Chris@16: // Copyright John Maddock 2008. Chris@16: // Use, modification and distribution are subject to the Chris@16: // Boost Software License, Version 1.0. (See accompanying file Chris@16: // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) Chris@16: // Chris@16: // Wrapper that works with mpfr_class defined in gmpfrxx.h Chris@16: // See http://math.berkeley.edu/~wilken/code/gmpfrxx/ Chris@16: // Also requires the gmp and mpfr libraries. Chris@16: // Chris@16: Chris@16: #ifndef BOOST_MATH_MPLFR_BINDINGS_HPP Chris@16: #define BOOST_MATH_MPLFR_BINDINGS_HPP Chris@16: Chris@16: #include Chris@16: #include Chris@16: Chris@16: #ifdef BOOST_MSVC Chris@16: // Chris@16: // We get a lot of warnings from the gmp, mpfr and gmpfrxx headers, Chris@16: // disable them here, so we only see warnings from *our* code: Chris@16: // Chris@16: #pragma warning(push) Chris@16: #pragma warning(disable: 4127 4800 4512) Chris@16: #endif Chris@16: Chris@16: #include Chris@16: Chris@16: #ifdef BOOST_MSVC Chris@16: #pragma warning(pop) Chris@16: #endif Chris@16: Chris@16: #include Chris@16: #include Chris@16: #include Chris@16: #include Chris@16: #include Chris@16: #include Chris@16: #include Chris@101: #include Chris@16: Chris@16: inline mpfr_class fabs(const mpfr_class& v) Chris@16: { Chris@16: return abs(v); Chris@16: } Chris@16: template Chris@16: inline mpfr_class fabs(const __gmp_expr& v) Chris@16: { Chris@16: return abs(static_cast(v)); Chris@16: } Chris@16: Chris@16: inline mpfr_class pow(const mpfr_class& b, const mpfr_class& e) Chris@16: { Chris@16: mpfr_class result; Chris@16: mpfr_pow(result.__get_mp(), b.__get_mp(), e.__get_mp(), GMP_RNDN); Chris@16: return result; Chris@16: } Chris@16: /* Chris@16: template Chris@16: inline mpfr_class pow(const __gmp_expr& b, const __gmp_expr& e) Chris@16: { Chris@16: return pow(static_cast(b), static_cast(e)); Chris@16: } Chris@16: */ Chris@16: inline mpfr_class ldexp(const mpfr_class& v, int e) Chris@16: { Chris@16: //int e = mpfr_get_exp(*v.__get_mp()); Chris@16: mpfr_class result(v); Chris@16: mpfr_set_exp(result.__get_mp(), e); Chris@16: return result; Chris@16: } Chris@16: template Chris@16: inline mpfr_class ldexp(const __gmp_expr& v, int e) Chris@16: { Chris@16: return ldexp(static_cast(v), e); Chris@16: } Chris@16: Chris@16: inline mpfr_class frexp(const mpfr_class& v, int* expon) Chris@16: { Chris@16: int e = mpfr_get_exp(v.__get_mp()); Chris@16: mpfr_class result(v); Chris@16: mpfr_set_exp(result.__get_mp(), 0); Chris@16: *expon = e; Chris@16: return result; Chris@16: } Chris@16: template Chris@16: inline mpfr_class frexp(const __gmp_expr& v, int* expon) Chris@16: { Chris@16: return frexp(static_cast(v), expon); Chris@16: } Chris@16: Chris@16: inline mpfr_class fmod(const mpfr_class& v1, const mpfr_class& v2) Chris@16: { Chris@16: mpfr_class n; Chris@16: if(v1 < 0) Chris@16: n = ceil(v1 / v2); Chris@16: else Chris@16: n = floor(v1 / v2); Chris@16: return v1 - n * v2; Chris@16: } Chris@16: template Chris@16: inline mpfr_class fmod(const __gmp_expr& v1, const __gmp_expr& v2) Chris@16: { Chris@16: return fmod(static_cast(v1), static_cast(v2)); Chris@16: } Chris@16: Chris@16: template Chris@16: inline mpfr_class modf(const mpfr_class& v, long long* ipart, const Policy& pol) Chris@16: { Chris@16: *ipart = lltrunc(v, pol); Chris@16: return v - boost::math::tools::real_cast(*ipart); Chris@16: } Chris@16: template Chris@16: inline mpfr_class modf(const __gmp_expr& v, long long* ipart, const Policy& pol) Chris@16: { Chris@16: return modf(static_cast(v), ipart, pol); Chris@16: } Chris@16: Chris@16: template Chris@16: inline int iround(mpfr_class const& x, const Policy&) Chris@16: { Chris@16: return boost::math::tools::real_cast(boost::math::round(x, typename boost::math::policies::normalise >::type())); Chris@16: } Chris@16: template Chris@16: inline int iround(__gmp_expr const& x, const Policy& pol) Chris@16: { Chris@16: return iround(static_cast(x), pol); Chris@16: } Chris@16: Chris@16: template Chris@16: inline long lround(mpfr_class const& x, const Policy&) Chris@16: { Chris@16: return boost::math::tools::real_cast(boost::math::round(x, typename boost::math::policies::normalise >::type())); Chris@16: } Chris@16: template Chris@16: inline long lround(__gmp_expr const& x, const Policy& pol) Chris@16: { Chris@16: return lround(static_cast(x), pol); Chris@16: } Chris@16: Chris@16: template Chris@16: inline long long llround(mpfr_class const& x, const Policy&) Chris@16: { Chris@16: return boost::math::tools::real_cast(boost::math::round(x, typename boost::math::policies::normalise >::type())); Chris@16: } Chris@16: template Chris@16: inline long long llround(__gmp_expr const& x, const Policy& pol) Chris@16: { Chris@16: return llround(static_cast(x), pol); Chris@16: } Chris@16: Chris@16: template Chris@16: inline int itrunc(mpfr_class const& x, const Policy&) Chris@16: { Chris@16: return boost::math::tools::real_cast(boost::math::trunc(x, typename boost::math::policies::normalise >::type())); Chris@16: } Chris@16: template Chris@16: inline int itrunc(__gmp_expr const& x, const Policy& pol) Chris@16: { Chris@16: return itrunc(static_cast(x), pol); Chris@16: } Chris@16: Chris@16: template Chris@16: inline long ltrunc(mpfr_class const& x, const Policy&) Chris@16: { Chris@16: return boost::math::tools::real_cast(boost::math::trunc(x, typename boost::math::policies::normalise >::type())); Chris@16: } Chris@16: template Chris@16: inline long ltrunc(__gmp_expr const& x, const Policy& pol) Chris@16: { Chris@16: return ltrunc(static_cast(x), pol); Chris@16: } Chris@16: Chris@16: template Chris@16: inline long long lltrunc(mpfr_class const& x, const Policy&) Chris@16: { Chris@16: return boost::math::tools::real_cast(boost::math::trunc(x, typename boost::math::policies::normalise >::type())); Chris@16: } Chris@16: template Chris@16: inline long long lltrunc(__gmp_expr const& x, const Policy& pol) Chris@16: { Chris@16: return lltrunc(static_cast(x), pol); Chris@16: } Chris@16: Chris@101: namespace boost{ Chris@101: Chris@101: #ifdef BOOST_MATH_USE_FLOAT128 Chris@101: template<> struct is_convertible : public boost::integral_constant{}; Chris@101: #endif Chris@101: template<> struct is_convertible : public boost::integral_constant{}; Chris@101: Chris@101: namespace math{ Chris@16: Chris@16: #if defined(__GNUC__) && (__GNUC__ < 4) Chris@16: using ::iround; Chris@16: using ::lround; Chris@16: using ::llround; Chris@16: using ::itrunc; Chris@16: using ::ltrunc; Chris@16: using ::lltrunc; Chris@16: using ::modf; Chris@16: #endif Chris@16: Chris@16: namespace lanczos{ Chris@16: Chris@16: struct mpfr_lanczos Chris@16: { Chris@16: static mpfr_class lanczos_sum(const mpfr_class& z) Chris@16: { Chris@16: unsigned long p = z.get_dprec(); Chris@16: if(p <= 72) Chris@16: return lanczos13UDT::lanczos_sum(z); Chris@16: else if(p <= 120) Chris@16: return lanczos22UDT::lanczos_sum(z); Chris@16: else if(p <= 170) Chris@16: return lanczos31UDT::lanczos_sum(z); Chris@16: else //if(p <= 370) approx 100 digit precision: Chris@16: return lanczos61UDT::lanczos_sum(z); Chris@16: } Chris@16: static mpfr_class lanczos_sum_expG_scaled(const mpfr_class& z) Chris@16: { Chris@16: unsigned long p = z.get_dprec(); Chris@16: if(p <= 72) Chris@16: return lanczos13UDT::lanczos_sum_expG_scaled(z); Chris@16: else if(p <= 120) Chris@16: return lanczos22UDT::lanczos_sum_expG_scaled(z); Chris@16: else if(p <= 170) Chris@16: return lanczos31UDT::lanczos_sum_expG_scaled(z); Chris@16: else //if(p <= 370) approx 100 digit precision: Chris@16: return lanczos61UDT::lanczos_sum_expG_scaled(z); Chris@16: } Chris@16: static mpfr_class lanczos_sum_near_1(const mpfr_class& z) Chris@16: { Chris@16: unsigned long p = z.get_dprec(); Chris@16: if(p <= 72) Chris@16: return lanczos13UDT::lanczos_sum_near_1(z); Chris@16: else if(p <= 120) Chris@16: return lanczos22UDT::lanczos_sum_near_1(z); Chris@16: else if(p <= 170) Chris@16: return lanczos31UDT::lanczos_sum_near_1(z); Chris@16: else //if(p <= 370) approx 100 digit precision: Chris@16: return lanczos61UDT::lanczos_sum_near_1(z); Chris@16: } Chris@16: static mpfr_class lanczos_sum_near_2(const mpfr_class& z) Chris@16: { Chris@16: unsigned long p = z.get_dprec(); Chris@16: if(p <= 72) Chris@16: return lanczos13UDT::lanczos_sum_near_2(z); Chris@16: else if(p <= 120) Chris@16: return lanczos22UDT::lanczos_sum_near_2(z); Chris@16: else if(p <= 170) Chris@16: return lanczos31UDT::lanczos_sum_near_2(z); Chris@16: else //if(p <= 370) approx 100 digit precision: Chris@16: return lanczos61UDT::lanczos_sum_near_2(z); Chris@16: } Chris@16: static mpfr_class g() Chris@16: { Chris@16: unsigned long p = mpfr_class::get_dprec(); Chris@16: if(p <= 72) Chris@16: return lanczos13UDT::g(); Chris@16: else if(p <= 120) Chris@16: return lanczos22UDT::g(); Chris@16: else if(p <= 170) Chris@16: return lanczos31UDT::g(); Chris@16: else //if(p <= 370) approx 100 digit precision: Chris@16: return lanczos61UDT::g(); Chris@16: } Chris@16: }; Chris@16: Chris@16: template Chris@16: struct lanczos Chris@16: { Chris@16: typedef mpfr_lanczos type; Chris@16: }; Chris@16: Chris@16: } // namespace lanczos Chris@16: Chris@16: namespace constants{ Chris@16: Chris@16: template Chris@16: struct construction_traits; Chris@16: Chris@16: template Chris@16: struct construction_traits Chris@16: { Chris@16: typedef mpl::int_<0> type; Chris@16: }; Chris@16: Chris@16: } Chris@16: Chris@16: namespace tools Chris@16: { Chris@16: Chris@16: template Chris@16: struct promote_arg<__gmp_expr > Chris@16: { // If T is integral type, then promote to double. Chris@16: typedef mpfr_class type; Chris@16: }; Chris@16: Chris@16: template<> Chris@16: inline int digits(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpfr_class)) Chris@16: { Chris@16: return mpfr_class::get_dprec(); Chris@16: } Chris@16: Chris@16: namespace detail{ Chris@16: Chris@16: template Chris@16: void convert_to_long_result(mpfr_class const& r, I& result) Chris@16: { Chris@16: result = 0; Chris@16: I last_result(0); Chris@16: mpfr_class t(r); Chris@16: double term; Chris@16: do Chris@16: { Chris@16: term = real_cast(t); Chris@16: last_result = result; Chris@16: result += static_cast(term); Chris@16: t -= term; Chris@16: }while(result != last_result); Chris@16: } Chris@16: Chris@16: } Chris@16: Chris@16: template <> Chris@16: inline mpfr_class real_cast(long long t) Chris@16: { Chris@16: mpfr_class result; Chris@16: int expon = 0; Chris@16: int sign = 1; Chris@16: if(t < 0) Chris@16: { Chris@16: sign = -1; Chris@16: t = -t; Chris@16: } Chris@16: while(t) Chris@16: { Chris@16: result += ldexp((double)(t & 0xffffL), expon); Chris@16: expon += 32; Chris@16: t >>= 32; Chris@16: } Chris@16: return result * sign; Chris@16: } Chris@16: template <> Chris@16: inline unsigned real_cast(mpfr_class t) Chris@16: { Chris@16: return t.get_ui(); Chris@16: } Chris@16: template <> Chris@16: inline int real_cast(mpfr_class t) Chris@16: { Chris@16: return t.get_si(); Chris@16: } Chris@16: template <> Chris@16: inline double real_cast(mpfr_class t) Chris@16: { Chris@16: return t.get_d(); Chris@16: } Chris@16: template <> Chris@16: inline float real_cast(mpfr_class t) Chris@16: { Chris@16: return static_cast(t.get_d()); Chris@16: } Chris@16: template <> Chris@16: inline long real_cast(mpfr_class t) Chris@16: { Chris@16: long result; Chris@16: detail::convert_to_long_result(t, result); Chris@16: return result; Chris@16: } Chris@16: template <> Chris@16: inline long long real_cast(mpfr_class t) Chris@16: { Chris@16: long long result; Chris@16: detail::convert_to_long_result(t, result); Chris@16: return result; Chris@16: } Chris@16: Chris@16: template <> Chris@16: inline mpfr_class max_value(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpfr_class)) Chris@16: { Chris@16: static bool has_init = false; Chris@16: static mpfr_class val; Chris@16: if(!has_init) Chris@16: { Chris@16: val = 0.5; Chris@16: mpfr_set_exp(val.__get_mp(), mpfr_get_emax()); Chris@16: has_init = true; Chris@16: } Chris@16: return val; Chris@16: } Chris@16: Chris@16: template <> Chris@16: inline mpfr_class min_value(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpfr_class)) Chris@16: { Chris@16: static bool has_init = false; Chris@16: static mpfr_class val; Chris@16: if(!has_init) Chris@16: { Chris@16: val = 0.5; Chris@16: mpfr_set_exp(val.__get_mp(), mpfr_get_emin()); Chris@16: has_init = true; Chris@16: } Chris@16: return val; Chris@16: } Chris@16: Chris@16: template <> Chris@16: inline mpfr_class log_max_value(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpfr_class)) Chris@16: { Chris@16: static bool has_init = false; Chris@16: static mpfr_class val = max_value(); Chris@16: if(!has_init) Chris@16: { Chris@16: val = log(val); Chris@16: has_init = true; Chris@16: } Chris@16: return val; Chris@16: } Chris@16: Chris@16: template <> Chris@16: inline mpfr_class log_min_value(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpfr_class)) Chris@16: { Chris@16: static bool has_init = false; Chris@16: static mpfr_class val = max_value(); Chris@16: if(!has_init) Chris@16: { Chris@16: val = log(val); Chris@16: has_init = true; Chris@16: } Chris@16: return val; Chris@16: } Chris@16: Chris@16: template <> Chris@16: inline mpfr_class epsilon(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpfr_class)) Chris@16: { Chris@16: return ldexp(mpfr_class(1), 1-boost::math::policies::digits >()); Chris@16: } Chris@16: Chris@16: } // namespace tools Chris@16: Chris@16: namespace policies{ Chris@16: Chris@16: template Chris@16: struct evaluation<__gmp_expr, Policy> Chris@16: { Chris@16: typedef mpfr_class type; Chris@16: }; Chris@16: Chris@16: } Chris@16: Chris@16: template Chris@16: inline mpfr_class skewness(const extreme_value_distribution& /*dist*/) Chris@16: { Chris@16: // Chris@16: // This is 12 * sqrt(6) * zeta(3) / pi^3: Chris@16: // See http://mathworld.wolfram.com/ExtremeValueDistribution.html Chris@16: // Chris@16: return boost::lexical_cast("1.1395470994046486574927930193898461120875997958366"); Chris@16: } Chris@16: Chris@16: template Chris@16: inline mpfr_class skewness(const rayleigh_distribution& /*dist*/) Chris@16: { Chris@16: // using namespace boost::math::constants; Chris@16: return boost::lexical_cast("0.63111065781893713819189935154422777984404221106391"); Chris@16: // Computed using NTL at 150 bit, about 50 decimal digits. Chris@16: // return 2 * root_pi() * pi_minus_three() / pow23_four_minus_pi(); Chris@16: } Chris@16: Chris@16: template Chris@16: inline mpfr_class kurtosis(const rayleigh_distribution& /*dist*/) Chris@16: { Chris@16: // using namespace boost::math::constants; Chris@16: return boost::lexical_cast("3.2450893006876380628486604106197544154170667057995"); Chris@16: // Computed using NTL at 150 bit, about 50 decimal digits. Chris@16: // return 3 - (6 * pi() * pi() - 24 * pi() + 16) / Chris@16: // (four_minus_pi() * four_minus_pi()); Chris@16: } Chris@16: Chris@16: template Chris@16: inline mpfr_class kurtosis_excess(const rayleigh_distribution& /*dist*/) Chris@16: { Chris@16: //using namespace boost::math::constants; Chris@16: // Computed using NTL at 150 bit, about 50 decimal digits. Chris@16: return boost::lexical_cast("0.2450893006876380628486604106197544154170667057995"); Chris@16: // return -(6 * pi() * pi() - 24 * pi() + 16) / Chris@16: // (four_minus_pi() * four_minus_pi()); Chris@16: } // kurtosis Chris@16: Chris@16: namespace detail{ Chris@16: Chris@16: // Chris@16: // Version of Digamma accurate to ~100 decimal digits. Chris@16: // Chris@16: template Chris@16: mpfr_class digamma_imp(mpfr_class x, const mpl::int_<0>* , const Policy& pol) Chris@16: { Chris@16: // Chris@16: // This handles reflection of negative arguments, and all our Chris@16: // empfr_classor handling, then forwards to the T-specific approximation. Chris@16: // Chris@16: BOOST_MATH_STD_USING // ADL of std functions. Chris@16: Chris@16: mpfr_class result = 0; Chris@16: // Chris@16: // Check for negative arguments and use reflection: Chris@16: // Chris@16: if(x < 0) Chris@16: { Chris@16: // Reflect: Chris@16: x = 1 - x; Chris@16: // Argument reduction for tan: Chris@16: mpfr_class remainder = x - floor(x); Chris@16: // Shift to negative if > 0.5: Chris@16: if(remainder > 0.5) Chris@16: { Chris@16: remainder -= 1; Chris@16: } Chris@16: // Chris@16: // check for evaluation at a negative pole: Chris@16: // Chris@16: if(remainder == 0) Chris@16: { Chris@16: return policies::raise_pole_error("boost::math::digamma<%1%>(%1%)", 0, (1-x), pol); Chris@16: } Chris@16: result = constants::pi() / tan(constants::pi() * remainder); Chris@16: } Chris@16: result += big_digamma(x); Chris@16: return result; Chris@16: } Chris@16: // Chris@16: // Specialisations of this function provides the initial Chris@16: // starting guess for Halley iteration: Chris@16: // Chris@16: template Chris@16: inline mpfr_class erf_inv_imp(const mpfr_class& p, const mpfr_class& q, const Policy&, const boost::mpl::int_<64>*) Chris@16: { Chris@16: BOOST_MATH_STD_USING // for ADL of std names. Chris@16: Chris@16: mpfr_class result = 0; Chris@16: Chris@16: if(p <= 0.5) Chris@16: { Chris@16: // Chris@16: // Evaluate inverse erf using the rational approximation: Chris@16: // Chris@16: // x = p(p+10)(Y+R(p)) Chris@16: // Chris@16: // Where Y is a constant, and R(p) is optimised for a low Chris@16: // absolute empfr_classor compared to |Y|. Chris@16: // Chris@16: // double: Max empfr_classor found: 2.001849e-18 Chris@16: // long double: Max empfr_classor found: 1.017064e-20 Chris@16: // Maximum Deviation Found (actual empfr_classor term at infinite precision) 8.030e-21 Chris@16: // Chris@16: static const float Y = 0.0891314744949340820313f; Chris@16: static const mpfr_class P[] = { Chris@16: -0.000508781949658280665617, Chris@16: -0.00836874819741736770379, Chris@16: 0.0334806625409744615033, Chris@16: -0.0126926147662974029034, Chris@16: -0.0365637971411762664006, Chris@16: 0.0219878681111168899165, Chris@16: 0.00822687874676915743155, Chris@16: -0.00538772965071242932965 Chris@16: }; Chris@16: static const mpfr_class Q[] = { Chris@16: 1, Chris@16: -0.970005043303290640362, Chris@16: -1.56574558234175846809, Chris@16: 1.56221558398423026363, Chris@16: 0.662328840472002992063, Chris@16: -0.71228902341542847553, Chris@16: -0.0527396382340099713954, Chris@16: 0.0795283687341571680018, Chris@16: -0.00233393759374190016776, Chris@16: 0.000886216390456424707504 Chris@16: }; Chris@16: mpfr_class g = p * (p + 10); Chris@16: mpfr_class r = tools::evaluate_polynomial(P, p) / tools::evaluate_polynomial(Q, p); Chris@16: result = g * Y + g * r; Chris@16: } Chris@16: else if(q >= 0.25) Chris@16: { Chris@16: // Chris@16: // Rational approximation for 0.5 > q >= 0.25 Chris@16: // Chris@16: // x = sqrt(-2*log(q)) / (Y + R(q)) Chris@16: // Chris@16: // Where Y is a constant, and R(q) is optimised for a low Chris@16: // absolute empfr_classor compared to Y. Chris@16: // Chris@16: // double : Max empfr_classor found: 7.403372e-17 Chris@16: // long double : Max empfr_classor found: 6.084616e-20 Chris@16: // Maximum Deviation Found (empfr_classor term) 4.811e-20 Chris@16: // Chris@16: static const float Y = 2.249481201171875f; Chris@16: static const mpfr_class P[] = { Chris@16: -0.202433508355938759655, Chris@16: 0.105264680699391713268, Chris@16: 8.37050328343119927838, Chris@16: 17.6447298408374015486, Chris@16: -18.8510648058714251895, Chris@16: -44.6382324441786960818, Chris@16: 17.445385985570866523, Chris@16: 21.1294655448340526258, Chris@16: -3.67192254707729348546 Chris@16: }; Chris@16: static const mpfr_class Q[] = { Chris@16: 1, Chris@16: 6.24264124854247537712, Chris@16: 3.9713437953343869095, Chris@16: -28.6608180499800029974, Chris@16: -20.1432634680485188801, Chris@16: 48.5609213108739935468, Chris@16: 10.8268667355460159008, Chris@16: -22.6436933413139721736, Chris@16: 1.72114765761200282724 Chris@16: }; Chris@16: mpfr_class g = sqrt(-2 * log(q)); Chris@16: mpfr_class xs = q - 0.25; Chris@16: mpfr_class r = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs); Chris@16: result = g / (Y + r); Chris@16: } Chris@16: else Chris@16: { Chris@16: // Chris@16: // For q < 0.25 we have a series of rational approximations all Chris@16: // of the general form: Chris@16: // Chris@16: // let: x = sqrt(-log(q)) Chris@16: // Chris@16: // Then the result is given by: Chris@16: // Chris@16: // x(Y+R(x-B)) Chris@16: // Chris@16: // where Y is a constant, B is the lowest value of x for which Chris@16: // the approximation is valid, and R(x-B) is optimised for a low Chris@16: // absolute empfr_classor compared to Y. Chris@16: // Chris@16: // Note that almost all code will really go through the first Chris@16: // or maybe second approximation. After than we're dealing with very Chris@16: // small input values indeed: 80 and 128 bit long double's go all the Chris@16: // way down to ~ 1e-5000 so the "tail" is rather long... Chris@16: // Chris@16: mpfr_class x = sqrt(-log(q)); Chris@16: if(x < 3) Chris@16: { Chris@16: // Max empfr_classor found: 1.089051e-20 Chris@16: static const float Y = 0.807220458984375f; Chris@16: static const mpfr_class P[] = { Chris@16: -0.131102781679951906451, Chris@16: -0.163794047193317060787, Chris@16: 0.117030156341995252019, Chris@16: 0.387079738972604337464, Chris@16: 0.337785538912035898924, Chris@16: 0.142869534408157156766, Chris@16: 0.0290157910005329060432, Chris@16: 0.00214558995388805277169, Chris@16: -0.679465575181126350155e-6, Chris@16: 0.285225331782217055858e-7, Chris@16: -0.681149956853776992068e-9 Chris@16: }; Chris@16: static const mpfr_class Q[] = { Chris@16: 1, Chris@16: 3.46625407242567245975, Chris@16: 5.38168345707006855425, Chris@16: 4.77846592945843778382, Chris@16: 2.59301921623620271374, Chris@16: 0.848854343457902036425, Chris@16: 0.152264338295331783612, Chris@16: 0.01105924229346489121 Chris@16: }; Chris@16: mpfr_class xs = x - 1.125; Chris@16: mpfr_class R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs); Chris@16: result = Y * x + R * x; Chris@16: } Chris@16: else if(x < 6) Chris@16: { Chris@16: // Max empfr_classor found: 8.389174e-21 Chris@16: static const float Y = 0.93995571136474609375f; Chris@16: static const mpfr_class P[] = { Chris@16: -0.0350353787183177984712, Chris@16: -0.00222426529213447927281, Chris@16: 0.0185573306514231072324, Chris@16: 0.00950804701325919603619, Chris@16: 0.00187123492819559223345, Chris@16: 0.000157544617424960554631, Chris@16: 0.460469890584317994083e-5, Chris@16: -0.230404776911882601748e-9, Chris@16: 0.266339227425782031962e-11 Chris@16: }; Chris@16: static const mpfr_class Q[] = { Chris@16: 1, Chris@16: 1.3653349817554063097, Chris@16: 0.762059164553623404043, Chris@16: 0.220091105764131249824, Chris@16: 0.0341589143670947727934, Chris@16: 0.00263861676657015992959, Chris@16: 0.764675292302794483503e-4 Chris@16: }; Chris@16: mpfr_class xs = x - 3; Chris@16: mpfr_class R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs); Chris@16: result = Y * x + R * x; Chris@16: } Chris@16: else if(x < 18) Chris@16: { Chris@16: // Max empfr_classor found: 1.481312e-19 Chris@16: static const float Y = 0.98362827301025390625f; Chris@16: static const mpfr_class P[] = { Chris@16: -0.0167431005076633737133, Chris@16: -0.00112951438745580278863, Chris@16: 0.00105628862152492910091, Chris@16: 0.000209386317487588078668, Chris@16: 0.149624783758342370182e-4, Chris@16: 0.449696789927706453732e-6, Chris@16: 0.462596163522878599135e-8, Chris@16: -0.281128735628831791805e-13, Chris@16: 0.99055709973310326855e-16 Chris@16: }; Chris@16: static const mpfr_class Q[] = { Chris@16: 1, Chris@16: 0.591429344886417493481, Chris@16: 0.138151865749083321638, Chris@16: 0.0160746087093676504695, Chris@16: 0.000964011807005165528527, Chris@16: 0.275335474764726041141e-4, Chris@16: 0.282243172016108031869e-6 Chris@16: }; Chris@16: mpfr_class xs = x - 6; Chris@16: mpfr_class R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs); Chris@16: result = Y * x + R * x; Chris@16: } Chris@16: else if(x < 44) Chris@16: { Chris@16: // Max empfr_classor found: 5.697761e-20 Chris@16: static const float Y = 0.99714565277099609375f; Chris@16: static const mpfr_class P[] = { Chris@16: -0.0024978212791898131227, Chris@16: -0.779190719229053954292e-5, Chris@16: 0.254723037413027451751e-4, Chris@16: 0.162397777342510920873e-5, Chris@16: 0.396341011304801168516e-7, Chris@16: 0.411632831190944208473e-9, Chris@16: 0.145596286718675035587e-11, Chris@16: -0.116765012397184275695e-17 Chris@16: }; Chris@16: static const mpfr_class Q[] = { Chris@16: 1, Chris@16: 0.207123112214422517181, Chris@16: 0.0169410838120975906478, Chris@16: 0.000690538265622684595676, Chris@16: 0.145007359818232637924e-4, Chris@16: 0.144437756628144157666e-6, Chris@16: 0.509761276599778486139e-9 Chris@16: }; Chris@16: mpfr_class xs = x - 18; Chris@16: mpfr_class R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs); Chris@16: result = Y * x + R * x; Chris@16: } Chris@16: else Chris@16: { Chris@16: // Max empfr_classor found: 1.279746e-20 Chris@16: static const float Y = 0.99941349029541015625f; Chris@16: static const mpfr_class P[] = { Chris@16: -0.000539042911019078575891, Chris@16: -0.28398759004727721098e-6, Chris@16: 0.899465114892291446442e-6, Chris@16: 0.229345859265920864296e-7, Chris@16: 0.225561444863500149219e-9, Chris@16: 0.947846627503022684216e-12, Chris@16: 0.135880130108924861008e-14, Chris@16: -0.348890393399948882918e-21 Chris@16: }; Chris@16: static const mpfr_class Q[] = { Chris@16: 1, Chris@16: 0.0845746234001899436914, Chris@16: 0.00282092984726264681981, Chris@16: 0.468292921940894236786e-4, Chris@16: 0.399968812193862100054e-6, Chris@16: 0.161809290887904476097e-8, Chris@16: 0.231558608310259605225e-11 Chris@16: }; Chris@16: mpfr_class xs = x - 44; Chris@16: mpfr_class R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs); Chris@16: result = Y * x + R * x; Chris@16: } Chris@16: } Chris@16: return result; Chris@16: } Chris@16: Chris@16: inline mpfr_class bessel_i0(mpfr_class x) Chris@16: { Chris@16: static const mpfr_class P1[] = { Chris@16: boost::lexical_cast("-2.2335582639474375249e+15"), Chris@16: boost::lexical_cast("-5.5050369673018427753e+14"), Chris@16: boost::lexical_cast("-3.2940087627407749166e+13"), Chris@16: boost::lexical_cast("-8.4925101247114157499e+11"), Chris@16: boost::lexical_cast("-1.1912746104985237192e+10"), Chris@16: boost::lexical_cast("-1.0313066708737980747e+08"), Chris@16: boost::lexical_cast("-5.9545626019847898221e+05"), Chris@16: boost::lexical_cast("-2.4125195876041896775e+03"), Chris@16: boost::lexical_cast("-7.0935347449210549190e+00"), Chris@16: boost::lexical_cast("-1.5453977791786851041e-02"), Chris@16: boost::lexical_cast("-2.5172644670688975051e-05"), Chris@16: boost::lexical_cast("-3.0517226450451067446e-08"), Chris@16: boost::lexical_cast("-2.6843448573468483278e-11"), Chris@16: boost::lexical_cast("-1.5982226675653184646e-14"), Chris@16: boost::lexical_cast("-5.2487866627945699800e-18"), Chris@16: }; Chris@16: static const mpfr_class Q1[] = { Chris@16: boost::lexical_cast("-2.2335582639474375245e+15"), Chris@16: boost::lexical_cast("7.8858692566751002988e+12"), Chris@16: boost::lexical_cast("-1.2207067397808979846e+10"), Chris@16: boost::lexical_cast("1.0377081058062166144e+07"), Chris@16: boost::lexical_cast("-4.8527560179962773045e+03"), Chris@16: boost::lexical_cast("1.0"), Chris@16: }; Chris@16: static const mpfr_class P2[] = { Chris@16: boost::lexical_cast("-2.2210262233306573296e-04"), Chris@16: boost::lexical_cast("1.3067392038106924055e-02"), Chris@16: boost::lexical_cast("-4.4700805721174453923e-01"), Chris@16: boost::lexical_cast("5.5674518371240761397e+00"), Chris@16: boost::lexical_cast("-2.3517945679239481621e+01"), Chris@16: boost::lexical_cast("3.1611322818701131207e+01"), Chris@16: boost::lexical_cast("-9.6090021968656180000e+00"), Chris@16: }; Chris@16: static const mpfr_class Q2[] = { Chris@16: boost::lexical_cast("-5.5194330231005480228e-04"), Chris@16: boost::lexical_cast("3.2547697594819615062e-02"), Chris@16: boost::lexical_cast("-1.1151759188741312645e+00"), Chris@16: boost::lexical_cast("1.3982595353892851542e+01"), Chris@16: boost::lexical_cast("-6.0228002066743340583e+01"), Chris@16: boost::lexical_cast("8.5539563258012929600e+01"), Chris@16: boost::lexical_cast("-3.1446690275135491500e+01"), Chris@16: boost::lexical_cast("1.0"), Chris@16: }; Chris@16: mpfr_class value, factor, r; Chris@16: Chris@16: BOOST_MATH_STD_USING Chris@16: using namespace boost::math::tools; Chris@16: Chris@16: if (x < 0) Chris@16: { Chris@16: x = -x; // even function Chris@16: } Chris@16: if (x == 0) Chris@16: { Chris@16: return static_cast(1); Chris@16: } Chris@16: if (x <= 15) // x in (0, 15] Chris@16: { Chris@16: mpfr_class y = x * x; Chris@16: value = evaluate_polynomial(P1, y) / evaluate_polynomial(Q1, y); Chris@16: } Chris@16: else // x in (15, \infty) Chris@16: { Chris@16: mpfr_class y = 1 / x - mpfr_class(1) / 15; Chris@16: r = evaluate_polynomial(P2, y) / evaluate_polynomial(Q2, y); Chris@16: factor = exp(x) / sqrt(x); Chris@16: value = factor * r; Chris@16: } Chris@16: Chris@16: return value; Chris@16: } Chris@16: Chris@16: inline mpfr_class bessel_i1(mpfr_class x) Chris@16: { Chris@16: static const mpfr_class P1[] = { Chris@16: static_cast("-1.4577180278143463643e+15"), Chris@16: static_cast("-1.7732037840791591320e+14"), Chris@16: static_cast("-6.9876779648010090070e+12"), Chris@16: static_cast("-1.3357437682275493024e+11"), Chris@16: static_cast("-1.4828267606612366099e+09"), Chris@16: static_cast("-1.0588550724769347106e+07"), Chris@16: static_cast("-5.1894091982308017540e+04"), Chris@16: static_cast("-1.8225946631657315931e+02"), Chris@16: static_cast("-4.7207090827310162436e-01"), Chris@16: static_cast("-9.1746443287817501309e-04"), Chris@16: static_cast("-1.3466829827635152875e-06"), Chris@16: static_cast("-1.4831904935994647675e-09"), Chris@16: static_cast("-1.1928788903603238754e-12"), Chris@16: static_cast("-6.5245515583151902910e-16"), Chris@16: static_cast("-1.9705291802535139930e-19"), Chris@16: }; Chris@16: static const mpfr_class Q1[] = { Chris@16: static_cast("-2.9154360556286927285e+15"), Chris@16: static_cast("9.7887501377547640438e+12"), Chris@16: static_cast("-1.4386907088588283434e+10"), Chris@16: static_cast("1.1594225856856884006e+07"), Chris@16: static_cast("-5.1326864679904189920e+03"), Chris@16: static_cast("1.0"), Chris@16: }; Chris@16: static const mpfr_class P2[] = { Chris@16: static_cast("1.4582087408985668208e-05"), Chris@16: static_cast("-8.9359825138577646443e-04"), Chris@16: static_cast("2.9204895411257790122e-02"), Chris@16: static_cast("-3.4198728018058047439e-01"), Chris@16: static_cast("1.3960118277609544334e+00"), Chris@16: static_cast("-1.9746376087200685843e+00"), Chris@16: static_cast("8.5591872901933459000e-01"), Chris@16: static_cast("-6.0437159056137599999e-02"), Chris@16: }; Chris@16: static const mpfr_class Q2[] = { Chris@16: static_cast("3.7510433111922824643e-05"), Chris@16: static_cast("-2.2835624489492512649e-03"), Chris@16: static_cast("7.4212010813186530069e-02"), Chris@16: static_cast("-8.5017476463217924408e-01"), Chris@16: static_cast("3.2593714889036996297e+00"), Chris@16: static_cast("-3.8806586721556593450e+00"), Chris@16: static_cast("1.0"), Chris@16: }; Chris@16: mpfr_class value, factor, r, w; Chris@16: Chris@16: BOOST_MATH_STD_USING Chris@16: using namespace boost::math::tools; Chris@16: Chris@16: w = abs(x); Chris@16: if (x == 0) Chris@16: { Chris@16: return static_cast(0); Chris@16: } Chris@16: if (w <= 15) // w in (0, 15] Chris@16: { Chris@16: mpfr_class y = x * x; Chris@16: r = evaluate_polynomial(P1, y) / evaluate_polynomial(Q1, y); Chris@16: factor = w; Chris@16: value = factor * r; Chris@16: } Chris@16: else // w in (15, \infty) Chris@16: { Chris@16: mpfr_class y = 1 / w - mpfr_class(1) / 15; Chris@16: r = evaluate_polynomial(P2, y) / evaluate_polynomial(Q2, y); Chris@16: factor = exp(w) / sqrt(w); Chris@16: value = factor * r; Chris@16: } Chris@16: Chris@16: if (x < 0) Chris@16: { Chris@16: value *= -value; // odd function Chris@16: } Chris@16: return value; Chris@16: } Chris@16: Chris@16: } // namespace detail Chris@16: Chris@16: } Chris@16: Chris@16: template<> struct is_convertible : public mpl::false_{}; Chris@16: Chris@16: } Chris@16: Chris@16: #endif // BOOST_MATH_MPLFR_BINDINGS_HPP Chris@16: