 922 - Filtro pasabajos en frecuencia.
Chris@7 923 - FFT inversa al frame entero.
Chris@7 924 -----------------------------------------------------------------------------
Chris@7 925 - Para cada warp: *Si es un espectrograma direccional (un solo warp
Chris@7 926 => no es para cada warp sino para el elegido)
Chris@7 927 - Hacer la interpolación con interp1q.
Chris@7 928 - Aplicar la FFT al frame warpeado.
Chris@7 929 - (Opcional) GLogS.
Chris@7 930 - ...
Chris@7 931 */
Chris@0 932
Chris@0 933 //---------------------------------------------------------------------------
Chris@7 934 FeatureSet fs;
Chris@0 935
Chris@7 936 #ifdef DEBUG
Chris@16 937 fprintf(stderr, "\n ----- DEBUG INFORMATION ----- \n");
Chris@16 938 fprintf(stderr, " m_fs = %f Hz.\n",m_fs);
Chris@16 939 fprintf(stderr, " fs_orig = %f Hz.\n",m_warpings.fs_orig);
Chris@16 940 fprintf(stderr, " fs_warp = %f Hz.\n",m_warpings.fs_warp);
Chris@16 941 fprintf(stderr, " m_nfft = %d.\n",m_nfft);
Chris@16 942 fprintf(stderr, " m_blockSize = %d.\n",m_blockSize);
Chris@16 943 fprintf(stderr, " m_warpings.nsamps_torig = %d.\n",m_warpings.nsamps_torig);
Chris@16 944 fprintf(stderr, " m_warp_params.num_warps = %d.\n",m_warp_params.num_warps);
Chris@16 945 fprintf(stderr, " m_glogs_harmonic_count = %d.\n",m_glogs_harmonic_count);
Chris@7 946 #endif
Chris@0 947
Chris@20 948 for (int i = 0; i < m_blockSize - m_stepSize; ++i) {
Chris@20 949 m_inputBuffer[i] = m_inputBuffer[i + m_stepSize];
Chris@0 950 }
Chris@20 951 for (int i = 0; i < m_blockSize/2; ++i) {
Chris@20 952 m_inputBuffer[m_blockSize/2 + i] = inputBuffers[0][i];
Chris@20 953 }
Chris@20 954 for (int i = 0; i < m_blockSize; ++i) {
Chris@20 955 LPF_time[i] = m_inputBuffer[i] * m_timeWindow[i];
Chris@20 956 }
Chris@20 957 for (int i = 0; i < m_blockSize; ++i) {
Chris@20 958 LPF_time[m_blockSize + i] = 0.0;
Chris@20 959 }
Chris@20 960
Chris@7 961 apply_LPF();
Chris@7 962 // SeƱal filtrada queda en LPF_time
Chris@0 963
Chris@7 964 Feature feature;
Chris@0 965 feature.hasTimestamp = false;
Chris@0 966
Chris@15 967 if (m_processingMode == ModeRoughSpectrogram) {
Chris@15 968 feature.values = vector<float>(m_warp_params.nsamps_twarp/2+1, 0.f);
Chris@15 969 }
Chris@15 970
Chris@0 971 // ----------------------------------------------------------------------------------------------
Chris@0 972 // Hanning window & FFT for all warp directions
Chris@0 973
Chris@7 974 double max_glogs = -DBL_MAX;
Chris@10 975 int ind_max_glogs = 0;
Chris@0 976
Chris@10 977 for (int i_warp = 0; i_warp < m_warp_params.num_warps; i_warp++) {
Chris@16 978
Chris@7 979 // Interpolate
Chris@14 980 Utils::interp1q(LPF_time, (m_warpings.pos_int) + i_warp*m_warp_params.nsamps_twarp, m_warpings.pos_frac + i_warp*m_warp_params.nsamps_twarp, x_warping, m_warp_params.nsamps_twarp);
Chris@0 981
Chris@7 982 // Apply window
Chris@10 983 for (int i = 0; i < m_warp_params.nsamps_twarp; i++) {
Chris@7 984 x_warping[i] *= mp_HanningWindow[i];
Chris@7 985 }
Chris@0 986
Chris@7 987 // Transform
Chris@14 988 fft_xwarping->forward(x_warping, m_auxFanChirpTransform);
Chris@0 989
Chris@15 990 if (m_processingMode == ModeRoughSpectrogram) {
Chris@15 991 for (int i = 0; i < (m_warp_params.nsamps_twarp/2+1); i++) {
Chris@15 992 double abs = sqrt(m_auxFanChirpTransform[i*2]*m_auxFanChirpTransform[i*2]+m_auxFanChirpTransform[i*2+1]*m_auxFanChirpTransform[i*2+1]);
Chris@15 993 if (abs > feature.values[i]) {
Chris@15 994 feature.values[i] = abs;
Chris@15 995 }
Chris@15 996 }
Chris@15 997 continue;
Chris@15 998 }
Chris@15 999
Chris@7 1000 // Copy result
Chris@7 1001 double *aux_abs_fcht = m_absFanChirpTransform + i_warp*(m_warp_params.nsamps_twarp/2+1);
Chris@10 1002 for (int i = 0; i < (m_warp_params.nsamps_twarp/2+1); i++) {
Chris@14 1003 aux_abs_fcht[i] = log10(1.0 + 10.0*sqrt(m_auxFanChirpTransform[i*2]*m_auxFanChirpTransform[i*2]+m_auxFanChirpTransform[i*2+1]*m_auxFanChirpTransform[i*2+1]));
Chris@7 1004 }
Chris@0 1005
Chris@0 1006 // -----------------------------------------------------------------------------------------
Chris@0 1007 // GLogS
Chris@14 1008 Utils::interp1q(aux_abs_fcht, m_glogs_posint, m_glogs_posfrac, m_glogs_interp, m_glogs_harmonic_count);
Chris@10 1009 int glogs_ind = 0;
Chris@10 1010 for (int i = 0; i < m_glogs_num_f0s; i++) {
Chris@7 1011 double glogs_accum = 0;
Chris@10 1012 for (int j = 1; j <= m_glogs_n[i]; j++) {
Chris@7 1013 glogs_accum += m_glogs_interp[glogs_ind++];
Chris@7 1014 }
Chris@7 1015 m_glogs[i + i_warp*m_glogs_num_f0s] = glogs_accum/(double)m_glogs_n[i];
Chris@7 1016 }
Chris@0 1017
Chris@0 1018 // Sub/super harmonic correction
Chris@14 1019 Utils::interp1q(m_glogs + i_warp*m_glogs_num_f0s, m_glogs_third_harmonic_posint, m_glogs_third_harmonic_posfrac, m_glogs_third_harmonic, (m_f0_params.num_octs+1)*m_f0_params.num_f0s_per_oct);
Chris@14 1020 Utils::interp1q(m_glogs + i_warp*m_glogs_num_f0s, m_glogs_fifth_harmonic_posint, m_glogs_fifth_harmonic_posfrac, m_glogs_fifth_harmonic, (m_f0_params.num_octs+1)*m_f0_params.num_f0s_per_oct);
Chris@10 1021 for (int i = m_glogs_num_f0s-1; i >= m_glogs_init_f0s; i--) {
Chris@7 1022 m_glogs[i + i_warp*m_glogs_num_f0s] -= MAX(MAX(m_glogs[i-m_f0_params.num_f0s_per_oct + i_warp*m_glogs_num_f0s],m_glogs_third_harmonic[i-m_glogs_init_f0s]),m_glogs_fifth_harmonic[i-m_glogs_init_f0s]);
Chris@7 1023 }
Chris@10 1024 for (int i = m_glogs_init_f0s; i < m_glogs_num_f0s-m_f0_params.num_f0s_per_oct; i++) {
Chris@7 1025 m_glogs[i + i_warp*m_glogs_num_f0s] -= 0.3*m_glogs[i+m_f0_params.num_f0s_per_oct + i_warp*m_glogs_num_f0s];
Chris@7 1026 // Median, sigma $ weights correction
Chris@7 1027 m_glogs[i + i_warp*m_glogs_num_f0s] = (m_glogs[i + i_warp*m_glogs_num_f0s]-m_glogs_median_correction[i-m_glogs_init_f0s])*m_glogs_sigma_correction[i-m_glogs_init_f0s]*m_glogs_f0_preference_weights[i-m_glogs_init_f0s];
Chris@7 1028 }
Chris@0 1029
Chris@7 1030 // Look for maximum value to determine best direction
Chris@10 1031 for (int i = m_glogs_init_f0s; i < m_glogs_num_f0s-m_f0_params.num_f0s_per_oct; i++) {
Chris@7 1032 if (m_glogs[i + i_warp*m_glogs_num_f0s] > max_glogs) {
Chris@7 1033 max_glogs = m_glogs[i + i_warp*m_glogs_num_f0s];
Chris@7 1034 ind_max_glogs = i_warp;
Chris@7 1035 }
Chris@7 1036 }
Chris@7 1037 }
Chris@0 1038
Chris@15 1039 if (m_processingMode == ModeRoughSpectrogram) {
Chris@15 1040
Chris@15 1041 // already accumulated our return values in feature
Chris@19 1042 fs[0].push_back(feature);
Chris@15 1043
Chris@15 1044 } else if (m_processingMode == ModeSpectrogram) {
Chris@15 1045
Chris@15 1046 for (int i = 0; i < m_warp_params.nsamps_twarp/2+1; i++) {
Chris@15 1047 feature.values.push_back(pow(10.0, m_absFanChirpTransform[ind_max_glogs * (m_warp_params.nsamps_twarp/2+1) + i]) - 1.0);
Chris@15 1048 }
Chris@19 1049 fs[0].push_back(feature);
Chris@15 1050
Chris@15 1051 } else { // f0gram
Chris@15 1052
Chris@19 1053 int bestIndex = -1;
Chris@19 1054
Chris@15 1055 for (int i=m_glogs_init_f0s; i< m_glogs_num_f0s - m_f0_params.num_f0s_per_oct; i++) {
Chris@19 1056 double value = 0.0;
Chris@15 1057 switch (m_f0gram_mode) {
Chris@15 1058 case AllBinsOfBestDirection:
Chris@19 1059 value = m_glogs[i+(int)ind_max_glogs*(int)m_glogs_num_f0s];
Chris@15 1060 break;
Chris@15 1061 case BestBinOfAllDirections:
Chris@15 1062 max_glogs = -DBL_MAX;
Chris@15 1063 for (int i_warp = 0; i_warp < m_warp_params.num_warps; i_warp++) {
Chris@15 1064 if (m_glogs[i + i_warp*m_glogs_num_f0s] > max_glogs) {
Chris@15 1065 max_glogs = m_glogs[i + i_warp*m_glogs_num_f0s];
Chris@15 1066 ind_max_glogs = i_warp;
Chris@15 1067 }
Chris@7 1068 }
Chris@19 1069 value = max_glogs;
Chris@15 1070 break;
Chris@7 1071 }
Chris@19 1072 if (bestIndex < 0 || float(value) > feature.values[bestIndex]) {
Chris@19 1073 bestIndex = int(feature.values.size());
Chris@19 1074 }
Chris@19 1075 feature.values.push_back(float(value));
Chris@19 1076 }
Chris@19 1077
Chris@19 1078 fs[0].push_back(feature);
Chris@19 1079
Chris@19 1080 if (bestIndex >= 0) {
Chris@19 1081
Chris@19 1082 double bestValue = feature.values[bestIndex];
Chris@19 1083 set<double> ordered(feature.values.begin(), feature.values.end());
Chris@19 1084 vector<double> flattened(ordered.begin(), ordered.end());
Chris@19 1085 double median = flattened[flattened.size()/2];
Chris@19 1086 if (bestValue > median * 8.0) {
Chris@19 1087 Feature pfeature;
Chris@19 1088 pfeature.hasTimestamp = false;
Chris@19 1089 pfeature.values.push_back(m_f0s[bestIndex]);
Chris@19 1090 fs[1].push_back(pfeature);
Chris@19 1091 }
Chris@7 1092 }
Chris@7 1093 }
Chris@0 1094
Chris@7 1095 return fs;
Chris@0 1096 }
Chris@0 1097
Chris@0 1098 FChTransformF0gram::FeatureSet
Chris@0 1099 FChTransformF0gram::getRemainingFeatures() {
Chris@0 1100 return FeatureSet();
Chris@0 1101 }
Chris@0 1102
Chris@0 1103 void
Chris@0 1104 FChTransformF0gram::design_time_window() {
Chris@0 1105
Chris@20 1106 int transitionWidth = (int)m_blockSize/128 + 128;
Chris@14 1107 m_timeWindow = allocate<double>(m_blockSize);
Chris@14 1108 double *lp_transitionWindow = allocate<double>(transitionWidth);
Chris@0 1109
Chris@10 1110 for (int i = 0; i < m_blockSize; i++) {
Chris@7 1111 m_timeWindow[i] = 1.0;
Chris@7 1112 }
Chris@0 1113
Chris@10 1114 for (int i = 0; i < transitionWidth; i++) {
Chris@0 1115 lp_transitionWindow[i]=0.5*(1.0-cos(2*M_PI*(double)(i+1)/((double)transitionWidth+1.0)));
Chris@0 1116 }
Chris@0 1117
Chris@10 1118 for (int i = 0; i < transitionWidth/2; i++) {
Chris@7 1119 m_timeWindow[i] = lp_transitionWindow[i];
Chris@7 1120 m_timeWindow[m_blockSize-1-i] = lp_transitionWindow[transitionWidth-1-i];
Chris@7 1121 }
Chris@0 1122
Chris@7 1123 #ifdef DEBUG
Chris@7 1124 for (int i = 0; i < m_blockSize; i++) {
Chris@7 1125 if ((i<transitionWidth)) {
Chris@16 1126 fprintf(stderr, " m_timeWindow[%d] = %f.\n",i,m_timeWindow[i]);
Chris@7 1127 }
Chris@7 1128 }
Chris@7 1129 #endif
Chris@0 1130
Chris@14 1131 deallocate(lp_transitionWindow);
Chris@0 1132 }
Chris@0 1133