annotate FChTransformF0gram.cpp @ 16:ce62ed201de8 spect

Toward (but not quite reaching) accurate frequency labels for outputs
author Chris Cannam
date Wed, 03 Oct 2018 15:47:00 +0100
parents 0a860992b4f4
children 436eab0bc1ff
rev   line source
Chris@0 1 /*
Chris@0 2 copyright (C) 2011 I. Irigaray, M. Rocamora
Chris@0 3
Chris@0 4 This program is free software: you can redistribute it and/or modify
Chris@0 5 it under the terms of the GNU General Public License as published by
Chris@0 6 the Free Software Foundation, either version 3 of the License, or
Chris@0 7 (at your option) any later version.
Chris@0 8
Chris@0 9 This program is distributed in the hope that it will be useful,
Chris@0 10 but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@0 11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@0 12 GNU General Public License for more details.
Chris@0 13
Chris@0 14 You should have received a copy of the GNU General Public License
Chris@0 15 along with this program. If not, see <http://www.gnu.org/licenses/>.
Chris@7 16 */
Chris@0 17
Chris@0 18 #include "FChTransformF0gram.h"
Chris@0 19 #include "FChTransformUtils.h"
Chris@0 20 #include <math.h>
Chris@0 21 #include <float.h>
Chris@14 22
Chris@14 23 #include "bqvec/Allocators.h"
Chris@14 24
Chris@14 25 using namespace breakfastquay;
Chris@14 26
Chris@16 27 #define DEBUG
Chris@7 28
Chris@0 29 #define MAX(x, y) (((x) > (y)) ? (x) : (y))
Chris@0 30
Chris@15 31 FChTransformF0gram::FChTransformF0gram(ProcessingMode mode,
Chris@15 32 float inputSampleRate) :
Chris@7 33 Plugin(inputSampleRate),
Chris@15 34 m_processingMode(mode),
Chris@7 35 m_stepSize(0), // We are using 0 for step and block size to indicate "not yet set".
Chris@7 36 m_blockSize(0) {
Chris@0 37
Chris@0 38 m_fs = inputSampleRate;
Chris@0 39 // max frequency of interest (Hz)
Chris@0 40 m_fmax = 10000.f;
Chris@0 41 // warping parameters
Chris@12 42 m_warp_params.nsamps_twarp = 2048;
Chris@0 43 m_warp_params.alpha_max = 4;
Chris@0 44 m_warp_params.num_warps = 21;
Chris@0 45 m_warp_params.fact_over_samp = 2;
Chris@0 46 m_warp_params.alpha_dist = 0;
Chris@0 47 // f0 parameters
Chris@0 48 m_f0_params.f0min = 80.0;
Chris@0 49 m_f0_params.num_octs = 4;
Chris@0 50 m_f0_params.num_f0s_per_oct = 192;
Chris@0 51 m_f0_params.num_f0_hyps = 5;
Chris@0 52 m_f0_params.prefer = true;
Chris@0 53 m_f0_params.prefer_mean = 60;
Chris@0 54 m_f0_params.prefer_stdev = 18;
Chris@0 55 // glogs parameters
Chris@0 56 m_glogs_params.HP_logS = true;
Chris@0 57 m_glogs_params.att_subharms = 1;
Chris@7 58 // display parameters
Chris@15 59 m_f0gram_mode = BestBinOfAllDirections;
Chris@0 60
Chris@0 61 m_glogs_params.median_poly_coefs[0] = -0.000000058551680;
Chris@0 62 m_glogs_params.median_poly_coefs[1] = -0.000006945207775;
Chris@0 63 m_glogs_params.median_poly_coefs[2] = 0.002357223226588;
Chris@0 64
Chris@0 65 m_glogs_params.sigma_poly_coefs[0] = 0.000000092782308;
Chris@0 66 m_glogs_params.sigma_poly_coefs[1] = 0.000057283574898;
Chris@0 67 m_glogs_params.sigma_poly_coefs[2] = 0.022199903714288;
Chris@0 68
Chris@0 69 // number of fft points (controls zero-padding)
Chris@0 70 m_nfft = m_warp_params.nsamps_twarp;
Chris@0 71 // hop in samples
Chris@0 72 m_hop = m_warp_params.fact_over_samp * 256;
Chris@0 73
Chris@0 74 m_num_f0s = 0;
Chris@16 75 m_f0s = 0;
Chris@0 76 }
Chris@0 77
Chris@14 78 FChTransformF0gram::~FChTransformF0gram()
Chris@14 79 {
Chris@14 80 if (!m_blockSize) {
Chris@14 81 return; // nothing was allocated
Chris@14 82 }
Chris@14 83
Chris@14 84 deallocate(m_warpings.pos_int);
Chris@14 85 deallocate(m_warpings.pos_frac);
Chris@14 86 deallocate(m_warpings.chirp_rates);
Chris@14 87
Chris@14 88 clean_LPF();
Chris@14 89
Chris@14 90 deallocate(m_timeWindow);
Chris@14 91
Chris@14 92 deallocate(mp_HanningWindow);
Chris@14 93
Chris@14 94 // Warping
Chris@14 95 deallocate(x_warping);
Chris@14 96 delete fft_xwarping;
Chris@14 97 deallocate(m_absFanChirpTransform);
Chris@14 98 deallocate(m_auxFanChirpTransform);
Chris@14 99
Chris@14 100 // design_GLogS
Chris@14 101 deallocate(m_glogs_f0);
Chris@14 102 deallocate(m_glogs);
Chris@14 103 deallocate(m_glogs_n);
Chris@14 104 deallocate(m_glogs_index);
Chris@14 105 deallocate(m_glogs_posint);
Chris@14 106 deallocate(m_glogs_posfrac);
Chris@14 107 deallocate(m_glogs_interp);
Chris@14 108 deallocate(m_glogs_third_harmonic_posint);
Chris@14 109 deallocate(m_glogs_third_harmonic_posfrac);
Chris@14 110 deallocate(m_glogs_third_harmonic);
Chris@14 111 deallocate(m_glogs_fifth_harmonic_posint);
Chris@14 112 deallocate(m_glogs_fifth_harmonic_posfrac);
Chris@14 113 deallocate(m_glogs_fifth_harmonic);
Chris@14 114 deallocate(m_glogs_f0_preference_weights);
Chris@14 115 deallocate(m_glogs_median_correction);
Chris@14 116 deallocate(m_glogs_sigma_correction);
Chris@16 117
Chris@16 118 deallocate(m_f0s);
Chris@0 119 }
Chris@0 120
Chris@0 121 string
Chris@0 122 FChTransformF0gram::getIdentifier() const {
Chris@15 123 switch (m_processingMode) {
Chris@15 124 case ModeF0Gram: return "fchtransformf0gram";
Chris@15 125 case ModeSpectrogram: return "fchtransformspectrogram";
Chris@15 126 case ModeRoughSpectrogram: return "fchtransformrough";
Chris@15 127 }
Chris@0 128 }
Chris@0 129
Chris@0 130 string
Chris@0 131 FChTransformF0gram::getName() const {
Chris@15 132 switch (m_processingMode) {
Chris@15 133 case ModeF0Gram: return "Fan Chirp Transform F0gram";
Chris@15 134 case ModeSpectrogram: return "Fan Chirp Transform Spectrogram";
Chris@15 135 case ModeRoughSpectrogram: return "Fan Chirp Transform Rough Spectrogram";
Chris@15 136 }
Chris@0 137 }
Chris@0 138
Chris@0 139 string
Chris@0 140 FChTransformF0gram::getDescription() const {
Chris@15 141 switch (m_processingMode) {
Chris@15 142 case ModeF0Gram:
Chris@15 143 return "This plug-in produces a representation, called F0gram, which exhibits the salience of the fundamental frequency of the sound sources in the audio file. The computation of the F0gram makes use of the Fan Chirp Transform analysis. It is based on the article \"Fan chirp transform for music representation\" P. Cancela, E. Lopez, M. Rocamora, International Conference on Digital Audio Effects, 13th. DAFx-10. Graz, Austria - 6-10 Sep 2010.";
Chris@15 144 case ModeSpectrogram:
Chris@15 145 return "This plug-in produces a spectral representation of the audio using Fan Chirp Transform analysis.";
Chris@15 146 case ModeRoughSpectrogram:
Chris@15 147 return "This plug-in produces a more approximate spectral representation of the audio using Fan Chirp Transform analysis.";
Chris@15 148 }
Chris@0 149 }
Chris@0 150
Chris@0 151 string
Chris@0 152 FChTransformF0gram::getMaker() const {
Chris@0 153 // Your name here
Chris@0 154 return "Audio Processing Group \n Universidad de la Republica";
Chris@0 155 }
Chris@0 156
Chris@0 157 int
Chris@0 158 FChTransformF0gram::getPluginVersion() const {
Chris@0 159 // Increment this each time you release a version that behaves
Chris@0 160 // differently from the previous one
Chris@0 161 //
Chris@0 162 // 0 - initial version from scratch
Chris@15 163 return 1;
Chris@0 164 }
Chris@0 165
Chris@0 166 string
Chris@0 167 FChTransformF0gram::getCopyright() const {
Chris@0 168 // This function is not ideally named. It does not necessarily
Chris@0 169 // need to say who made the plugin -- getMaker does that -- but it
Chris@0 170 // should indicate the terms under which it is distributed. For
Chris@0 171 // example, "Copyright (year). All Rights Reserved", or "GPL"
Chris@0 172 return "copyright (C) 2011 GPL - Audio Processing Group, UdelaR";
Chris@0 173 }
Chris@0 174
Chris@0 175 FChTransformF0gram::InputDomain
Chris@0 176 FChTransformF0gram::getInputDomain() const {
Chris@0 177 return TimeDomain;
Chris@0 178 }
Chris@0 179
Chris@0 180 size_t FChTransformF0gram::getPreferredBlockSize() const {
Chris@0 181 return 8192; // 0 means "I can handle any block size"
Chris@0 182 }
Chris@0 183
Chris@0 184 size_t
Chris@0 185 FChTransformF0gram::getPreferredStepSize() const {
Chris@0 186 return 256; // 0 means "anything sensible"; in practice this
Chris@0 187 // means the same as the block size for TimeDomain
Chris@0 188 // plugins, or half of it for FrequencyDomain plugins
Chris@0 189 }
Chris@0 190
Chris@0 191 size_t
Chris@0 192 FChTransformF0gram::getMinChannelCount() const {
Chris@0 193 return 1;
Chris@0 194 }
Chris@0 195
Chris@0 196 size_t
Chris@0 197 FChTransformF0gram::getMaxChannelCount() const {
Chris@0 198 return 1;
Chris@0 199 }
Chris@0 200
Chris@0 201 FChTransformF0gram::ParameterList
Chris@0 202 FChTransformF0gram::getParameterDescriptors() const {
Chris@0 203 ParameterList list;
Chris@0 204
Chris@0 205 // If the plugin has no adjustable parameters, return an empty
Chris@0 206 // list here (and there's no need to provide implementations of
Chris@0 207 // getParameter and setParameter in that case either).
Chris@0 208
Chris@0 209 // Note that it is your responsibility to make sure the parameters
Chris@0 210 // start off having their default values (e.g. in the constructor
Chris@0 211 // above). The host needs to know the default value so it can do
Chris@0 212 // things like provide a "reset to default" function, but it will
Chris@0 213 // not explicitly set your parameters to their defaults for you if
Chris@0 214 // they have not changed in the mean time.
Chris@0 215
Chris@0 216 // ============= WARPING PARAMETERS =============
Chris@0 217
Chris@0 218 ParameterDescriptor fmax;
Chris@0 219 fmax.identifier = "fmax";
Chris@0 220 fmax.name = "Maximum frequency";
Chris@0 221 fmax.description = "Maximum frequency of interest for the analysis.";
Chris@0 222 fmax.unit = "Hz";
Chris@0 223 fmax.minValue = 2000;
Chris@0 224 fmax.maxValue = 22050;
Chris@0 225 fmax.defaultValue = 10000;
Chris@0 226 fmax.isQuantized = true;
Chris@0 227 fmax.quantizeStep = 1.0;
Chris@0 228 list.push_back(fmax);
Chris@0 229
Chris@0 230 ParameterDescriptor nsamp;
Chris@0 231 nsamp.identifier = "nsamp";
Chris@0 232 nsamp.name = "Number of samples";
Chris@0 233 nsamp.description = "Number of samples of the time warped frame";
Chris@0 234 nsamp.unit = "samples";
Chris@0 235 nsamp.minValue = 128;
Chris@0 236 nsamp.maxValue = 4096;
Chris@0 237 nsamp.defaultValue = 2048;
Chris@0 238 nsamp.isQuantized = true;
Chris@0 239 nsamp.quantizeStep = 1.0;
Chris@0 240 list.push_back(nsamp);
Chris@0 241
Chris@0 242 ParameterDescriptor nfft;
Chris@0 243 nfft.identifier = "nfft";
Chris@0 244 nfft.name = "FFT number of points";
Chris@0 245 nfft.description = "Number of FFT points (controls zero-padding)";
Chris@0 246 nfft.unit = "samples";
Chris@0 247 nfft.minValue = 0;
Chris@0 248 nfft.maxValue = 4;
Chris@0 249 nfft.defaultValue = 3;
Chris@0 250 nfft.isQuantized = true;
Chris@0 251 nfft.quantizeStep = 1.0;
Chris@0 252 nfft.valueNames.push_back("256");
Chris@0 253 nfft.valueNames.push_back("512");
Chris@0 254 nfft.valueNames.push_back("1024");
Chris@0 255 nfft.valueNames.push_back("2048");
Chris@0 256 nfft.valueNames.push_back("4096");
Chris@0 257 nfft.valueNames.push_back("8192");
Chris@0 258 list.push_back(nfft);
Chris@0 259
Chris@0 260 ParameterDescriptor alpha_max;
Chris@0 261 alpha_max.identifier = "alpha_max";
Chris@0 262 alpha_max.name = "Maximum alpha value";
Chris@0 263 alpha_max.description = "Maximum value for the alpha parameter of the transform.";
Chris@0 264 alpha_max.unit = "Hz/s";
Chris@0 265 alpha_max.minValue = -10;
Chris@0 266 alpha_max.maxValue = 10;
Chris@0 267 alpha_max.defaultValue = 5;
Chris@0 268 alpha_max.isQuantized = true;
Chris@0 269 alpha_max.quantizeStep = 1.0;
Chris@0 270 list.push_back(alpha_max);
Chris@0 271
Chris@0 272 ParameterDescriptor num_warps;
Chris@0 273 num_warps.identifier = "num_warps";
Chris@0 274 num_warps.name = "Number of warpings";
Chris@0 275 num_warps.description = "Number of different warpings in the specified range (must be odd).";
Chris@0 276 num_warps.unit = "";
Chris@0 277 num_warps.minValue = 1;
Chris@0 278 num_warps.maxValue = 101;
Chris@0 279 num_warps.defaultValue = 21;
Chris@0 280 num_warps.isQuantized = true;
Chris@0 281 num_warps.quantizeStep = 2.0;
Chris@0 282 list.push_back(num_warps);
Chris@0 283
Chris@0 284 ParameterDescriptor alpha_dist;
Chris@0 285 alpha_dist.identifier = "alpha_dist";
Chris@0 286 alpha_dist.name = "alpha distribution";
Chris@0 287 alpha_dist.description = "Type of distribution of alpha values (linear or log).";
Chris@0 288 alpha_dist.unit = "";
Chris@0 289 alpha_dist.minValue = 0;
Chris@0 290 alpha_dist.maxValue = 1;
Chris@0 291 alpha_dist.defaultValue = 1;
Chris@0 292 alpha_dist.isQuantized = true;
Chris@0 293 alpha_dist.quantizeStep = 1.0;
Chris@0 294 // lin (0), log (1)
Chris@0 295 alpha_dist.valueNames.push_back("lin");
Chris@0 296 alpha_dist.valueNames.push_back("log");
Chris@0 297 list.push_back(alpha_dist);
Chris@0 298
Chris@0 299 // ============= F0-GRAM PARAMETERS =============
Chris@0 300
Chris@0 301 ParameterDescriptor f0min;
Chris@0 302 f0min.identifier = "f0min";
Chris@0 303 f0min.name = "min f0";
Chris@0 304 f0min.description = "Minimum fundamental frequency (f0) value.";
Chris@0 305 f0min.unit = "Hz";
Chris@0 306 f0min.minValue = 1;
Chris@0 307 f0min.maxValue = 500;
Chris@0 308 f0min.defaultValue = 80;
Chris@0 309 f0min.isQuantized = true;
Chris@0 310 f0min.quantizeStep = 1.0;
Chris@0 311 list.push_back(f0min);
Chris@0 312
Chris@0 313 ParameterDescriptor num_octs;
Chris@0 314 num_octs.identifier = "num_octs";
Chris@0 315 num_octs.name = "number of octaves";
Chris@0 316 num_octs.description = "Number of octaves for F0gram computation.";
Chris@0 317 num_octs.unit = "";
Chris@0 318 num_octs.minValue = 1;
Chris@0 319 num_octs.maxValue = 10;
Chris@0 320 num_octs.defaultValue = 4;
Chris@0 321 num_octs.isQuantized = true;
Chris@0 322 num_octs.quantizeStep = 1.0;
Chris@0 323 list.push_back(num_octs);
Chris@0 324
Chris@0 325 ParameterDescriptor num_f0_hyps;
Chris@0 326 num_f0_hyps.identifier = "num_f0_hyps";
Chris@0 327 num_f0_hyps.name = "number of f0 hypotesis";
Chris@0 328 num_f0_hyps.description = "Number of f0 hypotesis to extract.";
Chris@0 329 num_f0_hyps.unit = "";
Chris@0 330 num_f0_hyps.minValue = 1;
Chris@0 331 num_f0_hyps.maxValue = 100;
Chris@0 332 num_f0_hyps.defaultValue = 10;
Chris@0 333 num_f0_hyps.isQuantized = true;
Chris@0 334 num_f0_hyps.quantizeStep = 1.0;
Chris@0 335 list.push_back(num_f0_hyps);
Chris@0 336
Chris@0 337 ParameterDescriptor f0s_per_oct;
Chris@0 338 f0s_per_oct.identifier = "f0s_per_oct";
Chris@0 339 f0s_per_oct.name = "f0 values per octave";
Chris@0 340 f0s_per_oct.description = "Number of f0 values per octave.";
Chris@0 341 f0s_per_oct.unit = "";
Chris@0 342 f0s_per_oct.minValue = 12;
Chris@0 343 f0s_per_oct.maxValue = 768;
Chris@0 344 f0s_per_oct.defaultValue = 192;
Chris@0 345 f0s_per_oct.isQuantized = true;
Chris@0 346 f0s_per_oct.quantizeStep = 1.0;
Chris@0 347 list.push_back(f0s_per_oct);
Chris@0 348
Chris@0 349 ParameterDescriptor f0_prefer_fun;
Chris@0 350 f0_prefer_fun.identifier = "f0_prefer_fun";
Chris@0 351 f0_prefer_fun.name = "f0 preference function";
Chris@0 352 f0_prefer_fun.description = "Whether to use a f0 weighting function.";
Chris@0 353 f0_prefer_fun.unit = "";
Chris@0 354 f0_prefer_fun.minValue = 0;
Chris@0 355 f0_prefer_fun.maxValue = 1;
Chris@0 356 f0_prefer_fun.defaultValue = 1;
Chris@0 357 f0_prefer_fun.isQuantized = true;
Chris@0 358 f0_prefer_fun.quantizeStep = 1.0;
Chris@0 359 list.push_back(f0_prefer_fun);
Chris@0 360
Chris@0 361 ParameterDescriptor f0_prefer_mean;
Chris@0 362 f0_prefer_mean.identifier = "f0_prefer_mean";
Chris@0 363 f0_prefer_mean.name = "mean f0 preference function";
Chris@0 364 f0_prefer_mean.description = "Mean value for f0 weighting function (MIDI number).";
Chris@0 365 f0_prefer_mean.unit = "";
Chris@0 366 f0_prefer_mean.minValue = 1;
Chris@0 367 f0_prefer_mean.maxValue = 127;
Chris@0 368 f0_prefer_mean.defaultValue = 60;
Chris@0 369 f0_prefer_mean.isQuantized = true;
Chris@0 370 f0_prefer_mean.quantizeStep = 1.0;
Chris@0 371 list.push_back(f0_prefer_mean);
Chris@0 372
Chris@0 373 ParameterDescriptor f0_prefer_stdev;
Chris@0 374 f0_prefer_stdev.identifier = "f0_prefer_stdev";
Chris@0 375 f0_prefer_stdev.name = "stdev of f0 preference function";
Chris@0 376 f0_prefer_stdev.description = "Stdev for f0 weighting function (MIDI number).";
Chris@0 377 f0_prefer_stdev.unit = "";
Chris@0 378 f0_prefer_stdev.minValue = 1;
Chris@0 379 f0_prefer_stdev.maxValue = 127;
Chris@0 380 f0_prefer_stdev.defaultValue = 18;
Chris@0 381 f0_prefer_stdev.isQuantized = true;
Chris@0 382 f0_prefer_stdev.quantizeStep = 1.0;
Chris@0 383 list.push_back(f0_prefer_stdev);
Chris@0 384
Chris@0 385 ParameterDescriptor f0gram_mode;
Chris@0 386 f0gram_mode.identifier = "f0gram_mode";
Chris@0 387 f0gram_mode.name = "display mode of f0gram";
Chris@0 388 f0gram_mode.description = "Display all bins of the best direction, or the best bin for each direction.";
Chris@0 389 f0gram_mode.unit = "";
Chris@0 390 f0gram_mode.minValue = 0;
Chris@0 391 f0gram_mode.maxValue = 1;
Chris@0 392 f0gram_mode.defaultValue = 1;
Chris@0 393 f0gram_mode.isQuantized = true;
Chris@0 394 f0gram_mode.quantizeStep = 1.0;
Chris@0 395 list.push_back(f0gram_mode);
Chris@0 396
Chris@0 397 return list;
Chris@0 398 }
Chris@0 399
Chris@0 400 float
Chris@0 401 FChTransformF0gram::getParameter(string identifier) const {
Chris@0 402
Chris@0 403 if (identifier == "fmax") {
Chris@0 404 return m_fmax;
Chris@0 405 } else if (identifier == "nsamp") {
Chris@0 406 return m_warp_params.nsamps_twarp;
Chris@0 407 } else if (identifier == "alpha_max") {
Chris@0 408 return m_warp_params.alpha_max;
Chris@0 409 } else if (identifier == "num_warps") {
Chris@0 410 return m_warp_params.num_warps;
Chris@0 411 } else if (identifier == "alpha_dist") {
Chris@0 412 return m_warp_params.alpha_dist;
Chris@0 413 } else if (identifier == "nfft") {
Chris@0 414 return m_nfft;
Chris@0 415 } else if (identifier == "f0min") {
Chris@0 416 return m_f0_params.f0min;
Chris@0 417 } else if (identifier == "num_octs") {
Chris@0 418 return m_f0_params.num_octs;
Chris@0 419 } else if (identifier == "f0s_per_oct") {
Chris@0 420 return m_f0_params.num_f0s_per_oct;
Chris@0 421 } else if (identifier == "num_f0_hyps") {
Chris@0 422 return m_f0_params.num_f0_hyps;
Chris@0 423 } else if (identifier == "f0_prefer_fun") {
Chris@0 424 return m_f0_params.prefer;
Chris@0 425 } else if (identifier == "f0_prefer_mean") {
Chris@0 426 return m_f0_params.prefer_mean;
Chris@0 427 } else if (identifier == "f0_prefer_stdev") {
Chris@0 428 return m_f0_params.prefer_stdev;
Chris@7 429 } else if (identifier == "f0gram_mode") {
Chris@15 430 return m_f0gram_mode == BestBinOfAllDirections ? 1.0 : 0.0;
Chris@0 431 } else {
Chris@0 432 return 0.f;
Chris@0 433 }
Chris@0 434
Chris@0 435 }
Chris@0 436
Chris@15 437 void FChTransformF0gram::setParameter(string identifier, float value)
Chris@15 438 {
Chris@0 439 if (identifier == "fmax") {
Chris@0 440 m_fmax = value;
Chris@0 441 } else if (identifier == "nsamp") {
Chris@0 442 m_warp_params.nsamps_twarp = value;
Chris@0 443 } else if (identifier == "alpha_max") {
Chris@0 444 m_warp_params.alpha_max = value;
Chris@0 445 } else if (identifier == "num_warps") {
Chris@0 446 m_warp_params.num_warps = value;
Chris@0 447 } else if (identifier == "alpha_dist") {
Chris@0 448 m_warp_params.alpha_dist = value;
Chris@0 449 } else if (identifier == "nfft") {
Chris@0 450 m_nfft = value;
Chris@0 451 } else if (identifier == "f0min") {
Chris@0 452 m_f0_params.f0min = value;
Chris@0 453 } else if (identifier == "num_octs") {
Chris@0 454 m_f0_params.num_octs = value;
Chris@0 455 } else if (identifier == "f0s_per_oct") {
Chris@0 456 m_f0_params.num_f0s_per_oct = value;
Chris@0 457 } else if (identifier == "num_f0_hyps") {
Chris@0 458 m_f0_params.num_f0_hyps = value;
Chris@0 459 } else if (identifier == "f0_prefer_fun") {
Chris@0 460 m_f0_params.prefer = value;
Chris@0 461 } else if (identifier == "f0_prefer_mean") {
Chris@0 462 m_f0_params.prefer_mean = value;
Chris@0 463 } else if (identifier == "f0_prefer_stdev") {
Chris@0 464 m_f0_params.prefer_stdev = value;
Chris@0 465 } else if (identifier == "f0gram_mode") {
Chris@15 466 m_f0gram_mode = (value > 0.5 ?
Chris@15 467 BestBinOfAllDirections :
Chris@15 468 AllBinsOfBestDirection);
Chris@15 469 } else {
Chris@15 470 cerr << "WARNING: Unknown parameter id \""
Chris@15 471 << identifier << "\"" << endl;
Chris@0 472 }
Chris@0 473 }
Chris@0 474
Chris@0 475 FChTransformF0gram::ProgramList
Chris@0 476 FChTransformF0gram::getPrograms() const {
Chris@0 477 ProgramList list;
Chris@0 478 return list;
Chris@0 479 }
Chris@0 480
Chris@0 481 FChTransformF0gram::OutputList
Chris@0 482 FChTransformF0gram::getOutputDescriptors() const {
Chris@0 483
Chris@0 484 OutputList list;
Chris@0 485
Chris@16 486 vector<string> labels;
Chris@16 487 char label[100];
Chris@0 488
Chris@16 489 if (m_processingMode == ModeF0Gram) {
Chris@16 490
Chris@16 491 /* f0 values of F0gram grid as string values */
Chris@16 492 for (int i = 0; i < m_num_f0s; ++i) {
Chris@16 493 sprintf(label, "%4.2f Hz", m_f0s[i]);
Chris@16 494 labels.push_back(label);
Chris@16 495 }
Chris@16 496
Chris@16 497 /* The F0gram */
Chris@16 498 OutputDescriptor d;
Chris@16 499 d.identifier = "f0gram";
Chris@16 500 d.name = "F0gram: salience of f0s";
Chris@16 501 d.description = "This representation show the salience of the different f0s in the signal.";
Chris@16 502 d.hasFixedBinCount = true;
Chris@16 503 d.binCount = m_f0_params.num_octs * m_f0_params.num_f0s_per_oct;
Chris@16 504 d.binNames = labels;
Chris@16 505 d.hasKnownExtents = false;
Chris@16 506 d.isQuantized = false;
Chris@16 507 d.sampleType = OutputDescriptor::OneSamplePerStep;
Chris@16 508 d.hasDuration = false;
Chris@16 509 list.push_back(d);
Chris@16 510
Chris@16 511 } else {
Chris@16 512
Chris@16 513 for (int i = 0; i < m_warp_params.nsamps_twarp/2+1; ++i) {
Chris@16 514 double freq = i * (m_warpings.fs_warp / m_nfft);
Chris@16 515 sprintf(label, "%4.2f Hz", freq);
Chris@16 516 labels.push_back(label);
Chris@16 517 }
Chris@16 518
Chris@16 519 OutputDescriptor d;
Chris@16 520 d.identifier = "spectrogram";
Chris@16 521 d.name = "Spectrogram";
Chris@16 522 d.description = "Time/frequency spectrogram derived from the Fan Chirp Transform output";
Chris@16 523 d.hasFixedBinCount = true;
Chris@16 524 d.binCount = m_warp_params.nsamps_twarp/2+1;
Chris@16 525 d.binNames = labels;
Chris@16 526 d.hasKnownExtents = false;
Chris@16 527 d.isQuantized = false;
Chris@16 528 d.sampleType = OutputDescriptor::OneSamplePerStep;
Chris@16 529 d.hasDuration = false;
Chris@16 530 list.push_back(d);
Chris@0 531 }
Chris@16 532
Chris@0 533 return list;
Chris@0 534 }
Chris@0 535
Chris@0 536 bool
Chris@0 537 FChTransformF0gram::initialise(size_t channels, size_t stepSize, size_t blockSize) {
Chris@0 538 if (channels < getMinChannelCount() ||
Chris@14 539 channels > getMaxChannelCount()) {
Chris@14 540 return false;
Chris@14 541 }
Chris@0 542
Chris@0 543 // set blockSize and stepSize (but changed below)
Chris@0 544 m_blockSize = blockSize;
Chris@0 545 m_stepSize = stepSize;
Chris@0 546
Chris@0 547 // WARNING !!!
Chris@0 548 // these values in fact are determined by the sampling frequency m_fs
Chris@0 549 // the parameters used below correspond to default values i.e. m_fs = 44.100 Hz
Chris@0 550 //m_blockSize = 4 * m_warp_params.nsamps_twarp;
Chris@16 551 // m_stepSize = floor(m_hop / m_warp_params.fact_over_samp);
Chris@16 552
Chris@16 553 /* design of FChT */
Chris@16 554 design_FChT();
Chris@0 555
Chris@0 556 /* initialise m_glogs_params */
Chris@7 557 design_GLogS();
Chris@0 558
Chris@7 559 design_LPF();
Chris@0 560
Chris@7 561 design_time_window();
Chris@0 562
Chris@7 563 // Create Hanning window for warped signals
Chris@14 564 mp_HanningWindow = allocate<double>(m_warp_params.nsamps_twarp);
Chris@7 565 bool normalize = false;
Chris@14 566 Utils::hanning_window(mp_HanningWindow, m_warp_params.nsamps_twarp, normalize);
Chris@0 567
Chris@16 568 m_num_f0s = m_f0_params.num_octs * m_f0_params.num_f0s_per_oct;
Chris@16 569 m_f0s = allocate<double>(m_num_f0s);
Chris@16 570 for (int i = 0; i < m_num_f0s; ++i) {
Chris@16 571 m_f0s[i] = m_glogs_f0[m_glogs_init_f0s + i];
Chris@16 572 }
Chris@16 573
Chris@0 574 return true;
Chris@0 575 }
Chris@0 576
Chris@0 577 void
Chris@0 578 FChTransformF0gram::design_GLogS() {
Chris@0 579
Chris@7 580 // total number & initial quantity of f0s
Chris@16 581
Chris@16 582 cerr << "per oct = " << m_f0_params.num_f0s_per_oct << ", octs = " << m_f0_params.num_octs << endl;
Chris@10 583 m_glogs_init_f0s = (int)(((double)m_f0_params.num_f0s_per_oct)*log2(5.0))+1;
Chris@16 584 cerr << "init_f0s = " << m_glogs_init_f0s << endl;
Chris@7 585 m_glogs_num_f0s = (m_f0_params.num_octs+1)*m_f0_params.num_f0s_per_oct + m_glogs_init_f0s;
Chris@16 586 cerr << "num_f0s = " << m_glogs_num_f0s << endl;
Chris@0 587
Chris@7 588 // Initialize arrays
Chris@14 589 m_glogs_f0 = allocate<double>(m_glogs_num_f0s);
Chris@14 590 m_glogs = allocate<double>(m_glogs_num_f0s*m_warp_params.num_warps);
Chris@14 591 m_glogs_n = allocate<int>(m_glogs_num_f0s);
Chris@14 592 m_glogs_index = allocate<int>(m_glogs_num_f0s);
Chris@0 593
Chris@7 594 // Compute f0 values
Chris@7 595 m_glogs_harmonic_count = 0;
Chris@7 596 double factor = (double)(m_warp_params.nsamps_twarp/2)/(double)(m_warp_params.nsamps_twarp/2+1);
Chris@10 597 for (int i = 0; i < m_glogs_num_f0s; i++) {
Chris@7 598 m_glogs_f0[i] = (m_f0_params.f0min/5.0)*pow(2.0,(double)i/(double)m_f0_params.num_f0s_per_oct);
Chris@7 599 // for every f0 compute number of partials less or equal than m_fmax.
Chris@7 600 m_glogs_n[i] = m_fmax*factor/m_glogs_f0[i];
Chris@7 601 m_glogs_index[i] = m_glogs_harmonic_count;
Chris@7 602 m_glogs_harmonic_count += m_glogs_n[i];
Chris@7 603 }
Chris@0 604
Chris@7 605 // Initialize arrays for interpolation
Chris@14 606 m_glogs_posint = allocate<int>(m_glogs_harmonic_count);
Chris@14 607 m_glogs_posfrac = allocate<double>(m_glogs_harmonic_count);
Chris@14 608 m_glogs_interp = allocate<double>(m_glogs_harmonic_count);
Chris@0 609
Chris@7 610 // Compute int & frac of interpolation positions
Chris@10 611 int aux_index = 0;
Chris@7 612 double aux_pos;
Chris@10 613 for (int i = 0; i < m_glogs_num_f0s; i++) {
Chris@10 614 for (int j = 1; j <= m_glogs_n[i]; j++) {
Chris@7 615 // indice en el vector de largo t_warp/2+1 donde el ultimo valor corresponde a f=m_fmax
Chris@7 616 aux_pos = ((double)j*m_glogs_f0[i])*((double)(m_warp_params.nsamps_twarp/2+1))/m_fmax;
Chris@16 617 //!!! cerr << "aux_pos = " << aux_pos << endl;
Chris@16 618 // aux_pos = ((double)j*m_glogs_f0[i])*((double)(m_warp_params.nsamps_twarp/2+1))/m_warpings.fs_warp;
Chris@16 619 // cerr << "or " << aux_pos << " (as fs_warp = " << m_warpings.fs_warp << ")" << endl;
Chris@10 620 m_glogs_posint[aux_index] = (int)aux_pos;
Chris@7 621 m_glogs_posfrac[aux_index] = aux_pos - (double)m_glogs_posint[aux_index];
Chris@7 622 aux_index++;
Chris@7 623 }
Chris@7 624 }
Chris@0 625
Chris@7 626 // Third harmonic attenuation
Chris@7 627 double aux_third_harmonic;
Chris@14 628 m_glogs_third_harmonic_posint = allocate<int>((m_f0_params.num_octs+1)*m_f0_params.num_f0s_per_oct);
Chris@14 629 m_glogs_third_harmonic_posfrac = allocate<double>((m_f0_params.num_octs+1)*m_f0_params.num_f0s_per_oct);
Chris@10 630 for (int i = 0; i < (m_f0_params.num_octs+1)*m_f0_params.num_f0s_per_oct; i++) {
Chris@7 631 aux_third_harmonic = (double)i + (double)m_glogs_init_f0s - ((double)m_f0_params.num_f0s_per_oct)*log2(3.0);
Chris@10 632 m_glogs_third_harmonic_posint[i] = (int)aux_third_harmonic;
Chris@7 633 m_glogs_third_harmonic_posfrac[i] = aux_third_harmonic - (double)(m_glogs_third_harmonic_posint[i]);
Chris@7 634 }
Chris@14 635 m_glogs_third_harmonic = allocate<double>((m_f0_params.num_octs+1)*m_f0_params.num_f0s_per_oct);
Chris@0 636
Chris@7 637 // Fifth harmonic attenuation
Chris@7 638 double aux_fifth_harmonic;
Chris@14 639 m_glogs_fifth_harmonic_posint = allocate<int>((m_f0_params.num_octs+1)*m_f0_params.num_f0s_per_oct);
Chris@14 640 m_glogs_fifth_harmonic_posfrac = allocate<double>((m_f0_params.num_octs+1)*m_f0_params.num_f0s_per_oct);
Chris@10 641 for (int i = 0; i < (m_f0_params.num_octs+1)*m_f0_params.num_f0s_per_oct; i++) {
Chris@7 642 aux_fifth_harmonic = (double)i + (double)m_glogs_init_f0s - ((double)m_f0_params.num_f0s_per_oct)*log2(5.0);
Chris@10 643 m_glogs_fifth_harmonic_posint[i] = (int)aux_fifth_harmonic;
Chris@7 644 m_glogs_fifth_harmonic_posfrac[i] = aux_fifth_harmonic - (double)(m_glogs_fifth_harmonic_posint[i]);
Chris@7 645 }
Chris@14 646 m_glogs_fifth_harmonic = allocate<double>((m_f0_params.num_octs+1)*m_f0_params.num_f0s_per_oct);
Chris@0 647
Chris@7 648 // Normalization & attenuation windows
Chris@14 649 m_glogs_f0_preference_weights = allocate<double>(m_f0_params.num_octs*m_f0_params.num_f0s_per_oct);
Chris@14 650 m_glogs_median_correction = allocate<double>(m_f0_params.num_octs*m_f0_params.num_f0s_per_oct);
Chris@14 651 m_glogs_sigma_correction = allocate<double>(m_f0_params.num_octs*m_f0_params.num_f0s_per_oct);
Chris@7 652 double MIDI_value;
Chris@10 653 for (int i = 0; i < m_f0_params.num_octs*m_f0_params.num_f0s_per_oct; i++) {
Chris@7 654 MIDI_value = 69.0 + 12.0 * log2(m_glogs_f0[i + m_glogs_init_f0s]/440.0);
Chris@7 655 m_glogs_f0_preference_weights[i] = 1.0/sqrt(2.0*M_PI*m_f0_params.prefer_stdev*m_f0_params.prefer_stdev)*exp(-(MIDI_value-m_f0_params.prefer_mean)*(MIDI_value-m_f0_params.prefer_mean)/(2.0*m_f0_params.prefer_stdev*m_f0_params.prefer_stdev));
Chris@7 656 m_glogs_f0_preference_weights[i] = (0.01 + m_glogs_f0_preference_weights[i]) / (1.01);
Chris@0 657
Chris@7 658 m_glogs_median_correction[i] = m_glogs_params.median_poly_coefs[0]*(i+1.0)*(i+1.0) + m_glogs_params.median_poly_coefs[1]*(i+1.0) + m_glogs_params.median_poly_coefs[2];
Chris@7 659 m_glogs_sigma_correction[i] = 1.0 / (m_glogs_params.sigma_poly_coefs[0]*(i+1.0)*(i+1.0) + m_glogs_params.sigma_poly_coefs[1]*(i+1.0) + m_glogs_params.sigma_poly_coefs[2]);
Chris@7 660 }
Chris@0 661 }
Chris@0 662
Chris@0 663 void
Chris@0 664 FChTransformF0gram::design_FChT() {
Chris@0 665
Chris@0 666 /*
Chris@0 667 * FILES FOR DEBUGGING
Chris@0 668 */
Chris@0 669
Chris@0 670 //ofstream output("output.txt");
Chris@0 671
Chris@0 672
Chris@0 673 /* ============= WARPING DESIGN ============= */
Chris@0 674
Chris@0 675 // sampling frequency after oversampling
Chris@0 676 m_warpings.fs_orig = m_warp_params.fact_over_samp * m_fs;
Chris@0 677
Chris@0 678 // number of samples of the original signal frame
Chris@0 679 m_warpings.nsamps_torig = 4 * m_warp_params.fact_over_samp * m_warp_params.nsamps_twarp;
Chris@0 680 // equivalent to: m_warpings.nsamps_torig = m_warp_params.fact_over_samp * m_blockSize;
Chris@0 681
Chris@0 682 // time instants of the original signal frame
Chris@14 683 double *t_orig = allocate<double>(m_warpings.nsamps_torig);
Chris@10 684 for (int ind = 0; ind < m_warpings.nsamps_torig; ind++) {
Chris@0 685 t_orig[ind] = ((double)(ind + 1) - (double)m_warpings.nsamps_torig / 2.0) / m_warpings.fs_orig;
Chris@0 686 }
Chris@0 687
Chris@0 688 // linear chirps warping definition as relative frequency deviation
Chris@7 689 //TODO
Chris@14 690 double *freq_relative = allocate<double>(m_warpings.nsamps_torig * m_warp_params.num_warps);
Chris@0 691 define_warps_linear_chirps(freq_relative, t_orig);
Chris@0 692
Chris@0 693 // maximum relative frequency deviation
Chris@0 694 double freq_relative_max = 0;
Chris@14 695 for (int i = 0; i < m_warpings.nsamps_torig; i++) {
Chris@14 696 for (int j = 0; j < m_warp_params.num_warps; j++) {
Chris@14 697 if (freq_relative_max < freq_relative[j * m_warpings.nsamps_torig + i]) {
Chris@0 698 freq_relative_max = freq_relative[j * m_warpings.nsamps_torig + i];
Chris@14 699 }
Chris@14 700 }
Chris@14 701 }
Chris@0 702
Chris@0 703 // sampling frequency of warped signal to be free of aliasing up to fmax
Chris@0 704 m_warpings.fs_warp = 2 * m_fmax * freq_relative_max;
Chris@0 705
Chris@0 706 // time instants of the warped signal frame
Chris@14 707 double *t_warp = allocate<double>(m_warp_params.nsamps_twarp);
Chris@10 708 for (int ind = 0; ind < m_warp_params.nsamps_twarp; ind++) {
Chris@0 709 t_warp[ind] = ((double)((int)(ind + 1)- (int)m_warp_params.nsamps_twarp / 2)) / (double)m_warpings.fs_warp;
Chris@0 710 }
Chris@0 711
Chris@0 712 // design of warpings for efficient interpolation
Chris@0 713 design_warps(freq_relative, t_orig, t_warp);
Chris@0 714
Chris@0 715
Chris@0 716 /*
Chris@0 717 * FILES FOR DEBUGGING
Chris@0 718 */
Chris@0 719
Chris@0 720 /*
Chris@7 721 output << "chirp_rates" << endl;
Chris@10 722 for (int j = 0; j < m_warp_params.num_warps; j++){
Chris@7 723 output << m_warpings.chirp_rates[j];
Chris@7 724 output << " ";
Chris@7 725 }
Chris@7 726 output << endl << "freq_relative" << endl;
Chris@0 727
Chris@10 728 for (int i = 0; i < m_warpings.nsamps_torig; i++){
Chris@10 729 for (int j = 0; j < m_warp_params.num_warps; j++){
Chris@7 730 output << freq_relative[j * m_warpings.nsamps_torig + i];
Chris@7 731 output << " ";
Chris@7 732 }
Chris@7 733 output << endl;
Chris@7 734 }
Chris@0 735
Chris@7 736 output << endl << "t_orig" << endl;
Chris@0 737
Chris@10 738 for (int i = 0; i < m_warpings.nsamps_torig; i++){
Chris@7 739 output << t_orig[i] << endl ;
Chris@7 740 }
Chris@7 741 */
Chris@0 742
Chris@14 743 deallocate(freq_relative);
Chris@14 744 deallocate(t_orig);
Chris@14 745 deallocate(t_warp);
Chris@14 746
Chris@0 747 //output.close();
Chris@0 748
Chris@0 749 /* ============= FFTW PLAN DESIGN ============= */
Chris@7 750 // Initialize 2-d array for warped signals
Chris@14 751 x_warping = allocate<double>(m_warp_params.nsamps_twarp);
Chris@14 752 m_absFanChirpTransform = allocate<double>(m_warp_params.num_warps * (m_warp_params.nsamps_twarp/2 + 1));
Chris@14 753 m_auxFanChirpTransform = allocate<double>(2 * (m_warp_params.nsamps_twarp/2 + 1));
Chris@14 754 fft_xwarping = new FFTReal(m_warp_params.nsamps_twarp);
Chris@0 755 }
Chris@0 756
Chris@0 757 void
Chris@0 758 FChTransformF0gram::design_warps(double * freq_relative, double * t_orig, double * t_warp) {
Chris@0 759 /* the warping is done by interpolating the original signal in time instants
Chris@0 760 given by the desired frequency deviation, to do this, the interpolation
Chris@0 761 instants are stored in a structure as an integer index and a fractional value
Chris@0 762 hypothesis: sampling frequency at the central point equals the original
Chris@7 763 */
Chris@0 764
Chris@14 765 m_warpings.pos_int = allocate<int>(m_warp_params.num_warps * m_warp_params.nsamps_twarp);
Chris@14 766 m_warpings.pos_frac = allocate<double>(m_warp_params.num_warps * m_warp_params.nsamps_twarp);
Chris@0 767
Chris@7 768 // vector of phase values
Chris@14 769 double *phi = allocate<double>(m_warpings.nsamps_torig);
Chris@7 770 double aux;
Chris@0 771
Chris@7 772 // warped positions
Chris@14 773 double *pos1 = allocate<double>(m_warp_params.nsamps_twarp*m_warp_params.num_warps);
Chris@0 774
Chris@10 775 for (int i = 0; i < m_warp_params.num_warps; i++) {
Chris@0 776
Chris@7 777 // integration of relative frequency to obtain phase values
Chris@14 778 Utils::cumtrapz(t_orig, freq_relative + i*(m_warpings.nsamps_torig), m_warpings.nsamps_torig, phi);
Chris@0 779
Chris@7 780 // centering of phase values to force original frequency in the middle
Chris@7 781 aux = phi[m_warpings.nsamps_torig/2];
Chris@10 782 for (int j = 0; j < m_warpings.nsamps_torig; j++) {
Chris@7 783 phi[j] -= aux;
Chris@7 784 } //for
Chris@0 785
Chris@7 786 // interpolation of phase values to obtain warped positions
Chris@14 787 Utils::interp1(phi, t_orig, m_warpings.nsamps_torig, t_warp, pos1 + i*m_warp_params.nsamps_twarp, m_warp_params.nsamps_twarp);
Chris@0 788 }
Chris@0 789
Chris@0 790 // % previous sample index
Chris@0 791 // pos1_int = uint32(floor(pos1))';
Chris@0 792 // % integer corresponding to previous sample index in "c"
Chris@0 793 // warps.pos1_int = (pos1_int - uint32(1));
Chris@0 794 // % fractional value that defines the warped position
Chris@0 795 // warps.pos1_frac = (double(pos1)' - double(pos1_int));
Chris@0 796
Chris@10 797 for (int j = 0; j < m_warp_params.nsamps_twarp*m_warp_params.num_warps; j++) {
Chris@7 798 // previous sample index
Chris@7 799 pos1[j] = pos1[j]*m_warpings.fs_orig + m_warpings.nsamps_torig/2 + 1;
Chris@10 800 m_warpings.pos_int[j] = (int) pos1[j];
Chris@7 801 m_warpings.pos_frac[j] = pos1[j] - (double)(m_warpings.pos_int[j]);
Chris@7 802 } //for
Chris@0 803
Chris@14 804 deallocate(phi);
Chris@14 805 deallocate(pos1);
Chris@0 806 }
Chris@0 807
Chris@0 808 void
Chris@0 809 FChTransformF0gram::define_warps_linear_chirps(double * freq_relative, double * t_orig) {
Chris@0 810 /** define warps as relative frequency deviation from original frequency
Chris@7 811 t_orig : time vector
Chris@7 812 freq_relative : relative frequency deviations
Chris@7 813 */
Chris@0 814 if (m_warp_params.alpha_dist == 0) {
Chris@0 815
Chris@0 816 // linear alpha values spacing
Chris@14 817 m_warpings.chirp_rates = allocate<double>(m_warp_params.num_warps);
Chris@0 818 // WARNING m_warp_params.num_warps must be odd
Chris@0 819 m_warpings.chirp_rates[0] = -m_warp_params.alpha_max;
Chris@0 820 double increment = (double) m_warp_params.alpha_max / ((m_warp_params.num_warps - 1) / 2);
Chris@0 821
Chris@10 822 for (int ind = 1; ind < m_warp_params.num_warps; ind++) {
Chris@0 823 m_warpings.chirp_rates[ind] = m_warpings.chirp_rates[ind - 1] + increment;
Chris@0 824 }
Chris@0 825 // force zero value
Chris@0 826 m_warpings.chirp_rates[(int) ((m_warp_params.num_warps - 1) / 2)] = 0;
Chris@0 827
Chris@0 828 } else {
Chris@0 829 // log alpha values spacing
Chris@14 830 m_warpings.chirp_rates = allocate<double>(m_warp_params.num_warps);
Chris@0 831
Chris@0 832 // force zero value
Chris@0 833 int middle_point = (int) ((m_warp_params.num_warps - 1) / 2);
Chris@0 834 m_warpings.chirp_rates[middle_point] = 0;
Chris@0 835
Chris@0 836 double logMax = log10(m_warp_params.alpha_max + 1);
Chris@0 837 double increment = logMax / ((m_warp_params.num_warps - 1) / 2.0f);
Chris@0 838 double exponent = 0;
Chris@0 839
Chris@0 840 // fill positive values
Chris@0 841 int ind_log = middle_point;
Chris@10 842 for (int ind = 0; ind < (m_warp_params.num_warps + 1) / 2; ind++) {
Chris@0 843 m_warpings.chirp_rates[ind_log] = pow(10, exponent) - 1;
Chris@0 844 exponent += increment;
Chris@0 845 ind_log++;
Chris@0 846 }
Chris@0 847 // fill negative values
Chris@10 848 for (int ind = 0; ind < (m_warp_params.num_warps - 1) / 2; ind++) {
Chris@0 849 m_warpings.chirp_rates[ind] = -m_warpings.chirp_rates[m_warp_params.num_warps - 1 - ind];
Chris@0 850 }
Chris@0 851 }
Chris@0 852
Chris@0 853 // compute relative frequency deviation
Chris@14 854 for (int i = 0; i < m_warpings.nsamps_torig; i++) {
Chris@14 855 for (int j = 0; j < m_warp_params.num_warps; j++) {
Chris@0 856 freq_relative[j * m_warpings.nsamps_torig + i] = 1.0 + t_orig[i] * m_warpings.chirp_rates[j];
Chris@14 857 }
Chris@14 858 }
Chris@0 859 }
Chris@0 860
Chris@0 861 void
Chris@14 862 FChTransformF0gram::design_LPF()
Chris@14 863 {
Chris@14 864 double *lp_LPFWindow_aux = allocate<double>(m_blockSize/2+1);
Chris@14 865 mp_LPFWindow = allocate<double>(m_blockSize/2+1);
Chris@0 866
Chris@10 867 int i_max = (int) ((2.0*m_fmax/m_fs) * ( (double)m_blockSize / 2.0 + 1.0 ));
Chris@10 868 for (int i = 0; i < m_blockSize/2+1; i++) {
Chris@0 869 if (i >= i_max) {
Chris@0 870 lp_LPFWindow_aux[i] = 0.0;
Chris@0 871 } else {
Chris@0 872 lp_LPFWindow_aux[i] = 1.0;
Chris@0 873 }
Chris@0 874 }
Chris@14 875
Chris@14 876 LPF_time = allocate_and_zero<double>(m_warpings.nsamps_torig);
Chris@14 877 LPF_frequency = allocate_and_zero<double>(2 * (m_warpings.nsamps_torig/2 + 1));
Chris@14 878
Chris@14 879 fft_forward_LPF = new FFTReal(m_blockSize);
Chris@14 880 fft_inverse_LPF = new FFTReal(m_warpings.nsamps_torig);
Chris@0 881
Chris@10 882 int winWidth = 11;
Chris@14 883 double *lp_hanningWindow = allocate<double>(winWidth);
Chris@0 884 double accum=0;
Chris@10 885 for (int i = 0; i < winWidth; i++) {
Chris@0 886 lp_hanningWindow[i]=0.5*(1.0-cos(2*M_PI*(double)(i+1)/((double)winWidth+1.0)));
Chris@0 887 accum+=lp_hanningWindow[i];
Chris@0 888
Chris@0 889 }
Chris@10 890 for (int i = 0; i < winWidth; i++) { //window normalization
Chris@0 891 lp_hanningWindow[i]=lp_hanningWindow[i]/accum;
Chris@0 892 }
Chris@10 893 for (int i = 0; i < m_blockSize/2+1; i++) {
Chris@0 894 //if (((i-(winWidth-1)/2)<0)||(i+(winWidth-1))/2>m_blockSize/2-1) {//consideramos winWidth impar, si la ventana sale del arreglo se rellena con el valor origianl
Chris@7 895 if ( (i > (i_max + (winWidth-1)/2)) || (i <= (i_max - (winWidth-1)/2)) ) {
Chris@0 896 mp_LPFWindow[i]=lp_LPFWindow_aux[i];
Chris@0 897 } else {
Chris@0 898 accum=0;
Chris@10 899 for (int j = -((winWidth-1)/2); j <= (winWidth-1)/2; j++) {
Chris@0 900 accum+=lp_LPFWindow_aux[i-j]*lp_hanningWindow[j+(winWidth-1)/2];
Chris@7 901 }
Chris@0 902 mp_LPFWindow[i]=accum;
Chris@0 903 }
Chris@0 904 }
Chris@0 905
Chris@14 906 deallocate(lp_LPFWindow_aux);
Chris@14 907 deallocate(lp_hanningWindow);
Chris@0 908 }
Chris@0 909
Chris@14 910 void FChTransformF0gram::apply_LPF()
Chris@14 911 {
Chris@14 912 fft_forward_LPF->forward(LPF_time, LPF_frequency);
Chris@14 913
Chris@10 914 for (int i = 0; i < m_blockSize/2+1; i++) {
Chris@16 915 LPF_frequency[i*2] *= mp_LPFWindow[i];
Chris@16 916 LPF_frequency[i*2 + 1] *= mp_LPFWindow[i];
Chris@0 917 }
Chris@14 918
Chris@14 919 fft_inverse_LPF->inverse(LPF_frequency, LPF_time);
Chris@0 920
Chris@7 921 // TODO ver si hay que hacer fftshift para corregir la fase respecto al centro del frame.
Chris@7 922 // nota: además de aplicar el LPF, esta función resamplea la señal original.
Chris@0 923 }
Chris@0 924
Chris@14 925 void FChTransformF0gram::clean_LPF()
Chris@14 926 {
Chris@14 927 delete fft_forward_LPF;
Chris@14 928 delete fft_inverse_LPF;
Chris@14 929 deallocate(LPF_time);
Chris@14 930 deallocate(LPF_frequency);
Chris@14 931 deallocate(mp_LPFWindow);
Chris@0 932 }
Chris@0 933
Chris@14 934 void FChTransformF0gram::reset()
Chris@14 935 {
Chris@0 936 }
Chris@0 937
Chris@0 938 FChTransformF0gram::FeatureSet
Chris@5 939 FChTransformF0gram::process(const float *const *inputBuffers, Vamp::RealTime) {
Chris@0 940
Chris@0 941 // // Do actual work!
Chris@0 942 //
Chris@0 943
Chris@7 944 /* PSEUDOCÓDIGO:
Chris@7 945 - Aplicar FFT al frame entero.
Chris@7 946 - Filtro pasabajos en frecuencia.
Chris@7 947 - FFT inversa al frame entero.
Chris@7 948 -----------------------------------------------------------------------------
Chris@7 949 - Para cada warp: *Si es un espectrograma direccional (un solo warp
Chris@7 950 => no es para cada warp sino para el elegido)
Chris@7 951 - Hacer la interpolación con interp1q.
Chris@7 952 - Aplicar la FFT al frame warpeado.
Chris@7 953 - (Opcional) GLogS.
Chris@7 954 - ...
Chris@7 955 */
Chris@0 956
Chris@0 957 //---------------------------------------------------------------------------
Chris@7 958 FeatureSet fs;
Chris@0 959
Chris@7 960 #ifdef DEBUG
Chris@16 961 fprintf(stderr, "\n ----- DEBUG INFORMATION ----- \n");
Chris@16 962 fprintf(stderr, " m_fs = %f Hz.\n",m_fs);
Chris@16 963 fprintf(stderr, " fs_orig = %f Hz.\n",m_warpings.fs_orig);
Chris@16 964 fprintf(stderr, " fs_warp = %f Hz.\n",m_warpings.fs_warp);
Chris@16 965 fprintf(stderr, " m_nfft = %d.\n",m_nfft);
Chris@16 966 fprintf(stderr, " m_blockSize = %d.\n",m_blockSize);
Chris@16 967 fprintf(stderr, " m_warpings.nsamps_torig = %d.\n",m_warpings.nsamps_torig);
Chris@16 968 fprintf(stderr, " m_warp_params.num_warps = %d.\n",m_warp_params.num_warps);
Chris@16 969 fprintf(stderr, " m_glogs_harmonic_count = %d.\n",m_glogs_harmonic_count);
Chris@7 970 #endif
Chris@0 971
Chris@10 972 for (int i = 0; i < m_blockSize; i++) {
Chris@0 973 LPF_time[i] = (double)(inputBuffers[0][i]) * m_timeWindow[i];
Chris@16 974 LPF_time[m_blockSize+i] = 0.0;
Chris@0 975 }
Chris@0 976
Chris@0 977 // #ifdef DEBUG
Chris@16 978 // fprintf(stderr, " HASTA ACÁ ANDA!!!\n");
Chris@0 979 // cout << flush;
Chris@0 980 // #endif
Chris@0 981
Chris@7 982 apply_LPF();
Chris@7 983 // Señal filtrada queda en LPF_time
Chris@0 984
Chris@7 985 Feature feature;
Chris@0 986 feature.hasTimestamp = false;
Chris@0 987
Chris@15 988 if (m_processingMode == ModeRoughSpectrogram) {
Chris@15 989 feature.values = vector<float>(m_warp_params.nsamps_twarp/2+1, 0.f);
Chris@15 990 }
Chris@15 991
Chris@0 992 // ----------------------------------------------------------------------------------------------
Chris@0 993 // Hanning window & FFT for all warp directions
Chris@0 994
Chris@7 995 double max_glogs = -DBL_MAX;
Chris@10 996 int ind_max_glogs = 0;
Chris@0 997
Chris@10 998 for (int i_warp = 0; i_warp < m_warp_params.num_warps; i_warp++) {
Chris@16 999
Chris@7 1000 // Interpolate
Chris@14 1001 Utils::interp1q(LPF_time, (m_warpings.pos_int) + i_warp*m_warp_params.nsamps_twarp, m_warpings.pos_frac + i_warp*m_warp_params.nsamps_twarp, x_warping, m_warp_params.nsamps_twarp);
Chris@0 1002
Chris@7 1003 // Apply window
Chris@10 1004 for (int i = 0; i < m_warp_params.nsamps_twarp; i++) {
Chris@7 1005 x_warping[i] *= mp_HanningWindow[i];
Chris@7 1006 }
Chris@0 1007
Chris@7 1008 // Transform
Chris@14 1009 fft_xwarping->forward(x_warping, m_auxFanChirpTransform);
Chris@0 1010
Chris@15 1011 if (m_processingMode == ModeRoughSpectrogram) {
Chris@15 1012 for (int i = 0; i < (m_warp_params.nsamps_twarp/2+1); i++) {
Chris@15 1013 double abs = sqrt(m_auxFanChirpTransform[i*2]*m_auxFanChirpTransform[i*2]+m_auxFanChirpTransform[i*2+1]*m_auxFanChirpTransform[i*2+1]);
Chris@15 1014 if (abs > feature.values[i]) {
Chris@15 1015 feature.values[i] = abs;
Chris@15 1016 }
Chris@15 1017 }
Chris@15 1018 continue;
Chris@15 1019 }
Chris@15 1020
Chris@7 1021 // Copy result
Chris@7 1022 double *aux_abs_fcht = m_absFanChirpTransform + i_warp*(m_warp_params.nsamps_twarp/2+1);
Chris@10 1023 for (int i = 0; i < (m_warp_params.nsamps_twarp/2+1); i++) {
Chris@14 1024 aux_abs_fcht[i] = log10(1.0 + 10.0*sqrt(m_auxFanChirpTransform[i*2]*m_auxFanChirpTransform[i*2]+m_auxFanChirpTransform[i*2+1]*m_auxFanChirpTransform[i*2+1]));
Chris@7 1025 }
Chris@0 1026
Chris@0 1027 // -----------------------------------------------------------------------------------------
Chris@0 1028 // GLogS
Chris@14 1029 Utils::interp1q(aux_abs_fcht, m_glogs_posint, m_glogs_posfrac, m_glogs_interp, m_glogs_harmonic_count);
Chris@10 1030 int glogs_ind = 0;
Chris@10 1031 for (int i = 0; i < m_glogs_num_f0s; i++) {
Chris@7 1032 double glogs_accum = 0;
Chris@10 1033 for (int j = 1; j <= m_glogs_n[i]; j++) {
Chris@7 1034 glogs_accum += m_glogs_interp[glogs_ind++];
Chris@7 1035 }
Chris@7 1036 m_glogs[i + i_warp*m_glogs_num_f0s] = glogs_accum/(double)m_glogs_n[i];
Chris@7 1037 }
Chris@0 1038
Chris@0 1039 // Sub/super harmonic correction
Chris@14 1040 Utils::interp1q(m_glogs + i_warp*m_glogs_num_f0s, m_glogs_third_harmonic_posint, m_glogs_third_harmonic_posfrac, m_glogs_third_harmonic, (m_f0_params.num_octs+1)*m_f0_params.num_f0s_per_oct);
Chris@14 1041 Utils::interp1q(m_glogs + i_warp*m_glogs_num_f0s, m_glogs_fifth_harmonic_posint, m_glogs_fifth_harmonic_posfrac, m_glogs_fifth_harmonic, (m_f0_params.num_octs+1)*m_f0_params.num_f0s_per_oct);
Chris@10 1042 for (int i = m_glogs_num_f0s-1; i >= m_glogs_init_f0s; i--) {
Chris@7 1043 m_glogs[i + i_warp*m_glogs_num_f0s] -= MAX(MAX(m_glogs[i-m_f0_params.num_f0s_per_oct + i_warp*m_glogs_num_f0s],m_glogs_third_harmonic[i-m_glogs_init_f0s]),m_glogs_fifth_harmonic[i-m_glogs_init_f0s]);
Chris@7 1044 //m_glogs[i] -= MAX(m_glogs[i-m_f0_params.num_f0s_per_oct],m_glogs_third_harmonic[i-m_glogs_init_f0s]);
Chris@7 1045 }
Chris@10 1046 for (int i = m_glogs_init_f0s; i < m_glogs_num_f0s-m_f0_params.num_f0s_per_oct; i++) {
Chris@7 1047 m_glogs[i + i_warp*m_glogs_num_f0s] -= 0.3*m_glogs[i+m_f0_params.num_f0s_per_oct + i_warp*m_glogs_num_f0s];
Chris@7 1048 // Median, sigma $ weights correction
Chris@7 1049 m_glogs[i + i_warp*m_glogs_num_f0s] = (m_glogs[i + i_warp*m_glogs_num_f0s]-m_glogs_median_correction[i-m_glogs_init_f0s])*m_glogs_sigma_correction[i-m_glogs_init_f0s]*m_glogs_f0_preference_weights[i-m_glogs_init_f0s];
Chris@7 1050 }
Chris@0 1051
Chris@7 1052 // Look for maximum value to determine best direction
Chris@10 1053 for (int i = m_glogs_init_f0s; i < m_glogs_num_f0s-m_f0_params.num_f0s_per_oct; i++) {
Chris@7 1054 if (m_glogs[i + i_warp*m_glogs_num_f0s] > max_glogs) {
Chris@7 1055 max_glogs = m_glogs[i + i_warp*m_glogs_num_f0s];
Chris@7 1056 ind_max_glogs = i_warp;
Chris@7 1057 }
Chris@7 1058 }
Chris@7 1059 }
Chris@0 1060
Chris@15 1061 if (m_processingMode == ModeRoughSpectrogram) {
Chris@15 1062
Chris@15 1063 // already accumulated our return values in feature
Chris@15 1064
Chris@15 1065 } else if (m_processingMode == ModeSpectrogram) {
Chris@15 1066
Chris@15 1067 for (int i = 0; i < m_warp_params.nsamps_twarp/2+1; i++) {
Chris@15 1068 feature.values.push_back(pow(10.0, m_absFanChirpTransform[ind_max_glogs * (m_warp_params.nsamps_twarp/2+1) + i]) - 1.0);
Chris@15 1069 }
Chris@15 1070
Chris@15 1071 } else { // f0gram
Chris@15 1072
Chris@15 1073 for (int i=m_glogs_init_f0s; i< m_glogs_num_f0s - m_f0_params.num_f0s_per_oct; i++) {
Chris@15 1074 switch (m_f0gram_mode) {
Chris@15 1075 case AllBinsOfBestDirection:
Chris@15 1076 feature.values.push_back((float)m_glogs[i+(int)ind_max_glogs*(int)m_glogs_num_f0s]);
Chris@15 1077 break;
Chris@15 1078 case BestBinOfAllDirections:
Chris@15 1079 max_glogs = -DBL_MAX;
Chris@15 1080 for (int i_warp = 0; i_warp < m_warp_params.num_warps; i_warp++) {
Chris@15 1081 if (m_glogs[i + i_warp*m_glogs_num_f0s] > max_glogs) {
Chris@15 1082 max_glogs = m_glogs[i + i_warp*m_glogs_num_f0s];
Chris@15 1083 ind_max_glogs = i_warp;
Chris@15 1084 }
Chris@7 1085 }
Chris@15 1086 feature.values.push_back((float)max_glogs);
Chris@15 1087 break;
Chris@7 1088 }
Chris@7 1089 }
Chris@7 1090 }
Chris@0 1091
Chris@7 1092 fs[0].push_back(feature);
Chris@7 1093 return fs;
Chris@0 1094 }
Chris@0 1095
Chris@0 1096 FChTransformF0gram::FeatureSet
Chris@0 1097 FChTransformF0gram::getRemainingFeatures() {
Chris@0 1098 return FeatureSet();
Chris@0 1099 }
Chris@0 1100
Chris@0 1101 void
Chris@0 1102 FChTransformF0gram::design_time_window() {
Chris@0 1103
Chris@10 1104 int transitionWidth = (int)m_blockSize/128 + 1;;
Chris@14 1105 m_timeWindow = allocate<double>(m_blockSize);
Chris@14 1106 double *lp_transitionWindow = allocate<double>(transitionWidth);
Chris@0 1107
Chris@7 1108 //memset(m_timeWindow, 1.0, m_blockSize);
Chris@10 1109 for (int i = 0; i < m_blockSize; i++) {
Chris@7 1110 m_timeWindow[i] = 1.0;
Chris@7 1111 }
Chris@0 1112
Chris@10 1113 for (int i = 0; i < transitionWidth; i++) {
Chris@0 1114 lp_transitionWindow[i]=0.5*(1.0-cos(2*M_PI*(double)(i+1)/((double)transitionWidth+1.0)));
Chris@0 1115 }
Chris@0 1116
Chris@10 1117 for (int i = 0; i < transitionWidth/2; i++) {
Chris@7 1118 m_timeWindow[i] = lp_transitionWindow[i];
Chris@7 1119 m_timeWindow[m_blockSize-1-i] = lp_transitionWindow[transitionWidth-1-i];
Chris@7 1120 }
Chris@0 1121
Chris@7 1122 #ifdef DEBUG
Chris@7 1123 for (int i = 0; i < m_blockSize; i++) {
Chris@7 1124 if ((i<transitionWidth)) {
Chris@16 1125 fprintf(stderr, " m_timeWindow[%d] = %f.\n",i,m_timeWindow[i]);
Chris@7 1126 }
Chris@7 1127 }
Chris@7 1128 #endif
Chris@0 1129
Chris@14 1130 deallocate(lp_transitionWindow);
Chris@0 1131 }
Chris@0 1132