Chris@16
|
1 // Copyright John Maddock 2008.
|
Chris@16
|
2 // Use, modification and distribution are subject to the
|
Chris@16
|
3 // Boost Software License, Version 1.0. (See accompanying file
|
Chris@16
|
4 // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
Chris@16
|
5 //
|
Chris@16
|
6 // Wrapper that works with mpfr_class defined in gmpfrxx.h
|
Chris@16
|
7 // See http://math.berkeley.edu/~wilken/code/gmpfrxx/
|
Chris@16
|
8 // Also requires the gmp and mpfr libraries.
|
Chris@16
|
9 //
|
Chris@16
|
10
|
Chris@16
|
11 #ifndef BOOST_MATH_MPLFR_BINDINGS_HPP
|
Chris@16
|
12 #define BOOST_MATH_MPLFR_BINDINGS_HPP
|
Chris@16
|
13
|
Chris@16
|
14 #include <boost/config.hpp>
|
Chris@16
|
15 #include <boost/lexical_cast.hpp>
|
Chris@16
|
16
|
Chris@16
|
17 #ifdef BOOST_MSVC
|
Chris@16
|
18 //
|
Chris@16
|
19 // We get a lot of warnings from the gmp, mpfr and gmpfrxx headers,
|
Chris@16
|
20 // disable them here, so we only see warnings from *our* code:
|
Chris@16
|
21 //
|
Chris@16
|
22 #pragma warning(push)
|
Chris@16
|
23 #pragma warning(disable: 4127 4800 4512)
|
Chris@16
|
24 #endif
|
Chris@16
|
25
|
Chris@16
|
26 #include <gmpfrxx.h>
|
Chris@16
|
27
|
Chris@16
|
28 #ifdef BOOST_MSVC
|
Chris@16
|
29 #pragma warning(pop)
|
Chris@16
|
30 #endif
|
Chris@16
|
31
|
Chris@16
|
32 #include <boost/math/tools/precision.hpp>
|
Chris@16
|
33 #include <boost/math/tools/real_cast.hpp>
|
Chris@16
|
34 #include <boost/math/policies/policy.hpp>
|
Chris@16
|
35 #include <boost/math/distributions/fwd.hpp>
|
Chris@16
|
36 #include <boost/math/special_functions/math_fwd.hpp>
|
Chris@16
|
37 #include <boost/math/bindings/detail/big_digamma.hpp>
|
Chris@16
|
38 #include <boost/math/bindings/detail/big_lanczos.hpp>
|
Chris@101
|
39 #include <boost/math/tools/big_constant.hpp>
|
Chris@16
|
40
|
Chris@16
|
41 inline mpfr_class fabs(const mpfr_class& v)
|
Chris@16
|
42 {
|
Chris@16
|
43 return abs(v);
|
Chris@16
|
44 }
|
Chris@16
|
45 template <class T, class U>
|
Chris@16
|
46 inline mpfr_class fabs(const __gmp_expr<T,U>& v)
|
Chris@16
|
47 {
|
Chris@16
|
48 return abs(static_cast<mpfr_class>(v));
|
Chris@16
|
49 }
|
Chris@16
|
50
|
Chris@16
|
51 inline mpfr_class pow(const mpfr_class& b, const mpfr_class& e)
|
Chris@16
|
52 {
|
Chris@16
|
53 mpfr_class result;
|
Chris@16
|
54 mpfr_pow(result.__get_mp(), b.__get_mp(), e.__get_mp(), GMP_RNDN);
|
Chris@16
|
55 return result;
|
Chris@16
|
56 }
|
Chris@16
|
57 /*
|
Chris@16
|
58 template <class T, class U, class V, class W>
|
Chris@16
|
59 inline mpfr_class pow(const __gmp_expr<T,U>& b, const __gmp_expr<V,W>& e)
|
Chris@16
|
60 {
|
Chris@16
|
61 return pow(static_cast<mpfr_class>(b), static_cast<mpfr_class>(e));
|
Chris@16
|
62 }
|
Chris@16
|
63 */
|
Chris@16
|
64 inline mpfr_class ldexp(const mpfr_class& v, int e)
|
Chris@16
|
65 {
|
Chris@16
|
66 //int e = mpfr_get_exp(*v.__get_mp());
|
Chris@16
|
67 mpfr_class result(v);
|
Chris@16
|
68 mpfr_set_exp(result.__get_mp(), e);
|
Chris@16
|
69 return result;
|
Chris@16
|
70 }
|
Chris@16
|
71 template <class T, class U>
|
Chris@16
|
72 inline mpfr_class ldexp(const __gmp_expr<T,U>& v, int e)
|
Chris@16
|
73 {
|
Chris@16
|
74 return ldexp(static_cast<mpfr_class>(v), e);
|
Chris@16
|
75 }
|
Chris@16
|
76
|
Chris@16
|
77 inline mpfr_class frexp(const mpfr_class& v, int* expon)
|
Chris@16
|
78 {
|
Chris@16
|
79 int e = mpfr_get_exp(v.__get_mp());
|
Chris@16
|
80 mpfr_class result(v);
|
Chris@16
|
81 mpfr_set_exp(result.__get_mp(), 0);
|
Chris@16
|
82 *expon = e;
|
Chris@16
|
83 return result;
|
Chris@16
|
84 }
|
Chris@16
|
85 template <class T, class U>
|
Chris@16
|
86 inline mpfr_class frexp(const __gmp_expr<T,U>& v, int* expon)
|
Chris@16
|
87 {
|
Chris@16
|
88 return frexp(static_cast<mpfr_class>(v), expon);
|
Chris@16
|
89 }
|
Chris@16
|
90
|
Chris@16
|
91 inline mpfr_class fmod(const mpfr_class& v1, const mpfr_class& v2)
|
Chris@16
|
92 {
|
Chris@16
|
93 mpfr_class n;
|
Chris@16
|
94 if(v1 < 0)
|
Chris@16
|
95 n = ceil(v1 / v2);
|
Chris@16
|
96 else
|
Chris@16
|
97 n = floor(v1 / v2);
|
Chris@16
|
98 return v1 - n * v2;
|
Chris@16
|
99 }
|
Chris@16
|
100 template <class T, class U, class V, class W>
|
Chris@16
|
101 inline mpfr_class fmod(const __gmp_expr<T,U>& v1, const __gmp_expr<V,W>& v2)
|
Chris@16
|
102 {
|
Chris@16
|
103 return fmod(static_cast<mpfr_class>(v1), static_cast<mpfr_class>(v2));
|
Chris@16
|
104 }
|
Chris@16
|
105
|
Chris@16
|
106 template <class Policy>
|
Chris@16
|
107 inline mpfr_class modf(const mpfr_class& v, long long* ipart, const Policy& pol)
|
Chris@16
|
108 {
|
Chris@16
|
109 *ipart = lltrunc(v, pol);
|
Chris@16
|
110 return v - boost::math::tools::real_cast<mpfr_class>(*ipart);
|
Chris@16
|
111 }
|
Chris@16
|
112 template <class T, class U, class Policy>
|
Chris@16
|
113 inline mpfr_class modf(const __gmp_expr<T,U>& v, long long* ipart, const Policy& pol)
|
Chris@16
|
114 {
|
Chris@16
|
115 return modf(static_cast<mpfr_class>(v), ipart, pol);
|
Chris@16
|
116 }
|
Chris@16
|
117
|
Chris@16
|
118 template <class Policy>
|
Chris@16
|
119 inline int iround(mpfr_class const& x, const Policy&)
|
Chris@16
|
120 {
|
Chris@16
|
121 return boost::math::tools::real_cast<int>(boost::math::round(x, typename boost::math::policies::normalise<Policy, boost::math::policies::rounding_error< boost::math::policies::throw_on_error> >::type()));
|
Chris@16
|
122 }
|
Chris@16
|
123 template <class T, class U, class Policy>
|
Chris@16
|
124 inline int iround(__gmp_expr<T,U> const& x, const Policy& pol)
|
Chris@16
|
125 {
|
Chris@16
|
126 return iround(static_cast<mpfr_class>(x), pol);
|
Chris@16
|
127 }
|
Chris@16
|
128
|
Chris@16
|
129 template <class Policy>
|
Chris@16
|
130 inline long lround(mpfr_class const& x, const Policy&)
|
Chris@16
|
131 {
|
Chris@16
|
132 return boost::math::tools::real_cast<long>(boost::math::round(x, typename boost::math::policies::normalise<Policy, boost::math::policies::rounding_error< boost::math::policies::throw_on_error> >::type()));
|
Chris@16
|
133 }
|
Chris@16
|
134 template <class T, class U, class Policy>
|
Chris@16
|
135 inline long lround(__gmp_expr<T,U> const& x, const Policy& pol)
|
Chris@16
|
136 {
|
Chris@16
|
137 return lround(static_cast<mpfr_class>(x), pol);
|
Chris@16
|
138 }
|
Chris@16
|
139
|
Chris@16
|
140 template <class Policy>
|
Chris@16
|
141 inline long long llround(mpfr_class const& x, const Policy&)
|
Chris@16
|
142 {
|
Chris@16
|
143 return boost::math::tools::real_cast<long long>(boost::math::round(x, typename boost::math::policies::normalise<Policy, boost::math::policies::rounding_error< boost::math::policies::throw_on_error> >::type()));
|
Chris@16
|
144 }
|
Chris@16
|
145 template <class T, class U, class Policy>
|
Chris@16
|
146 inline long long llround(__gmp_expr<T,U> const& x, const Policy& pol)
|
Chris@16
|
147 {
|
Chris@16
|
148 return llround(static_cast<mpfr_class>(x), pol);
|
Chris@16
|
149 }
|
Chris@16
|
150
|
Chris@16
|
151 template <class Policy>
|
Chris@16
|
152 inline int itrunc(mpfr_class const& x, const Policy&)
|
Chris@16
|
153 {
|
Chris@16
|
154 return boost::math::tools::real_cast<int>(boost::math::trunc(x, typename boost::math::policies::normalise<Policy, boost::math::policies::rounding_error< boost::math::policies::throw_on_error> >::type()));
|
Chris@16
|
155 }
|
Chris@16
|
156 template <class T, class U, class Policy>
|
Chris@16
|
157 inline int itrunc(__gmp_expr<T,U> const& x, const Policy& pol)
|
Chris@16
|
158 {
|
Chris@16
|
159 return itrunc(static_cast<mpfr_class>(x), pol);
|
Chris@16
|
160 }
|
Chris@16
|
161
|
Chris@16
|
162 template <class Policy>
|
Chris@16
|
163 inline long ltrunc(mpfr_class const& x, const Policy&)
|
Chris@16
|
164 {
|
Chris@16
|
165 return boost::math::tools::real_cast<long>(boost::math::trunc(x, typename boost::math::policies::normalise<Policy, boost::math::policies::rounding_error< boost::math::policies::throw_on_error> >::type()));
|
Chris@16
|
166 }
|
Chris@16
|
167 template <class T, class U, class Policy>
|
Chris@16
|
168 inline long ltrunc(__gmp_expr<T,U> const& x, const Policy& pol)
|
Chris@16
|
169 {
|
Chris@16
|
170 return ltrunc(static_cast<mpfr_class>(x), pol);
|
Chris@16
|
171 }
|
Chris@16
|
172
|
Chris@16
|
173 template <class Policy>
|
Chris@16
|
174 inline long long lltrunc(mpfr_class const& x, const Policy&)
|
Chris@16
|
175 {
|
Chris@16
|
176 return boost::math::tools::real_cast<long long>(boost::math::trunc(x, typename boost::math::policies::normalise<Policy, boost::math::policies::rounding_error< boost::math::policies::throw_on_error> >::type()));
|
Chris@16
|
177 }
|
Chris@16
|
178 template <class T, class U, class Policy>
|
Chris@16
|
179 inline long long lltrunc(__gmp_expr<T,U> const& x, const Policy& pol)
|
Chris@16
|
180 {
|
Chris@16
|
181 return lltrunc(static_cast<mpfr_class>(x), pol);
|
Chris@16
|
182 }
|
Chris@16
|
183
|
Chris@101
|
184 namespace boost{
|
Chris@101
|
185
|
Chris@101
|
186 #ifdef BOOST_MATH_USE_FLOAT128
|
Chris@101
|
187 template<> struct is_convertible<BOOST_MATH_FLOAT128_TYPE, mpfr_class> : public boost::integral_constant<bool, false>{};
|
Chris@101
|
188 #endif
|
Chris@101
|
189 template<> struct is_convertible<long long, mpfr_class> : public boost::integral_constant<bool, false>{};
|
Chris@101
|
190
|
Chris@101
|
191 namespace math{
|
Chris@16
|
192
|
Chris@16
|
193 #if defined(__GNUC__) && (__GNUC__ < 4)
|
Chris@16
|
194 using ::iround;
|
Chris@16
|
195 using ::lround;
|
Chris@16
|
196 using ::llround;
|
Chris@16
|
197 using ::itrunc;
|
Chris@16
|
198 using ::ltrunc;
|
Chris@16
|
199 using ::lltrunc;
|
Chris@16
|
200 using ::modf;
|
Chris@16
|
201 #endif
|
Chris@16
|
202
|
Chris@16
|
203 namespace lanczos{
|
Chris@16
|
204
|
Chris@16
|
205 struct mpfr_lanczos
|
Chris@16
|
206 {
|
Chris@16
|
207 static mpfr_class lanczos_sum(const mpfr_class& z)
|
Chris@16
|
208 {
|
Chris@16
|
209 unsigned long p = z.get_dprec();
|
Chris@16
|
210 if(p <= 72)
|
Chris@16
|
211 return lanczos13UDT::lanczos_sum(z);
|
Chris@16
|
212 else if(p <= 120)
|
Chris@16
|
213 return lanczos22UDT::lanczos_sum(z);
|
Chris@16
|
214 else if(p <= 170)
|
Chris@16
|
215 return lanczos31UDT::lanczos_sum(z);
|
Chris@16
|
216 else //if(p <= 370) approx 100 digit precision:
|
Chris@16
|
217 return lanczos61UDT::lanczos_sum(z);
|
Chris@16
|
218 }
|
Chris@16
|
219 static mpfr_class lanczos_sum_expG_scaled(const mpfr_class& z)
|
Chris@16
|
220 {
|
Chris@16
|
221 unsigned long p = z.get_dprec();
|
Chris@16
|
222 if(p <= 72)
|
Chris@16
|
223 return lanczos13UDT::lanczos_sum_expG_scaled(z);
|
Chris@16
|
224 else if(p <= 120)
|
Chris@16
|
225 return lanczos22UDT::lanczos_sum_expG_scaled(z);
|
Chris@16
|
226 else if(p <= 170)
|
Chris@16
|
227 return lanczos31UDT::lanczos_sum_expG_scaled(z);
|
Chris@16
|
228 else //if(p <= 370) approx 100 digit precision:
|
Chris@16
|
229 return lanczos61UDT::lanczos_sum_expG_scaled(z);
|
Chris@16
|
230 }
|
Chris@16
|
231 static mpfr_class lanczos_sum_near_1(const mpfr_class& z)
|
Chris@16
|
232 {
|
Chris@16
|
233 unsigned long p = z.get_dprec();
|
Chris@16
|
234 if(p <= 72)
|
Chris@16
|
235 return lanczos13UDT::lanczos_sum_near_1(z);
|
Chris@16
|
236 else if(p <= 120)
|
Chris@16
|
237 return lanczos22UDT::lanczos_sum_near_1(z);
|
Chris@16
|
238 else if(p <= 170)
|
Chris@16
|
239 return lanczos31UDT::lanczos_sum_near_1(z);
|
Chris@16
|
240 else //if(p <= 370) approx 100 digit precision:
|
Chris@16
|
241 return lanczos61UDT::lanczos_sum_near_1(z);
|
Chris@16
|
242 }
|
Chris@16
|
243 static mpfr_class lanczos_sum_near_2(const mpfr_class& z)
|
Chris@16
|
244 {
|
Chris@16
|
245 unsigned long p = z.get_dprec();
|
Chris@16
|
246 if(p <= 72)
|
Chris@16
|
247 return lanczos13UDT::lanczos_sum_near_2(z);
|
Chris@16
|
248 else if(p <= 120)
|
Chris@16
|
249 return lanczos22UDT::lanczos_sum_near_2(z);
|
Chris@16
|
250 else if(p <= 170)
|
Chris@16
|
251 return lanczos31UDT::lanczos_sum_near_2(z);
|
Chris@16
|
252 else //if(p <= 370) approx 100 digit precision:
|
Chris@16
|
253 return lanczos61UDT::lanczos_sum_near_2(z);
|
Chris@16
|
254 }
|
Chris@16
|
255 static mpfr_class g()
|
Chris@16
|
256 {
|
Chris@16
|
257 unsigned long p = mpfr_class::get_dprec();
|
Chris@16
|
258 if(p <= 72)
|
Chris@16
|
259 return lanczos13UDT::g();
|
Chris@16
|
260 else if(p <= 120)
|
Chris@16
|
261 return lanczos22UDT::g();
|
Chris@16
|
262 else if(p <= 170)
|
Chris@16
|
263 return lanczos31UDT::g();
|
Chris@16
|
264 else //if(p <= 370) approx 100 digit precision:
|
Chris@16
|
265 return lanczos61UDT::g();
|
Chris@16
|
266 }
|
Chris@16
|
267 };
|
Chris@16
|
268
|
Chris@16
|
269 template<class Policy>
|
Chris@16
|
270 struct lanczos<mpfr_class, Policy>
|
Chris@16
|
271 {
|
Chris@16
|
272 typedef mpfr_lanczos type;
|
Chris@16
|
273 };
|
Chris@16
|
274
|
Chris@16
|
275 } // namespace lanczos
|
Chris@16
|
276
|
Chris@16
|
277 namespace constants{
|
Chris@16
|
278
|
Chris@16
|
279 template <class Real, class Policy>
|
Chris@16
|
280 struct construction_traits;
|
Chris@16
|
281
|
Chris@16
|
282 template <class Policy>
|
Chris@16
|
283 struct construction_traits<mpfr_class, Policy>
|
Chris@16
|
284 {
|
Chris@16
|
285 typedef mpl::int_<0> type;
|
Chris@16
|
286 };
|
Chris@16
|
287
|
Chris@16
|
288 }
|
Chris@16
|
289
|
Chris@16
|
290 namespace tools
|
Chris@16
|
291 {
|
Chris@16
|
292
|
Chris@16
|
293 template <class T, class U>
|
Chris@16
|
294 struct promote_arg<__gmp_expr<T,U> >
|
Chris@16
|
295 { // If T is integral type, then promote to double.
|
Chris@16
|
296 typedef mpfr_class type;
|
Chris@16
|
297 };
|
Chris@16
|
298
|
Chris@16
|
299 template<>
|
Chris@16
|
300 inline int digits<mpfr_class>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpfr_class))
|
Chris@16
|
301 {
|
Chris@16
|
302 return mpfr_class::get_dprec();
|
Chris@16
|
303 }
|
Chris@16
|
304
|
Chris@16
|
305 namespace detail{
|
Chris@16
|
306
|
Chris@16
|
307 template<class I>
|
Chris@16
|
308 void convert_to_long_result(mpfr_class const& r, I& result)
|
Chris@16
|
309 {
|
Chris@16
|
310 result = 0;
|
Chris@16
|
311 I last_result(0);
|
Chris@16
|
312 mpfr_class t(r);
|
Chris@16
|
313 double term;
|
Chris@16
|
314 do
|
Chris@16
|
315 {
|
Chris@16
|
316 term = real_cast<double>(t);
|
Chris@16
|
317 last_result = result;
|
Chris@16
|
318 result += static_cast<I>(term);
|
Chris@16
|
319 t -= term;
|
Chris@16
|
320 }while(result != last_result);
|
Chris@16
|
321 }
|
Chris@16
|
322
|
Chris@16
|
323 }
|
Chris@16
|
324
|
Chris@16
|
325 template <>
|
Chris@16
|
326 inline mpfr_class real_cast<mpfr_class, long long>(long long t)
|
Chris@16
|
327 {
|
Chris@16
|
328 mpfr_class result;
|
Chris@16
|
329 int expon = 0;
|
Chris@16
|
330 int sign = 1;
|
Chris@16
|
331 if(t < 0)
|
Chris@16
|
332 {
|
Chris@16
|
333 sign = -1;
|
Chris@16
|
334 t = -t;
|
Chris@16
|
335 }
|
Chris@16
|
336 while(t)
|
Chris@16
|
337 {
|
Chris@16
|
338 result += ldexp((double)(t & 0xffffL), expon);
|
Chris@16
|
339 expon += 32;
|
Chris@16
|
340 t >>= 32;
|
Chris@16
|
341 }
|
Chris@16
|
342 return result * sign;
|
Chris@16
|
343 }
|
Chris@16
|
344 template <>
|
Chris@16
|
345 inline unsigned real_cast<unsigned, mpfr_class>(mpfr_class t)
|
Chris@16
|
346 {
|
Chris@16
|
347 return t.get_ui();
|
Chris@16
|
348 }
|
Chris@16
|
349 template <>
|
Chris@16
|
350 inline int real_cast<int, mpfr_class>(mpfr_class t)
|
Chris@16
|
351 {
|
Chris@16
|
352 return t.get_si();
|
Chris@16
|
353 }
|
Chris@16
|
354 template <>
|
Chris@16
|
355 inline double real_cast<double, mpfr_class>(mpfr_class t)
|
Chris@16
|
356 {
|
Chris@16
|
357 return t.get_d();
|
Chris@16
|
358 }
|
Chris@16
|
359 template <>
|
Chris@16
|
360 inline float real_cast<float, mpfr_class>(mpfr_class t)
|
Chris@16
|
361 {
|
Chris@16
|
362 return static_cast<float>(t.get_d());
|
Chris@16
|
363 }
|
Chris@16
|
364 template <>
|
Chris@16
|
365 inline long real_cast<long, mpfr_class>(mpfr_class t)
|
Chris@16
|
366 {
|
Chris@16
|
367 long result;
|
Chris@16
|
368 detail::convert_to_long_result(t, result);
|
Chris@16
|
369 return result;
|
Chris@16
|
370 }
|
Chris@16
|
371 template <>
|
Chris@16
|
372 inline long long real_cast<long long, mpfr_class>(mpfr_class t)
|
Chris@16
|
373 {
|
Chris@16
|
374 long long result;
|
Chris@16
|
375 detail::convert_to_long_result(t, result);
|
Chris@16
|
376 return result;
|
Chris@16
|
377 }
|
Chris@16
|
378
|
Chris@16
|
379 template <>
|
Chris@16
|
380 inline mpfr_class max_value<mpfr_class>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpfr_class))
|
Chris@16
|
381 {
|
Chris@16
|
382 static bool has_init = false;
|
Chris@16
|
383 static mpfr_class val;
|
Chris@16
|
384 if(!has_init)
|
Chris@16
|
385 {
|
Chris@16
|
386 val = 0.5;
|
Chris@16
|
387 mpfr_set_exp(val.__get_mp(), mpfr_get_emax());
|
Chris@16
|
388 has_init = true;
|
Chris@16
|
389 }
|
Chris@16
|
390 return val;
|
Chris@16
|
391 }
|
Chris@16
|
392
|
Chris@16
|
393 template <>
|
Chris@16
|
394 inline mpfr_class min_value<mpfr_class>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpfr_class))
|
Chris@16
|
395 {
|
Chris@16
|
396 static bool has_init = false;
|
Chris@16
|
397 static mpfr_class val;
|
Chris@16
|
398 if(!has_init)
|
Chris@16
|
399 {
|
Chris@16
|
400 val = 0.5;
|
Chris@16
|
401 mpfr_set_exp(val.__get_mp(), mpfr_get_emin());
|
Chris@16
|
402 has_init = true;
|
Chris@16
|
403 }
|
Chris@16
|
404 return val;
|
Chris@16
|
405 }
|
Chris@16
|
406
|
Chris@16
|
407 template <>
|
Chris@16
|
408 inline mpfr_class log_max_value<mpfr_class>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpfr_class))
|
Chris@16
|
409 {
|
Chris@16
|
410 static bool has_init = false;
|
Chris@16
|
411 static mpfr_class val = max_value<mpfr_class>();
|
Chris@16
|
412 if(!has_init)
|
Chris@16
|
413 {
|
Chris@16
|
414 val = log(val);
|
Chris@16
|
415 has_init = true;
|
Chris@16
|
416 }
|
Chris@16
|
417 return val;
|
Chris@16
|
418 }
|
Chris@16
|
419
|
Chris@16
|
420 template <>
|
Chris@16
|
421 inline mpfr_class log_min_value<mpfr_class>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpfr_class))
|
Chris@16
|
422 {
|
Chris@16
|
423 static bool has_init = false;
|
Chris@16
|
424 static mpfr_class val = max_value<mpfr_class>();
|
Chris@16
|
425 if(!has_init)
|
Chris@16
|
426 {
|
Chris@16
|
427 val = log(val);
|
Chris@16
|
428 has_init = true;
|
Chris@16
|
429 }
|
Chris@16
|
430 return val;
|
Chris@16
|
431 }
|
Chris@16
|
432
|
Chris@16
|
433 template <>
|
Chris@16
|
434 inline mpfr_class epsilon<mpfr_class>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpfr_class))
|
Chris@16
|
435 {
|
Chris@16
|
436 return ldexp(mpfr_class(1), 1-boost::math::policies::digits<mpfr_class, boost::math::policies::policy<> >());
|
Chris@16
|
437 }
|
Chris@16
|
438
|
Chris@16
|
439 } // namespace tools
|
Chris@16
|
440
|
Chris@16
|
441 namespace policies{
|
Chris@16
|
442
|
Chris@16
|
443 template <class T, class U, class Policy>
|
Chris@16
|
444 struct evaluation<__gmp_expr<T, U>, Policy>
|
Chris@16
|
445 {
|
Chris@16
|
446 typedef mpfr_class type;
|
Chris@16
|
447 };
|
Chris@16
|
448
|
Chris@16
|
449 }
|
Chris@16
|
450
|
Chris@16
|
451 template <class Policy>
|
Chris@16
|
452 inline mpfr_class skewness(const extreme_value_distribution<mpfr_class, Policy>& /*dist*/)
|
Chris@16
|
453 {
|
Chris@16
|
454 //
|
Chris@16
|
455 // This is 12 * sqrt(6) * zeta(3) / pi^3:
|
Chris@16
|
456 // See http://mathworld.wolfram.com/ExtremeValueDistribution.html
|
Chris@16
|
457 //
|
Chris@16
|
458 return boost::lexical_cast<mpfr_class>("1.1395470994046486574927930193898461120875997958366");
|
Chris@16
|
459 }
|
Chris@16
|
460
|
Chris@16
|
461 template <class Policy>
|
Chris@16
|
462 inline mpfr_class skewness(const rayleigh_distribution<mpfr_class, Policy>& /*dist*/)
|
Chris@16
|
463 {
|
Chris@16
|
464 // using namespace boost::math::constants;
|
Chris@16
|
465 return boost::lexical_cast<mpfr_class>("0.63111065781893713819189935154422777984404221106391");
|
Chris@16
|
466 // Computed using NTL at 150 bit, about 50 decimal digits.
|
Chris@16
|
467 // return 2 * root_pi<RealType>() * pi_minus_three<RealType>() / pow23_four_minus_pi<RealType>();
|
Chris@16
|
468 }
|
Chris@16
|
469
|
Chris@16
|
470 template <class Policy>
|
Chris@16
|
471 inline mpfr_class kurtosis(const rayleigh_distribution<mpfr_class, Policy>& /*dist*/)
|
Chris@16
|
472 {
|
Chris@16
|
473 // using namespace boost::math::constants;
|
Chris@16
|
474 return boost::lexical_cast<mpfr_class>("3.2450893006876380628486604106197544154170667057995");
|
Chris@16
|
475 // Computed using NTL at 150 bit, about 50 decimal digits.
|
Chris@16
|
476 // return 3 - (6 * pi<RealType>() * pi<RealType>() - 24 * pi<RealType>() + 16) /
|
Chris@16
|
477 // (four_minus_pi<RealType>() * four_minus_pi<RealType>());
|
Chris@16
|
478 }
|
Chris@16
|
479
|
Chris@16
|
480 template <class Policy>
|
Chris@16
|
481 inline mpfr_class kurtosis_excess(const rayleigh_distribution<mpfr_class, Policy>& /*dist*/)
|
Chris@16
|
482 {
|
Chris@16
|
483 //using namespace boost::math::constants;
|
Chris@16
|
484 // Computed using NTL at 150 bit, about 50 decimal digits.
|
Chris@16
|
485 return boost::lexical_cast<mpfr_class>("0.2450893006876380628486604106197544154170667057995");
|
Chris@16
|
486 // return -(6 * pi<RealType>() * pi<RealType>() - 24 * pi<RealType>() + 16) /
|
Chris@16
|
487 // (four_minus_pi<RealType>() * four_minus_pi<RealType>());
|
Chris@16
|
488 } // kurtosis
|
Chris@16
|
489
|
Chris@16
|
490 namespace detail{
|
Chris@16
|
491
|
Chris@16
|
492 //
|
Chris@16
|
493 // Version of Digamma accurate to ~100 decimal digits.
|
Chris@16
|
494 //
|
Chris@16
|
495 template <class Policy>
|
Chris@16
|
496 mpfr_class digamma_imp(mpfr_class x, const mpl::int_<0>* , const Policy& pol)
|
Chris@16
|
497 {
|
Chris@16
|
498 //
|
Chris@16
|
499 // This handles reflection of negative arguments, and all our
|
Chris@16
|
500 // empfr_classor handling, then forwards to the T-specific approximation.
|
Chris@16
|
501 //
|
Chris@16
|
502 BOOST_MATH_STD_USING // ADL of std functions.
|
Chris@16
|
503
|
Chris@16
|
504 mpfr_class result = 0;
|
Chris@16
|
505 //
|
Chris@16
|
506 // Check for negative arguments and use reflection:
|
Chris@16
|
507 //
|
Chris@16
|
508 if(x < 0)
|
Chris@16
|
509 {
|
Chris@16
|
510 // Reflect:
|
Chris@16
|
511 x = 1 - x;
|
Chris@16
|
512 // Argument reduction for tan:
|
Chris@16
|
513 mpfr_class remainder = x - floor(x);
|
Chris@16
|
514 // Shift to negative if > 0.5:
|
Chris@16
|
515 if(remainder > 0.5)
|
Chris@16
|
516 {
|
Chris@16
|
517 remainder -= 1;
|
Chris@16
|
518 }
|
Chris@16
|
519 //
|
Chris@16
|
520 // check for evaluation at a negative pole:
|
Chris@16
|
521 //
|
Chris@16
|
522 if(remainder == 0)
|
Chris@16
|
523 {
|
Chris@16
|
524 return policies::raise_pole_error<mpfr_class>("boost::math::digamma<%1%>(%1%)", 0, (1-x), pol);
|
Chris@16
|
525 }
|
Chris@16
|
526 result = constants::pi<mpfr_class>() / tan(constants::pi<mpfr_class>() * remainder);
|
Chris@16
|
527 }
|
Chris@16
|
528 result += big_digamma(x);
|
Chris@16
|
529 return result;
|
Chris@16
|
530 }
|
Chris@16
|
531 //
|
Chris@16
|
532 // Specialisations of this function provides the initial
|
Chris@16
|
533 // starting guess for Halley iteration:
|
Chris@16
|
534 //
|
Chris@16
|
535 template <class Policy>
|
Chris@16
|
536 inline mpfr_class erf_inv_imp(const mpfr_class& p, const mpfr_class& q, const Policy&, const boost::mpl::int_<64>*)
|
Chris@16
|
537 {
|
Chris@16
|
538 BOOST_MATH_STD_USING // for ADL of std names.
|
Chris@16
|
539
|
Chris@16
|
540 mpfr_class result = 0;
|
Chris@16
|
541
|
Chris@16
|
542 if(p <= 0.5)
|
Chris@16
|
543 {
|
Chris@16
|
544 //
|
Chris@16
|
545 // Evaluate inverse erf using the rational approximation:
|
Chris@16
|
546 //
|
Chris@16
|
547 // x = p(p+10)(Y+R(p))
|
Chris@16
|
548 //
|
Chris@16
|
549 // Where Y is a constant, and R(p) is optimised for a low
|
Chris@16
|
550 // absolute empfr_classor compared to |Y|.
|
Chris@16
|
551 //
|
Chris@16
|
552 // double: Max empfr_classor found: 2.001849e-18
|
Chris@16
|
553 // long double: Max empfr_classor found: 1.017064e-20
|
Chris@16
|
554 // Maximum Deviation Found (actual empfr_classor term at infinite precision) 8.030e-21
|
Chris@16
|
555 //
|
Chris@16
|
556 static const float Y = 0.0891314744949340820313f;
|
Chris@16
|
557 static const mpfr_class P[] = {
|
Chris@16
|
558 -0.000508781949658280665617,
|
Chris@16
|
559 -0.00836874819741736770379,
|
Chris@16
|
560 0.0334806625409744615033,
|
Chris@16
|
561 -0.0126926147662974029034,
|
Chris@16
|
562 -0.0365637971411762664006,
|
Chris@16
|
563 0.0219878681111168899165,
|
Chris@16
|
564 0.00822687874676915743155,
|
Chris@16
|
565 -0.00538772965071242932965
|
Chris@16
|
566 };
|
Chris@16
|
567 static const mpfr_class Q[] = {
|
Chris@16
|
568 1,
|
Chris@16
|
569 -0.970005043303290640362,
|
Chris@16
|
570 -1.56574558234175846809,
|
Chris@16
|
571 1.56221558398423026363,
|
Chris@16
|
572 0.662328840472002992063,
|
Chris@16
|
573 -0.71228902341542847553,
|
Chris@16
|
574 -0.0527396382340099713954,
|
Chris@16
|
575 0.0795283687341571680018,
|
Chris@16
|
576 -0.00233393759374190016776,
|
Chris@16
|
577 0.000886216390456424707504
|
Chris@16
|
578 };
|
Chris@16
|
579 mpfr_class g = p * (p + 10);
|
Chris@16
|
580 mpfr_class r = tools::evaluate_polynomial(P, p) / tools::evaluate_polynomial(Q, p);
|
Chris@16
|
581 result = g * Y + g * r;
|
Chris@16
|
582 }
|
Chris@16
|
583 else if(q >= 0.25)
|
Chris@16
|
584 {
|
Chris@16
|
585 //
|
Chris@16
|
586 // Rational approximation for 0.5 > q >= 0.25
|
Chris@16
|
587 //
|
Chris@16
|
588 // x = sqrt(-2*log(q)) / (Y + R(q))
|
Chris@16
|
589 //
|
Chris@16
|
590 // Where Y is a constant, and R(q) is optimised for a low
|
Chris@16
|
591 // absolute empfr_classor compared to Y.
|
Chris@16
|
592 //
|
Chris@16
|
593 // double : Max empfr_classor found: 7.403372e-17
|
Chris@16
|
594 // long double : Max empfr_classor found: 6.084616e-20
|
Chris@16
|
595 // Maximum Deviation Found (empfr_classor term) 4.811e-20
|
Chris@16
|
596 //
|
Chris@16
|
597 static const float Y = 2.249481201171875f;
|
Chris@16
|
598 static const mpfr_class P[] = {
|
Chris@16
|
599 -0.202433508355938759655,
|
Chris@16
|
600 0.105264680699391713268,
|
Chris@16
|
601 8.37050328343119927838,
|
Chris@16
|
602 17.6447298408374015486,
|
Chris@16
|
603 -18.8510648058714251895,
|
Chris@16
|
604 -44.6382324441786960818,
|
Chris@16
|
605 17.445385985570866523,
|
Chris@16
|
606 21.1294655448340526258,
|
Chris@16
|
607 -3.67192254707729348546
|
Chris@16
|
608 };
|
Chris@16
|
609 static const mpfr_class Q[] = {
|
Chris@16
|
610 1,
|
Chris@16
|
611 6.24264124854247537712,
|
Chris@16
|
612 3.9713437953343869095,
|
Chris@16
|
613 -28.6608180499800029974,
|
Chris@16
|
614 -20.1432634680485188801,
|
Chris@16
|
615 48.5609213108739935468,
|
Chris@16
|
616 10.8268667355460159008,
|
Chris@16
|
617 -22.6436933413139721736,
|
Chris@16
|
618 1.72114765761200282724
|
Chris@16
|
619 };
|
Chris@16
|
620 mpfr_class g = sqrt(-2 * log(q));
|
Chris@16
|
621 mpfr_class xs = q - 0.25;
|
Chris@16
|
622 mpfr_class r = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs);
|
Chris@16
|
623 result = g / (Y + r);
|
Chris@16
|
624 }
|
Chris@16
|
625 else
|
Chris@16
|
626 {
|
Chris@16
|
627 //
|
Chris@16
|
628 // For q < 0.25 we have a series of rational approximations all
|
Chris@16
|
629 // of the general form:
|
Chris@16
|
630 //
|
Chris@16
|
631 // let: x = sqrt(-log(q))
|
Chris@16
|
632 //
|
Chris@16
|
633 // Then the result is given by:
|
Chris@16
|
634 //
|
Chris@16
|
635 // x(Y+R(x-B))
|
Chris@16
|
636 //
|
Chris@16
|
637 // where Y is a constant, B is the lowest value of x for which
|
Chris@16
|
638 // the approximation is valid, and R(x-B) is optimised for a low
|
Chris@16
|
639 // absolute empfr_classor compared to Y.
|
Chris@16
|
640 //
|
Chris@16
|
641 // Note that almost all code will really go through the first
|
Chris@16
|
642 // or maybe second approximation. After than we're dealing with very
|
Chris@16
|
643 // small input values indeed: 80 and 128 bit long double's go all the
|
Chris@16
|
644 // way down to ~ 1e-5000 so the "tail" is rather long...
|
Chris@16
|
645 //
|
Chris@16
|
646 mpfr_class x = sqrt(-log(q));
|
Chris@16
|
647 if(x < 3)
|
Chris@16
|
648 {
|
Chris@16
|
649 // Max empfr_classor found: 1.089051e-20
|
Chris@16
|
650 static const float Y = 0.807220458984375f;
|
Chris@16
|
651 static const mpfr_class P[] = {
|
Chris@16
|
652 -0.131102781679951906451,
|
Chris@16
|
653 -0.163794047193317060787,
|
Chris@16
|
654 0.117030156341995252019,
|
Chris@16
|
655 0.387079738972604337464,
|
Chris@16
|
656 0.337785538912035898924,
|
Chris@16
|
657 0.142869534408157156766,
|
Chris@16
|
658 0.0290157910005329060432,
|
Chris@16
|
659 0.00214558995388805277169,
|
Chris@16
|
660 -0.679465575181126350155e-6,
|
Chris@16
|
661 0.285225331782217055858e-7,
|
Chris@16
|
662 -0.681149956853776992068e-9
|
Chris@16
|
663 };
|
Chris@16
|
664 static const mpfr_class Q[] = {
|
Chris@16
|
665 1,
|
Chris@16
|
666 3.46625407242567245975,
|
Chris@16
|
667 5.38168345707006855425,
|
Chris@16
|
668 4.77846592945843778382,
|
Chris@16
|
669 2.59301921623620271374,
|
Chris@16
|
670 0.848854343457902036425,
|
Chris@16
|
671 0.152264338295331783612,
|
Chris@16
|
672 0.01105924229346489121
|
Chris@16
|
673 };
|
Chris@16
|
674 mpfr_class xs = x - 1.125;
|
Chris@16
|
675 mpfr_class R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs);
|
Chris@16
|
676 result = Y * x + R * x;
|
Chris@16
|
677 }
|
Chris@16
|
678 else if(x < 6)
|
Chris@16
|
679 {
|
Chris@16
|
680 // Max empfr_classor found: 8.389174e-21
|
Chris@16
|
681 static const float Y = 0.93995571136474609375f;
|
Chris@16
|
682 static const mpfr_class P[] = {
|
Chris@16
|
683 -0.0350353787183177984712,
|
Chris@16
|
684 -0.00222426529213447927281,
|
Chris@16
|
685 0.0185573306514231072324,
|
Chris@16
|
686 0.00950804701325919603619,
|
Chris@16
|
687 0.00187123492819559223345,
|
Chris@16
|
688 0.000157544617424960554631,
|
Chris@16
|
689 0.460469890584317994083e-5,
|
Chris@16
|
690 -0.230404776911882601748e-9,
|
Chris@16
|
691 0.266339227425782031962e-11
|
Chris@16
|
692 };
|
Chris@16
|
693 static const mpfr_class Q[] = {
|
Chris@16
|
694 1,
|
Chris@16
|
695 1.3653349817554063097,
|
Chris@16
|
696 0.762059164553623404043,
|
Chris@16
|
697 0.220091105764131249824,
|
Chris@16
|
698 0.0341589143670947727934,
|
Chris@16
|
699 0.00263861676657015992959,
|
Chris@16
|
700 0.764675292302794483503e-4
|
Chris@16
|
701 };
|
Chris@16
|
702 mpfr_class xs = x - 3;
|
Chris@16
|
703 mpfr_class R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs);
|
Chris@16
|
704 result = Y * x + R * x;
|
Chris@16
|
705 }
|
Chris@16
|
706 else if(x < 18)
|
Chris@16
|
707 {
|
Chris@16
|
708 // Max empfr_classor found: 1.481312e-19
|
Chris@16
|
709 static const float Y = 0.98362827301025390625f;
|
Chris@16
|
710 static const mpfr_class P[] = {
|
Chris@16
|
711 -0.0167431005076633737133,
|
Chris@16
|
712 -0.00112951438745580278863,
|
Chris@16
|
713 0.00105628862152492910091,
|
Chris@16
|
714 0.000209386317487588078668,
|
Chris@16
|
715 0.149624783758342370182e-4,
|
Chris@16
|
716 0.449696789927706453732e-6,
|
Chris@16
|
717 0.462596163522878599135e-8,
|
Chris@16
|
718 -0.281128735628831791805e-13,
|
Chris@16
|
719 0.99055709973310326855e-16
|
Chris@16
|
720 };
|
Chris@16
|
721 static const mpfr_class Q[] = {
|
Chris@16
|
722 1,
|
Chris@16
|
723 0.591429344886417493481,
|
Chris@16
|
724 0.138151865749083321638,
|
Chris@16
|
725 0.0160746087093676504695,
|
Chris@16
|
726 0.000964011807005165528527,
|
Chris@16
|
727 0.275335474764726041141e-4,
|
Chris@16
|
728 0.282243172016108031869e-6
|
Chris@16
|
729 };
|
Chris@16
|
730 mpfr_class xs = x - 6;
|
Chris@16
|
731 mpfr_class R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs);
|
Chris@16
|
732 result = Y * x + R * x;
|
Chris@16
|
733 }
|
Chris@16
|
734 else if(x < 44)
|
Chris@16
|
735 {
|
Chris@16
|
736 // Max empfr_classor found: 5.697761e-20
|
Chris@16
|
737 static const float Y = 0.99714565277099609375f;
|
Chris@16
|
738 static const mpfr_class P[] = {
|
Chris@16
|
739 -0.0024978212791898131227,
|
Chris@16
|
740 -0.779190719229053954292e-5,
|
Chris@16
|
741 0.254723037413027451751e-4,
|
Chris@16
|
742 0.162397777342510920873e-5,
|
Chris@16
|
743 0.396341011304801168516e-7,
|
Chris@16
|
744 0.411632831190944208473e-9,
|
Chris@16
|
745 0.145596286718675035587e-11,
|
Chris@16
|
746 -0.116765012397184275695e-17
|
Chris@16
|
747 };
|
Chris@16
|
748 static const mpfr_class Q[] = {
|
Chris@16
|
749 1,
|
Chris@16
|
750 0.207123112214422517181,
|
Chris@16
|
751 0.0169410838120975906478,
|
Chris@16
|
752 0.000690538265622684595676,
|
Chris@16
|
753 0.145007359818232637924e-4,
|
Chris@16
|
754 0.144437756628144157666e-6,
|
Chris@16
|
755 0.509761276599778486139e-9
|
Chris@16
|
756 };
|
Chris@16
|
757 mpfr_class xs = x - 18;
|
Chris@16
|
758 mpfr_class R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs);
|
Chris@16
|
759 result = Y * x + R * x;
|
Chris@16
|
760 }
|
Chris@16
|
761 else
|
Chris@16
|
762 {
|
Chris@16
|
763 // Max empfr_classor found: 1.279746e-20
|
Chris@16
|
764 static const float Y = 0.99941349029541015625f;
|
Chris@16
|
765 static const mpfr_class P[] = {
|
Chris@16
|
766 -0.000539042911019078575891,
|
Chris@16
|
767 -0.28398759004727721098e-6,
|
Chris@16
|
768 0.899465114892291446442e-6,
|
Chris@16
|
769 0.229345859265920864296e-7,
|
Chris@16
|
770 0.225561444863500149219e-9,
|
Chris@16
|
771 0.947846627503022684216e-12,
|
Chris@16
|
772 0.135880130108924861008e-14,
|
Chris@16
|
773 -0.348890393399948882918e-21
|
Chris@16
|
774 };
|
Chris@16
|
775 static const mpfr_class Q[] = {
|
Chris@16
|
776 1,
|
Chris@16
|
777 0.0845746234001899436914,
|
Chris@16
|
778 0.00282092984726264681981,
|
Chris@16
|
779 0.468292921940894236786e-4,
|
Chris@16
|
780 0.399968812193862100054e-6,
|
Chris@16
|
781 0.161809290887904476097e-8,
|
Chris@16
|
782 0.231558608310259605225e-11
|
Chris@16
|
783 };
|
Chris@16
|
784 mpfr_class xs = x - 44;
|
Chris@16
|
785 mpfr_class R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs);
|
Chris@16
|
786 result = Y * x + R * x;
|
Chris@16
|
787 }
|
Chris@16
|
788 }
|
Chris@16
|
789 return result;
|
Chris@16
|
790 }
|
Chris@16
|
791
|
Chris@16
|
792 inline mpfr_class bessel_i0(mpfr_class x)
|
Chris@16
|
793 {
|
Chris@16
|
794 static const mpfr_class P1[] = {
|
Chris@16
|
795 boost::lexical_cast<mpfr_class>("-2.2335582639474375249e+15"),
|
Chris@16
|
796 boost::lexical_cast<mpfr_class>("-5.5050369673018427753e+14"),
|
Chris@16
|
797 boost::lexical_cast<mpfr_class>("-3.2940087627407749166e+13"),
|
Chris@16
|
798 boost::lexical_cast<mpfr_class>("-8.4925101247114157499e+11"),
|
Chris@16
|
799 boost::lexical_cast<mpfr_class>("-1.1912746104985237192e+10"),
|
Chris@16
|
800 boost::lexical_cast<mpfr_class>("-1.0313066708737980747e+08"),
|
Chris@16
|
801 boost::lexical_cast<mpfr_class>("-5.9545626019847898221e+05"),
|
Chris@16
|
802 boost::lexical_cast<mpfr_class>("-2.4125195876041896775e+03"),
|
Chris@16
|
803 boost::lexical_cast<mpfr_class>("-7.0935347449210549190e+00"),
|
Chris@16
|
804 boost::lexical_cast<mpfr_class>("-1.5453977791786851041e-02"),
|
Chris@16
|
805 boost::lexical_cast<mpfr_class>("-2.5172644670688975051e-05"),
|
Chris@16
|
806 boost::lexical_cast<mpfr_class>("-3.0517226450451067446e-08"),
|
Chris@16
|
807 boost::lexical_cast<mpfr_class>("-2.6843448573468483278e-11"),
|
Chris@16
|
808 boost::lexical_cast<mpfr_class>("-1.5982226675653184646e-14"),
|
Chris@16
|
809 boost::lexical_cast<mpfr_class>("-5.2487866627945699800e-18"),
|
Chris@16
|
810 };
|
Chris@16
|
811 static const mpfr_class Q1[] = {
|
Chris@16
|
812 boost::lexical_cast<mpfr_class>("-2.2335582639474375245e+15"),
|
Chris@16
|
813 boost::lexical_cast<mpfr_class>("7.8858692566751002988e+12"),
|
Chris@16
|
814 boost::lexical_cast<mpfr_class>("-1.2207067397808979846e+10"),
|
Chris@16
|
815 boost::lexical_cast<mpfr_class>("1.0377081058062166144e+07"),
|
Chris@16
|
816 boost::lexical_cast<mpfr_class>("-4.8527560179962773045e+03"),
|
Chris@16
|
817 boost::lexical_cast<mpfr_class>("1.0"),
|
Chris@16
|
818 };
|
Chris@16
|
819 static const mpfr_class P2[] = {
|
Chris@16
|
820 boost::lexical_cast<mpfr_class>("-2.2210262233306573296e-04"),
|
Chris@16
|
821 boost::lexical_cast<mpfr_class>("1.3067392038106924055e-02"),
|
Chris@16
|
822 boost::lexical_cast<mpfr_class>("-4.4700805721174453923e-01"),
|
Chris@16
|
823 boost::lexical_cast<mpfr_class>("5.5674518371240761397e+00"),
|
Chris@16
|
824 boost::lexical_cast<mpfr_class>("-2.3517945679239481621e+01"),
|
Chris@16
|
825 boost::lexical_cast<mpfr_class>("3.1611322818701131207e+01"),
|
Chris@16
|
826 boost::lexical_cast<mpfr_class>("-9.6090021968656180000e+00"),
|
Chris@16
|
827 };
|
Chris@16
|
828 static const mpfr_class Q2[] = {
|
Chris@16
|
829 boost::lexical_cast<mpfr_class>("-5.5194330231005480228e-04"),
|
Chris@16
|
830 boost::lexical_cast<mpfr_class>("3.2547697594819615062e-02"),
|
Chris@16
|
831 boost::lexical_cast<mpfr_class>("-1.1151759188741312645e+00"),
|
Chris@16
|
832 boost::lexical_cast<mpfr_class>("1.3982595353892851542e+01"),
|
Chris@16
|
833 boost::lexical_cast<mpfr_class>("-6.0228002066743340583e+01"),
|
Chris@16
|
834 boost::lexical_cast<mpfr_class>("8.5539563258012929600e+01"),
|
Chris@16
|
835 boost::lexical_cast<mpfr_class>("-3.1446690275135491500e+01"),
|
Chris@16
|
836 boost::lexical_cast<mpfr_class>("1.0"),
|
Chris@16
|
837 };
|
Chris@16
|
838 mpfr_class value, factor, r;
|
Chris@16
|
839
|
Chris@16
|
840 BOOST_MATH_STD_USING
|
Chris@16
|
841 using namespace boost::math::tools;
|
Chris@16
|
842
|
Chris@16
|
843 if (x < 0)
|
Chris@16
|
844 {
|
Chris@16
|
845 x = -x; // even function
|
Chris@16
|
846 }
|
Chris@16
|
847 if (x == 0)
|
Chris@16
|
848 {
|
Chris@16
|
849 return static_cast<mpfr_class>(1);
|
Chris@16
|
850 }
|
Chris@16
|
851 if (x <= 15) // x in (0, 15]
|
Chris@16
|
852 {
|
Chris@16
|
853 mpfr_class y = x * x;
|
Chris@16
|
854 value = evaluate_polynomial(P1, y) / evaluate_polynomial(Q1, y);
|
Chris@16
|
855 }
|
Chris@16
|
856 else // x in (15, \infty)
|
Chris@16
|
857 {
|
Chris@16
|
858 mpfr_class y = 1 / x - mpfr_class(1) / 15;
|
Chris@16
|
859 r = evaluate_polynomial(P2, y) / evaluate_polynomial(Q2, y);
|
Chris@16
|
860 factor = exp(x) / sqrt(x);
|
Chris@16
|
861 value = factor * r;
|
Chris@16
|
862 }
|
Chris@16
|
863
|
Chris@16
|
864 return value;
|
Chris@16
|
865 }
|
Chris@16
|
866
|
Chris@16
|
867 inline mpfr_class bessel_i1(mpfr_class x)
|
Chris@16
|
868 {
|
Chris@16
|
869 static const mpfr_class P1[] = {
|
Chris@16
|
870 static_cast<mpfr_class>("-1.4577180278143463643e+15"),
|
Chris@16
|
871 static_cast<mpfr_class>("-1.7732037840791591320e+14"),
|
Chris@16
|
872 static_cast<mpfr_class>("-6.9876779648010090070e+12"),
|
Chris@16
|
873 static_cast<mpfr_class>("-1.3357437682275493024e+11"),
|
Chris@16
|
874 static_cast<mpfr_class>("-1.4828267606612366099e+09"),
|
Chris@16
|
875 static_cast<mpfr_class>("-1.0588550724769347106e+07"),
|
Chris@16
|
876 static_cast<mpfr_class>("-5.1894091982308017540e+04"),
|
Chris@16
|
877 static_cast<mpfr_class>("-1.8225946631657315931e+02"),
|
Chris@16
|
878 static_cast<mpfr_class>("-4.7207090827310162436e-01"),
|
Chris@16
|
879 static_cast<mpfr_class>("-9.1746443287817501309e-04"),
|
Chris@16
|
880 static_cast<mpfr_class>("-1.3466829827635152875e-06"),
|
Chris@16
|
881 static_cast<mpfr_class>("-1.4831904935994647675e-09"),
|
Chris@16
|
882 static_cast<mpfr_class>("-1.1928788903603238754e-12"),
|
Chris@16
|
883 static_cast<mpfr_class>("-6.5245515583151902910e-16"),
|
Chris@16
|
884 static_cast<mpfr_class>("-1.9705291802535139930e-19"),
|
Chris@16
|
885 };
|
Chris@16
|
886 static const mpfr_class Q1[] = {
|
Chris@16
|
887 static_cast<mpfr_class>("-2.9154360556286927285e+15"),
|
Chris@16
|
888 static_cast<mpfr_class>("9.7887501377547640438e+12"),
|
Chris@16
|
889 static_cast<mpfr_class>("-1.4386907088588283434e+10"),
|
Chris@16
|
890 static_cast<mpfr_class>("1.1594225856856884006e+07"),
|
Chris@16
|
891 static_cast<mpfr_class>("-5.1326864679904189920e+03"),
|
Chris@16
|
892 static_cast<mpfr_class>("1.0"),
|
Chris@16
|
893 };
|
Chris@16
|
894 static const mpfr_class P2[] = {
|
Chris@16
|
895 static_cast<mpfr_class>("1.4582087408985668208e-05"),
|
Chris@16
|
896 static_cast<mpfr_class>("-8.9359825138577646443e-04"),
|
Chris@16
|
897 static_cast<mpfr_class>("2.9204895411257790122e-02"),
|
Chris@16
|
898 static_cast<mpfr_class>("-3.4198728018058047439e-01"),
|
Chris@16
|
899 static_cast<mpfr_class>("1.3960118277609544334e+00"),
|
Chris@16
|
900 static_cast<mpfr_class>("-1.9746376087200685843e+00"),
|
Chris@16
|
901 static_cast<mpfr_class>("8.5591872901933459000e-01"),
|
Chris@16
|
902 static_cast<mpfr_class>("-6.0437159056137599999e-02"),
|
Chris@16
|
903 };
|
Chris@16
|
904 static const mpfr_class Q2[] = {
|
Chris@16
|
905 static_cast<mpfr_class>("3.7510433111922824643e-05"),
|
Chris@16
|
906 static_cast<mpfr_class>("-2.2835624489492512649e-03"),
|
Chris@16
|
907 static_cast<mpfr_class>("7.4212010813186530069e-02"),
|
Chris@16
|
908 static_cast<mpfr_class>("-8.5017476463217924408e-01"),
|
Chris@16
|
909 static_cast<mpfr_class>("3.2593714889036996297e+00"),
|
Chris@16
|
910 static_cast<mpfr_class>("-3.8806586721556593450e+00"),
|
Chris@16
|
911 static_cast<mpfr_class>("1.0"),
|
Chris@16
|
912 };
|
Chris@16
|
913 mpfr_class value, factor, r, w;
|
Chris@16
|
914
|
Chris@16
|
915 BOOST_MATH_STD_USING
|
Chris@16
|
916 using namespace boost::math::tools;
|
Chris@16
|
917
|
Chris@16
|
918 w = abs(x);
|
Chris@16
|
919 if (x == 0)
|
Chris@16
|
920 {
|
Chris@16
|
921 return static_cast<mpfr_class>(0);
|
Chris@16
|
922 }
|
Chris@16
|
923 if (w <= 15) // w in (0, 15]
|
Chris@16
|
924 {
|
Chris@16
|
925 mpfr_class y = x * x;
|
Chris@16
|
926 r = evaluate_polynomial(P1, y) / evaluate_polynomial(Q1, y);
|
Chris@16
|
927 factor = w;
|
Chris@16
|
928 value = factor * r;
|
Chris@16
|
929 }
|
Chris@16
|
930 else // w in (15, \infty)
|
Chris@16
|
931 {
|
Chris@16
|
932 mpfr_class y = 1 / w - mpfr_class(1) / 15;
|
Chris@16
|
933 r = evaluate_polynomial(P2, y) / evaluate_polynomial(Q2, y);
|
Chris@16
|
934 factor = exp(w) / sqrt(w);
|
Chris@16
|
935 value = factor * r;
|
Chris@16
|
936 }
|
Chris@16
|
937
|
Chris@16
|
938 if (x < 0)
|
Chris@16
|
939 {
|
Chris@16
|
940 value *= -value; // odd function
|
Chris@16
|
941 }
|
Chris@16
|
942 return value;
|
Chris@16
|
943 }
|
Chris@16
|
944
|
Chris@16
|
945 } // namespace detail
|
Chris@16
|
946
|
Chris@16
|
947 }
|
Chris@16
|
948
|
Chris@16
|
949 template<> struct is_convertible<long double, mpfr_class> : public mpl::false_{};
|
Chris@16
|
950
|
Chris@16
|
951 }
|
Chris@16
|
952
|
Chris@16
|
953 #endif // BOOST_MATH_MPLFR_BINDINGS_HPP
|
Chris@16
|
954
|