Chris@16
|
1 // Copyright John Maddock 2008.
|
Chris@16
|
2 // Use, modification and distribution are subject to the
|
Chris@16
|
3 // Boost Software License, Version 1.0. (See accompanying file
|
Chris@16
|
4 // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
Chris@16
|
5 //
|
Chris@16
|
6 // Wrapper that works with mpfr_class defined in gmpfrxx.h
|
Chris@16
|
7 // See http://math.berkeley.edu/~wilken/code/gmpfrxx/
|
Chris@16
|
8 // Also requires the gmp and mpfr libraries.
|
Chris@16
|
9 //
|
Chris@16
|
10
|
Chris@16
|
11 #ifndef BOOST_MATH_MPLFR_BINDINGS_HPP
|
Chris@16
|
12 #define BOOST_MATH_MPLFR_BINDINGS_HPP
|
Chris@16
|
13
|
Chris@16
|
14 #include <boost/config.hpp>
|
Chris@16
|
15 #include <boost/lexical_cast.hpp>
|
Chris@16
|
16
|
Chris@16
|
17 #ifdef BOOST_MSVC
|
Chris@16
|
18 //
|
Chris@16
|
19 // We get a lot of warnings from the gmp, mpfr and gmpfrxx headers,
|
Chris@16
|
20 // disable them here, so we only see warnings from *our* code:
|
Chris@16
|
21 //
|
Chris@16
|
22 #pragma warning(push)
|
Chris@16
|
23 #pragma warning(disable: 4127 4800 4512)
|
Chris@16
|
24 #endif
|
Chris@16
|
25
|
Chris@16
|
26 #include <gmpfrxx.h>
|
Chris@16
|
27
|
Chris@16
|
28 #ifdef BOOST_MSVC
|
Chris@16
|
29 #pragma warning(pop)
|
Chris@16
|
30 #endif
|
Chris@16
|
31
|
Chris@16
|
32 #include <boost/math/tools/precision.hpp>
|
Chris@16
|
33 #include <boost/math/tools/real_cast.hpp>
|
Chris@16
|
34 #include <boost/math/policies/policy.hpp>
|
Chris@16
|
35 #include <boost/math/distributions/fwd.hpp>
|
Chris@16
|
36 #include <boost/math/special_functions/math_fwd.hpp>
|
Chris@16
|
37 #include <boost/math/bindings/detail/big_digamma.hpp>
|
Chris@16
|
38 #include <boost/math/bindings/detail/big_lanczos.hpp>
|
Chris@16
|
39
|
Chris@16
|
40 inline mpfr_class fabs(const mpfr_class& v)
|
Chris@16
|
41 {
|
Chris@16
|
42 return abs(v);
|
Chris@16
|
43 }
|
Chris@16
|
44 template <class T, class U>
|
Chris@16
|
45 inline mpfr_class fabs(const __gmp_expr<T,U>& v)
|
Chris@16
|
46 {
|
Chris@16
|
47 return abs(static_cast<mpfr_class>(v));
|
Chris@16
|
48 }
|
Chris@16
|
49
|
Chris@16
|
50 inline mpfr_class pow(const mpfr_class& b, const mpfr_class& e)
|
Chris@16
|
51 {
|
Chris@16
|
52 mpfr_class result;
|
Chris@16
|
53 mpfr_pow(result.__get_mp(), b.__get_mp(), e.__get_mp(), GMP_RNDN);
|
Chris@16
|
54 return result;
|
Chris@16
|
55 }
|
Chris@16
|
56 /*
|
Chris@16
|
57 template <class T, class U, class V, class W>
|
Chris@16
|
58 inline mpfr_class pow(const __gmp_expr<T,U>& b, const __gmp_expr<V,W>& e)
|
Chris@16
|
59 {
|
Chris@16
|
60 return pow(static_cast<mpfr_class>(b), static_cast<mpfr_class>(e));
|
Chris@16
|
61 }
|
Chris@16
|
62 */
|
Chris@16
|
63 inline mpfr_class ldexp(const mpfr_class& v, int e)
|
Chris@16
|
64 {
|
Chris@16
|
65 //int e = mpfr_get_exp(*v.__get_mp());
|
Chris@16
|
66 mpfr_class result(v);
|
Chris@16
|
67 mpfr_set_exp(result.__get_mp(), e);
|
Chris@16
|
68 return result;
|
Chris@16
|
69 }
|
Chris@16
|
70 template <class T, class U>
|
Chris@16
|
71 inline mpfr_class ldexp(const __gmp_expr<T,U>& v, int e)
|
Chris@16
|
72 {
|
Chris@16
|
73 return ldexp(static_cast<mpfr_class>(v), e);
|
Chris@16
|
74 }
|
Chris@16
|
75
|
Chris@16
|
76 inline mpfr_class frexp(const mpfr_class& v, int* expon)
|
Chris@16
|
77 {
|
Chris@16
|
78 int e = mpfr_get_exp(v.__get_mp());
|
Chris@16
|
79 mpfr_class result(v);
|
Chris@16
|
80 mpfr_set_exp(result.__get_mp(), 0);
|
Chris@16
|
81 *expon = e;
|
Chris@16
|
82 return result;
|
Chris@16
|
83 }
|
Chris@16
|
84 template <class T, class U>
|
Chris@16
|
85 inline mpfr_class frexp(const __gmp_expr<T,U>& v, int* expon)
|
Chris@16
|
86 {
|
Chris@16
|
87 return frexp(static_cast<mpfr_class>(v), expon);
|
Chris@16
|
88 }
|
Chris@16
|
89
|
Chris@16
|
90 inline mpfr_class fmod(const mpfr_class& v1, const mpfr_class& v2)
|
Chris@16
|
91 {
|
Chris@16
|
92 mpfr_class n;
|
Chris@16
|
93 if(v1 < 0)
|
Chris@16
|
94 n = ceil(v1 / v2);
|
Chris@16
|
95 else
|
Chris@16
|
96 n = floor(v1 / v2);
|
Chris@16
|
97 return v1 - n * v2;
|
Chris@16
|
98 }
|
Chris@16
|
99 template <class T, class U, class V, class W>
|
Chris@16
|
100 inline mpfr_class fmod(const __gmp_expr<T,U>& v1, const __gmp_expr<V,W>& v2)
|
Chris@16
|
101 {
|
Chris@16
|
102 return fmod(static_cast<mpfr_class>(v1), static_cast<mpfr_class>(v2));
|
Chris@16
|
103 }
|
Chris@16
|
104
|
Chris@16
|
105 template <class Policy>
|
Chris@16
|
106 inline mpfr_class modf(const mpfr_class& v, long long* ipart, const Policy& pol)
|
Chris@16
|
107 {
|
Chris@16
|
108 *ipart = lltrunc(v, pol);
|
Chris@16
|
109 return v - boost::math::tools::real_cast<mpfr_class>(*ipart);
|
Chris@16
|
110 }
|
Chris@16
|
111 template <class T, class U, class Policy>
|
Chris@16
|
112 inline mpfr_class modf(const __gmp_expr<T,U>& v, long long* ipart, const Policy& pol)
|
Chris@16
|
113 {
|
Chris@16
|
114 return modf(static_cast<mpfr_class>(v), ipart, pol);
|
Chris@16
|
115 }
|
Chris@16
|
116
|
Chris@16
|
117 template <class Policy>
|
Chris@16
|
118 inline int iround(mpfr_class const& x, const Policy&)
|
Chris@16
|
119 {
|
Chris@16
|
120 return boost::math::tools::real_cast<int>(boost::math::round(x, typename boost::math::policies::normalise<Policy, boost::math::policies::rounding_error< boost::math::policies::throw_on_error> >::type()));
|
Chris@16
|
121 }
|
Chris@16
|
122 template <class T, class U, class Policy>
|
Chris@16
|
123 inline int iround(__gmp_expr<T,U> const& x, const Policy& pol)
|
Chris@16
|
124 {
|
Chris@16
|
125 return iround(static_cast<mpfr_class>(x), pol);
|
Chris@16
|
126 }
|
Chris@16
|
127
|
Chris@16
|
128 template <class Policy>
|
Chris@16
|
129 inline long lround(mpfr_class const& x, const Policy&)
|
Chris@16
|
130 {
|
Chris@16
|
131 return boost::math::tools::real_cast<long>(boost::math::round(x, typename boost::math::policies::normalise<Policy, boost::math::policies::rounding_error< boost::math::policies::throw_on_error> >::type()));
|
Chris@16
|
132 }
|
Chris@16
|
133 template <class T, class U, class Policy>
|
Chris@16
|
134 inline long lround(__gmp_expr<T,U> const& x, const Policy& pol)
|
Chris@16
|
135 {
|
Chris@16
|
136 return lround(static_cast<mpfr_class>(x), pol);
|
Chris@16
|
137 }
|
Chris@16
|
138
|
Chris@16
|
139 template <class Policy>
|
Chris@16
|
140 inline long long llround(mpfr_class const& x, const Policy&)
|
Chris@16
|
141 {
|
Chris@16
|
142 return boost::math::tools::real_cast<long long>(boost::math::round(x, typename boost::math::policies::normalise<Policy, boost::math::policies::rounding_error< boost::math::policies::throw_on_error> >::type()));
|
Chris@16
|
143 }
|
Chris@16
|
144 template <class T, class U, class Policy>
|
Chris@16
|
145 inline long long llround(__gmp_expr<T,U> const& x, const Policy& pol)
|
Chris@16
|
146 {
|
Chris@16
|
147 return llround(static_cast<mpfr_class>(x), pol);
|
Chris@16
|
148 }
|
Chris@16
|
149
|
Chris@16
|
150 template <class Policy>
|
Chris@16
|
151 inline int itrunc(mpfr_class const& x, const Policy&)
|
Chris@16
|
152 {
|
Chris@16
|
153 return boost::math::tools::real_cast<int>(boost::math::trunc(x, typename boost::math::policies::normalise<Policy, boost::math::policies::rounding_error< boost::math::policies::throw_on_error> >::type()));
|
Chris@16
|
154 }
|
Chris@16
|
155 template <class T, class U, class Policy>
|
Chris@16
|
156 inline int itrunc(__gmp_expr<T,U> const& x, const Policy& pol)
|
Chris@16
|
157 {
|
Chris@16
|
158 return itrunc(static_cast<mpfr_class>(x), pol);
|
Chris@16
|
159 }
|
Chris@16
|
160
|
Chris@16
|
161 template <class Policy>
|
Chris@16
|
162 inline long ltrunc(mpfr_class const& x, const Policy&)
|
Chris@16
|
163 {
|
Chris@16
|
164 return boost::math::tools::real_cast<long>(boost::math::trunc(x, typename boost::math::policies::normalise<Policy, boost::math::policies::rounding_error< boost::math::policies::throw_on_error> >::type()));
|
Chris@16
|
165 }
|
Chris@16
|
166 template <class T, class U, class Policy>
|
Chris@16
|
167 inline long ltrunc(__gmp_expr<T,U> const& x, const Policy& pol)
|
Chris@16
|
168 {
|
Chris@16
|
169 return ltrunc(static_cast<mpfr_class>(x), pol);
|
Chris@16
|
170 }
|
Chris@16
|
171
|
Chris@16
|
172 template <class Policy>
|
Chris@16
|
173 inline long long lltrunc(mpfr_class const& x, const Policy&)
|
Chris@16
|
174 {
|
Chris@16
|
175 return boost::math::tools::real_cast<long long>(boost::math::trunc(x, typename boost::math::policies::normalise<Policy, boost::math::policies::rounding_error< boost::math::policies::throw_on_error> >::type()));
|
Chris@16
|
176 }
|
Chris@16
|
177 template <class T, class U, class Policy>
|
Chris@16
|
178 inline long long lltrunc(__gmp_expr<T,U> const& x, const Policy& pol)
|
Chris@16
|
179 {
|
Chris@16
|
180 return lltrunc(static_cast<mpfr_class>(x), pol);
|
Chris@16
|
181 }
|
Chris@16
|
182
|
Chris@16
|
183 namespace boost{ namespace math{
|
Chris@16
|
184
|
Chris@16
|
185 #if defined(__GNUC__) && (__GNUC__ < 4)
|
Chris@16
|
186 using ::iround;
|
Chris@16
|
187 using ::lround;
|
Chris@16
|
188 using ::llround;
|
Chris@16
|
189 using ::itrunc;
|
Chris@16
|
190 using ::ltrunc;
|
Chris@16
|
191 using ::lltrunc;
|
Chris@16
|
192 using ::modf;
|
Chris@16
|
193 #endif
|
Chris@16
|
194
|
Chris@16
|
195 namespace lanczos{
|
Chris@16
|
196
|
Chris@16
|
197 struct mpfr_lanczos
|
Chris@16
|
198 {
|
Chris@16
|
199 static mpfr_class lanczos_sum(const mpfr_class& z)
|
Chris@16
|
200 {
|
Chris@16
|
201 unsigned long p = z.get_dprec();
|
Chris@16
|
202 if(p <= 72)
|
Chris@16
|
203 return lanczos13UDT::lanczos_sum(z);
|
Chris@16
|
204 else if(p <= 120)
|
Chris@16
|
205 return lanczos22UDT::lanczos_sum(z);
|
Chris@16
|
206 else if(p <= 170)
|
Chris@16
|
207 return lanczos31UDT::lanczos_sum(z);
|
Chris@16
|
208 else //if(p <= 370) approx 100 digit precision:
|
Chris@16
|
209 return lanczos61UDT::lanczos_sum(z);
|
Chris@16
|
210 }
|
Chris@16
|
211 static mpfr_class lanczos_sum_expG_scaled(const mpfr_class& z)
|
Chris@16
|
212 {
|
Chris@16
|
213 unsigned long p = z.get_dprec();
|
Chris@16
|
214 if(p <= 72)
|
Chris@16
|
215 return lanczos13UDT::lanczos_sum_expG_scaled(z);
|
Chris@16
|
216 else if(p <= 120)
|
Chris@16
|
217 return lanczos22UDT::lanczos_sum_expG_scaled(z);
|
Chris@16
|
218 else if(p <= 170)
|
Chris@16
|
219 return lanczos31UDT::lanczos_sum_expG_scaled(z);
|
Chris@16
|
220 else //if(p <= 370) approx 100 digit precision:
|
Chris@16
|
221 return lanczos61UDT::lanczos_sum_expG_scaled(z);
|
Chris@16
|
222 }
|
Chris@16
|
223 static mpfr_class lanczos_sum_near_1(const mpfr_class& z)
|
Chris@16
|
224 {
|
Chris@16
|
225 unsigned long p = z.get_dprec();
|
Chris@16
|
226 if(p <= 72)
|
Chris@16
|
227 return lanczos13UDT::lanczos_sum_near_1(z);
|
Chris@16
|
228 else if(p <= 120)
|
Chris@16
|
229 return lanczos22UDT::lanczos_sum_near_1(z);
|
Chris@16
|
230 else if(p <= 170)
|
Chris@16
|
231 return lanczos31UDT::lanczos_sum_near_1(z);
|
Chris@16
|
232 else //if(p <= 370) approx 100 digit precision:
|
Chris@16
|
233 return lanczos61UDT::lanczos_sum_near_1(z);
|
Chris@16
|
234 }
|
Chris@16
|
235 static mpfr_class lanczos_sum_near_2(const mpfr_class& z)
|
Chris@16
|
236 {
|
Chris@16
|
237 unsigned long p = z.get_dprec();
|
Chris@16
|
238 if(p <= 72)
|
Chris@16
|
239 return lanczos13UDT::lanczos_sum_near_2(z);
|
Chris@16
|
240 else if(p <= 120)
|
Chris@16
|
241 return lanczos22UDT::lanczos_sum_near_2(z);
|
Chris@16
|
242 else if(p <= 170)
|
Chris@16
|
243 return lanczos31UDT::lanczos_sum_near_2(z);
|
Chris@16
|
244 else //if(p <= 370) approx 100 digit precision:
|
Chris@16
|
245 return lanczos61UDT::lanczos_sum_near_2(z);
|
Chris@16
|
246 }
|
Chris@16
|
247 static mpfr_class g()
|
Chris@16
|
248 {
|
Chris@16
|
249 unsigned long p = mpfr_class::get_dprec();
|
Chris@16
|
250 if(p <= 72)
|
Chris@16
|
251 return lanczos13UDT::g();
|
Chris@16
|
252 else if(p <= 120)
|
Chris@16
|
253 return lanczos22UDT::g();
|
Chris@16
|
254 else if(p <= 170)
|
Chris@16
|
255 return lanczos31UDT::g();
|
Chris@16
|
256 else //if(p <= 370) approx 100 digit precision:
|
Chris@16
|
257 return lanczos61UDT::g();
|
Chris@16
|
258 }
|
Chris@16
|
259 };
|
Chris@16
|
260
|
Chris@16
|
261 template<class Policy>
|
Chris@16
|
262 struct lanczos<mpfr_class, Policy>
|
Chris@16
|
263 {
|
Chris@16
|
264 typedef mpfr_lanczos type;
|
Chris@16
|
265 };
|
Chris@16
|
266
|
Chris@16
|
267 } // namespace lanczos
|
Chris@16
|
268
|
Chris@16
|
269 namespace constants{
|
Chris@16
|
270
|
Chris@16
|
271 template <class Real, class Policy>
|
Chris@16
|
272 struct construction_traits;
|
Chris@16
|
273
|
Chris@16
|
274 template <class Policy>
|
Chris@16
|
275 struct construction_traits<mpfr_class, Policy>
|
Chris@16
|
276 {
|
Chris@16
|
277 typedef mpl::int_<0> type;
|
Chris@16
|
278 };
|
Chris@16
|
279
|
Chris@16
|
280 }
|
Chris@16
|
281
|
Chris@16
|
282 namespace tools
|
Chris@16
|
283 {
|
Chris@16
|
284
|
Chris@16
|
285 template <class T, class U>
|
Chris@16
|
286 struct promote_arg<__gmp_expr<T,U> >
|
Chris@16
|
287 { // If T is integral type, then promote to double.
|
Chris@16
|
288 typedef mpfr_class type;
|
Chris@16
|
289 };
|
Chris@16
|
290
|
Chris@16
|
291 template<>
|
Chris@16
|
292 inline int digits<mpfr_class>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpfr_class))
|
Chris@16
|
293 {
|
Chris@16
|
294 return mpfr_class::get_dprec();
|
Chris@16
|
295 }
|
Chris@16
|
296
|
Chris@16
|
297 namespace detail{
|
Chris@16
|
298
|
Chris@16
|
299 template<class I>
|
Chris@16
|
300 void convert_to_long_result(mpfr_class const& r, I& result)
|
Chris@16
|
301 {
|
Chris@16
|
302 result = 0;
|
Chris@16
|
303 I last_result(0);
|
Chris@16
|
304 mpfr_class t(r);
|
Chris@16
|
305 double term;
|
Chris@16
|
306 do
|
Chris@16
|
307 {
|
Chris@16
|
308 term = real_cast<double>(t);
|
Chris@16
|
309 last_result = result;
|
Chris@16
|
310 result += static_cast<I>(term);
|
Chris@16
|
311 t -= term;
|
Chris@16
|
312 }while(result != last_result);
|
Chris@16
|
313 }
|
Chris@16
|
314
|
Chris@16
|
315 }
|
Chris@16
|
316
|
Chris@16
|
317 template <>
|
Chris@16
|
318 inline mpfr_class real_cast<mpfr_class, long long>(long long t)
|
Chris@16
|
319 {
|
Chris@16
|
320 mpfr_class result;
|
Chris@16
|
321 int expon = 0;
|
Chris@16
|
322 int sign = 1;
|
Chris@16
|
323 if(t < 0)
|
Chris@16
|
324 {
|
Chris@16
|
325 sign = -1;
|
Chris@16
|
326 t = -t;
|
Chris@16
|
327 }
|
Chris@16
|
328 while(t)
|
Chris@16
|
329 {
|
Chris@16
|
330 result += ldexp((double)(t & 0xffffL), expon);
|
Chris@16
|
331 expon += 32;
|
Chris@16
|
332 t >>= 32;
|
Chris@16
|
333 }
|
Chris@16
|
334 return result * sign;
|
Chris@16
|
335 }
|
Chris@16
|
336 template <>
|
Chris@16
|
337 inline unsigned real_cast<unsigned, mpfr_class>(mpfr_class t)
|
Chris@16
|
338 {
|
Chris@16
|
339 return t.get_ui();
|
Chris@16
|
340 }
|
Chris@16
|
341 template <>
|
Chris@16
|
342 inline int real_cast<int, mpfr_class>(mpfr_class t)
|
Chris@16
|
343 {
|
Chris@16
|
344 return t.get_si();
|
Chris@16
|
345 }
|
Chris@16
|
346 template <>
|
Chris@16
|
347 inline double real_cast<double, mpfr_class>(mpfr_class t)
|
Chris@16
|
348 {
|
Chris@16
|
349 return t.get_d();
|
Chris@16
|
350 }
|
Chris@16
|
351 template <>
|
Chris@16
|
352 inline float real_cast<float, mpfr_class>(mpfr_class t)
|
Chris@16
|
353 {
|
Chris@16
|
354 return static_cast<float>(t.get_d());
|
Chris@16
|
355 }
|
Chris@16
|
356 template <>
|
Chris@16
|
357 inline long real_cast<long, mpfr_class>(mpfr_class t)
|
Chris@16
|
358 {
|
Chris@16
|
359 long result;
|
Chris@16
|
360 detail::convert_to_long_result(t, result);
|
Chris@16
|
361 return result;
|
Chris@16
|
362 }
|
Chris@16
|
363 template <>
|
Chris@16
|
364 inline long long real_cast<long long, mpfr_class>(mpfr_class t)
|
Chris@16
|
365 {
|
Chris@16
|
366 long long result;
|
Chris@16
|
367 detail::convert_to_long_result(t, result);
|
Chris@16
|
368 return result;
|
Chris@16
|
369 }
|
Chris@16
|
370
|
Chris@16
|
371 template <>
|
Chris@16
|
372 inline mpfr_class max_value<mpfr_class>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpfr_class))
|
Chris@16
|
373 {
|
Chris@16
|
374 static bool has_init = false;
|
Chris@16
|
375 static mpfr_class val;
|
Chris@16
|
376 if(!has_init)
|
Chris@16
|
377 {
|
Chris@16
|
378 val = 0.5;
|
Chris@16
|
379 mpfr_set_exp(val.__get_mp(), mpfr_get_emax());
|
Chris@16
|
380 has_init = true;
|
Chris@16
|
381 }
|
Chris@16
|
382 return val;
|
Chris@16
|
383 }
|
Chris@16
|
384
|
Chris@16
|
385 template <>
|
Chris@16
|
386 inline mpfr_class min_value<mpfr_class>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpfr_class))
|
Chris@16
|
387 {
|
Chris@16
|
388 static bool has_init = false;
|
Chris@16
|
389 static mpfr_class val;
|
Chris@16
|
390 if(!has_init)
|
Chris@16
|
391 {
|
Chris@16
|
392 val = 0.5;
|
Chris@16
|
393 mpfr_set_exp(val.__get_mp(), mpfr_get_emin());
|
Chris@16
|
394 has_init = true;
|
Chris@16
|
395 }
|
Chris@16
|
396 return val;
|
Chris@16
|
397 }
|
Chris@16
|
398
|
Chris@16
|
399 template <>
|
Chris@16
|
400 inline mpfr_class log_max_value<mpfr_class>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpfr_class))
|
Chris@16
|
401 {
|
Chris@16
|
402 static bool has_init = false;
|
Chris@16
|
403 static mpfr_class val = max_value<mpfr_class>();
|
Chris@16
|
404 if(!has_init)
|
Chris@16
|
405 {
|
Chris@16
|
406 val = log(val);
|
Chris@16
|
407 has_init = true;
|
Chris@16
|
408 }
|
Chris@16
|
409 return val;
|
Chris@16
|
410 }
|
Chris@16
|
411
|
Chris@16
|
412 template <>
|
Chris@16
|
413 inline mpfr_class log_min_value<mpfr_class>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpfr_class))
|
Chris@16
|
414 {
|
Chris@16
|
415 static bool has_init = false;
|
Chris@16
|
416 static mpfr_class val = max_value<mpfr_class>();
|
Chris@16
|
417 if(!has_init)
|
Chris@16
|
418 {
|
Chris@16
|
419 val = log(val);
|
Chris@16
|
420 has_init = true;
|
Chris@16
|
421 }
|
Chris@16
|
422 return val;
|
Chris@16
|
423 }
|
Chris@16
|
424
|
Chris@16
|
425 template <>
|
Chris@16
|
426 inline mpfr_class epsilon<mpfr_class>(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpfr_class))
|
Chris@16
|
427 {
|
Chris@16
|
428 return ldexp(mpfr_class(1), 1-boost::math::policies::digits<mpfr_class, boost::math::policies::policy<> >());
|
Chris@16
|
429 }
|
Chris@16
|
430
|
Chris@16
|
431 } // namespace tools
|
Chris@16
|
432
|
Chris@16
|
433 namespace policies{
|
Chris@16
|
434
|
Chris@16
|
435 template <class T, class U, class Policy>
|
Chris@16
|
436 struct evaluation<__gmp_expr<T, U>, Policy>
|
Chris@16
|
437 {
|
Chris@16
|
438 typedef mpfr_class type;
|
Chris@16
|
439 };
|
Chris@16
|
440
|
Chris@16
|
441 }
|
Chris@16
|
442
|
Chris@16
|
443 template <class Policy>
|
Chris@16
|
444 inline mpfr_class skewness(const extreme_value_distribution<mpfr_class, Policy>& /*dist*/)
|
Chris@16
|
445 {
|
Chris@16
|
446 //
|
Chris@16
|
447 // This is 12 * sqrt(6) * zeta(3) / pi^3:
|
Chris@16
|
448 // See http://mathworld.wolfram.com/ExtremeValueDistribution.html
|
Chris@16
|
449 //
|
Chris@16
|
450 return boost::lexical_cast<mpfr_class>("1.1395470994046486574927930193898461120875997958366");
|
Chris@16
|
451 }
|
Chris@16
|
452
|
Chris@16
|
453 template <class Policy>
|
Chris@16
|
454 inline mpfr_class skewness(const rayleigh_distribution<mpfr_class, Policy>& /*dist*/)
|
Chris@16
|
455 {
|
Chris@16
|
456 // using namespace boost::math::constants;
|
Chris@16
|
457 return boost::lexical_cast<mpfr_class>("0.63111065781893713819189935154422777984404221106391");
|
Chris@16
|
458 // Computed using NTL at 150 bit, about 50 decimal digits.
|
Chris@16
|
459 // return 2 * root_pi<RealType>() * pi_minus_three<RealType>() / pow23_four_minus_pi<RealType>();
|
Chris@16
|
460 }
|
Chris@16
|
461
|
Chris@16
|
462 template <class Policy>
|
Chris@16
|
463 inline mpfr_class kurtosis(const rayleigh_distribution<mpfr_class, Policy>& /*dist*/)
|
Chris@16
|
464 {
|
Chris@16
|
465 // using namespace boost::math::constants;
|
Chris@16
|
466 return boost::lexical_cast<mpfr_class>("3.2450893006876380628486604106197544154170667057995");
|
Chris@16
|
467 // Computed using NTL at 150 bit, about 50 decimal digits.
|
Chris@16
|
468 // return 3 - (6 * pi<RealType>() * pi<RealType>() - 24 * pi<RealType>() + 16) /
|
Chris@16
|
469 // (four_minus_pi<RealType>() * four_minus_pi<RealType>());
|
Chris@16
|
470 }
|
Chris@16
|
471
|
Chris@16
|
472 template <class Policy>
|
Chris@16
|
473 inline mpfr_class kurtosis_excess(const rayleigh_distribution<mpfr_class, Policy>& /*dist*/)
|
Chris@16
|
474 {
|
Chris@16
|
475 //using namespace boost::math::constants;
|
Chris@16
|
476 // Computed using NTL at 150 bit, about 50 decimal digits.
|
Chris@16
|
477 return boost::lexical_cast<mpfr_class>("0.2450893006876380628486604106197544154170667057995");
|
Chris@16
|
478 // return -(6 * pi<RealType>() * pi<RealType>() - 24 * pi<RealType>() + 16) /
|
Chris@16
|
479 // (four_minus_pi<RealType>() * four_minus_pi<RealType>());
|
Chris@16
|
480 } // kurtosis
|
Chris@16
|
481
|
Chris@16
|
482 namespace detail{
|
Chris@16
|
483
|
Chris@16
|
484 //
|
Chris@16
|
485 // Version of Digamma accurate to ~100 decimal digits.
|
Chris@16
|
486 //
|
Chris@16
|
487 template <class Policy>
|
Chris@16
|
488 mpfr_class digamma_imp(mpfr_class x, const mpl::int_<0>* , const Policy& pol)
|
Chris@16
|
489 {
|
Chris@16
|
490 //
|
Chris@16
|
491 // This handles reflection of negative arguments, and all our
|
Chris@16
|
492 // empfr_classor handling, then forwards to the T-specific approximation.
|
Chris@16
|
493 //
|
Chris@16
|
494 BOOST_MATH_STD_USING // ADL of std functions.
|
Chris@16
|
495
|
Chris@16
|
496 mpfr_class result = 0;
|
Chris@16
|
497 //
|
Chris@16
|
498 // Check for negative arguments and use reflection:
|
Chris@16
|
499 //
|
Chris@16
|
500 if(x < 0)
|
Chris@16
|
501 {
|
Chris@16
|
502 // Reflect:
|
Chris@16
|
503 x = 1 - x;
|
Chris@16
|
504 // Argument reduction for tan:
|
Chris@16
|
505 mpfr_class remainder = x - floor(x);
|
Chris@16
|
506 // Shift to negative if > 0.5:
|
Chris@16
|
507 if(remainder > 0.5)
|
Chris@16
|
508 {
|
Chris@16
|
509 remainder -= 1;
|
Chris@16
|
510 }
|
Chris@16
|
511 //
|
Chris@16
|
512 // check for evaluation at a negative pole:
|
Chris@16
|
513 //
|
Chris@16
|
514 if(remainder == 0)
|
Chris@16
|
515 {
|
Chris@16
|
516 return policies::raise_pole_error<mpfr_class>("boost::math::digamma<%1%>(%1%)", 0, (1-x), pol);
|
Chris@16
|
517 }
|
Chris@16
|
518 result = constants::pi<mpfr_class>() / tan(constants::pi<mpfr_class>() * remainder);
|
Chris@16
|
519 }
|
Chris@16
|
520 result += big_digamma(x);
|
Chris@16
|
521 return result;
|
Chris@16
|
522 }
|
Chris@16
|
523 //
|
Chris@16
|
524 // Specialisations of this function provides the initial
|
Chris@16
|
525 // starting guess for Halley iteration:
|
Chris@16
|
526 //
|
Chris@16
|
527 template <class Policy>
|
Chris@16
|
528 inline mpfr_class erf_inv_imp(const mpfr_class& p, const mpfr_class& q, const Policy&, const boost::mpl::int_<64>*)
|
Chris@16
|
529 {
|
Chris@16
|
530 BOOST_MATH_STD_USING // for ADL of std names.
|
Chris@16
|
531
|
Chris@16
|
532 mpfr_class result = 0;
|
Chris@16
|
533
|
Chris@16
|
534 if(p <= 0.5)
|
Chris@16
|
535 {
|
Chris@16
|
536 //
|
Chris@16
|
537 // Evaluate inverse erf using the rational approximation:
|
Chris@16
|
538 //
|
Chris@16
|
539 // x = p(p+10)(Y+R(p))
|
Chris@16
|
540 //
|
Chris@16
|
541 // Where Y is a constant, and R(p) is optimised for a low
|
Chris@16
|
542 // absolute empfr_classor compared to |Y|.
|
Chris@16
|
543 //
|
Chris@16
|
544 // double: Max empfr_classor found: 2.001849e-18
|
Chris@16
|
545 // long double: Max empfr_classor found: 1.017064e-20
|
Chris@16
|
546 // Maximum Deviation Found (actual empfr_classor term at infinite precision) 8.030e-21
|
Chris@16
|
547 //
|
Chris@16
|
548 static const float Y = 0.0891314744949340820313f;
|
Chris@16
|
549 static const mpfr_class P[] = {
|
Chris@16
|
550 -0.000508781949658280665617,
|
Chris@16
|
551 -0.00836874819741736770379,
|
Chris@16
|
552 0.0334806625409744615033,
|
Chris@16
|
553 -0.0126926147662974029034,
|
Chris@16
|
554 -0.0365637971411762664006,
|
Chris@16
|
555 0.0219878681111168899165,
|
Chris@16
|
556 0.00822687874676915743155,
|
Chris@16
|
557 -0.00538772965071242932965
|
Chris@16
|
558 };
|
Chris@16
|
559 static const mpfr_class Q[] = {
|
Chris@16
|
560 1,
|
Chris@16
|
561 -0.970005043303290640362,
|
Chris@16
|
562 -1.56574558234175846809,
|
Chris@16
|
563 1.56221558398423026363,
|
Chris@16
|
564 0.662328840472002992063,
|
Chris@16
|
565 -0.71228902341542847553,
|
Chris@16
|
566 -0.0527396382340099713954,
|
Chris@16
|
567 0.0795283687341571680018,
|
Chris@16
|
568 -0.00233393759374190016776,
|
Chris@16
|
569 0.000886216390456424707504
|
Chris@16
|
570 };
|
Chris@16
|
571 mpfr_class g = p * (p + 10);
|
Chris@16
|
572 mpfr_class r = tools::evaluate_polynomial(P, p) / tools::evaluate_polynomial(Q, p);
|
Chris@16
|
573 result = g * Y + g * r;
|
Chris@16
|
574 }
|
Chris@16
|
575 else if(q >= 0.25)
|
Chris@16
|
576 {
|
Chris@16
|
577 //
|
Chris@16
|
578 // Rational approximation for 0.5 > q >= 0.25
|
Chris@16
|
579 //
|
Chris@16
|
580 // x = sqrt(-2*log(q)) / (Y + R(q))
|
Chris@16
|
581 //
|
Chris@16
|
582 // Where Y is a constant, and R(q) is optimised for a low
|
Chris@16
|
583 // absolute empfr_classor compared to Y.
|
Chris@16
|
584 //
|
Chris@16
|
585 // double : Max empfr_classor found: 7.403372e-17
|
Chris@16
|
586 // long double : Max empfr_classor found: 6.084616e-20
|
Chris@16
|
587 // Maximum Deviation Found (empfr_classor term) 4.811e-20
|
Chris@16
|
588 //
|
Chris@16
|
589 static const float Y = 2.249481201171875f;
|
Chris@16
|
590 static const mpfr_class P[] = {
|
Chris@16
|
591 -0.202433508355938759655,
|
Chris@16
|
592 0.105264680699391713268,
|
Chris@16
|
593 8.37050328343119927838,
|
Chris@16
|
594 17.6447298408374015486,
|
Chris@16
|
595 -18.8510648058714251895,
|
Chris@16
|
596 -44.6382324441786960818,
|
Chris@16
|
597 17.445385985570866523,
|
Chris@16
|
598 21.1294655448340526258,
|
Chris@16
|
599 -3.67192254707729348546
|
Chris@16
|
600 };
|
Chris@16
|
601 static const mpfr_class Q[] = {
|
Chris@16
|
602 1,
|
Chris@16
|
603 6.24264124854247537712,
|
Chris@16
|
604 3.9713437953343869095,
|
Chris@16
|
605 -28.6608180499800029974,
|
Chris@16
|
606 -20.1432634680485188801,
|
Chris@16
|
607 48.5609213108739935468,
|
Chris@16
|
608 10.8268667355460159008,
|
Chris@16
|
609 -22.6436933413139721736,
|
Chris@16
|
610 1.72114765761200282724
|
Chris@16
|
611 };
|
Chris@16
|
612 mpfr_class g = sqrt(-2 * log(q));
|
Chris@16
|
613 mpfr_class xs = q - 0.25;
|
Chris@16
|
614 mpfr_class r = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs);
|
Chris@16
|
615 result = g / (Y + r);
|
Chris@16
|
616 }
|
Chris@16
|
617 else
|
Chris@16
|
618 {
|
Chris@16
|
619 //
|
Chris@16
|
620 // For q < 0.25 we have a series of rational approximations all
|
Chris@16
|
621 // of the general form:
|
Chris@16
|
622 //
|
Chris@16
|
623 // let: x = sqrt(-log(q))
|
Chris@16
|
624 //
|
Chris@16
|
625 // Then the result is given by:
|
Chris@16
|
626 //
|
Chris@16
|
627 // x(Y+R(x-B))
|
Chris@16
|
628 //
|
Chris@16
|
629 // where Y is a constant, B is the lowest value of x for which
|
Chris@16
|
630 // the approximation is valid, and R(x-B) is optimised for a low
|
Chris@16
|
631 // absolute empfr_classor compared to Y.
|
Chris@16
|
632 //
|
Chris@16
|
633 // Note that almost all code will really go through the first
|
Chris@16
|
634 // or maybe second approximation. After than we're dealing with very
|
Chris@16
|
635 // small input values indeed: 80 and 128 bit long double's go all the
|
Chris@16
|
636 // way down to ~ 1e-5000 so the "tail" is rather long...
|
Chris@16
|
637 //
|
Chris@16
|
638 mpfr_class x = sqrt(-log(q));
|
Chris@16
|
639 if(x < 3)
|
Chris@16
|
640 {
|
Chris@16
|
641 // Max empfr_classor found: 1.089051e-20
|
Chris@16
|
642 static const float Y = 0.807220458984375f;
|
Chris@16
|
643 static const mpfr_class P[] = {
|
Chris@16
|
644 -0.131102781679951906451,
|
Chris@16
|
645 -0.163794047193317060787,
|
Chris@16
|
646 0.117030156341995252019,
|
Chris@16
|
647 0.387079738972604337464,
|
Chris@16
|
648 0.337785538912035898924,
|
Chris@16
|
649 0.142869534408157156766,
|
Chris@16
|
650 0.0290157910005329060432,
|
Chris@16
|
651 0.00214558995388805277169,
|
Chris@16
|
652 -0.679465575181126350155e-6,
|
Chris@16
|
653 0.285225331782217055858e-7,
|
Chris@16
|
654 -0.681149956853776992068e-9
|
Chris@16
|
655 };
|
Chris@16
|
656 static const mpfr_class Q[] = {
|
Chris@16
|
657 1,
|
Chris@16
|
658 3.46625407242567245975,
|
Chris@16
|
659 5.38168345707006855425,
|
Chris@16
|
660 4.77846592945843778382,
|
Chris@16
|
661 2.59301921623620271374,
|
Chris@16
|
662 0.848854343457902036425,
|
Chris@16
|
663 0.152264338295331783612,
|
Chris@16
|
664 0.01105924229346489121
|
Chris@16
|
665 };
|
Chris@16
|
666 mpfr_class xs = x - 1.125;
|
Chris@16
|
667 mpfr_class R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs);
|
Chris@16
|
668 result = Y * x + R * x;
|
Chris@16
|
669 }
|
Chris@16
|
670 else if(x < 6)
|
Chris@16
|
671 {
|
Chris@16
|
672 // Max empfr_classor found: 8.389174e-21
|
Chris@16
|
673 static const float Y = 0.93995571136474609375f;
|
Chris@16
|
674 static const mpfr_class P[] = {
|
Chris@16
|
675 -0.0350353787183177984712,
|
Chris@16
|
676 -0.00222426529213447927281,
|
Chris@16
|
677 0.0185573306514231072324,
|
Chris@16
|
678 0.00950804701325919603619,
|
Chris@16
|
679 0.00187123492819559223345,
|
Chris@16
|
680 0.000157544617424960554631,
|
Chris@16
|
681 0.460469890584317994083e-5,
|
Chris@16
|
682 -0.230404776911882601748e-9,
|
Chris@16
|
683 0.266339227425782031962e-11
|
Chris@16
|
684 };
|
Chris@16
|
685 static const mpfr_class Q[] = {
|
Chris@16
|
686 1,
|
Chris@16
|
687 1.3653349817554063097,
|
Chris@16
|
688 0.762059164553623404043,
|
Chris@16
|
689 0.220091105764131249824,
|
Chris@16
|
690 0.0341589143670947727934,
|
Chris@16
|
691 0.00263861676657015992959,
|
Chris@16
|
692 0.764675292302794483503e-4
|
Chris@16
|
693 };
|
Chris@16
|
694 mpfr_class xs = x - 3;
|
Chris@16
|
695 mpfr_class R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs);
|
Chris@16
|
696 result = Y * x + R * x;
|
Chris@16
|
697 }
|
Chris@16
|
698 else if(x < 18)
|
Chris@16
|
699 {
|
Chris@16
|
700 // Max empfr_classor found: 1.481312e-19
|
Chris@16
|
701 static const float Y = 0.98362827301025390625f;
|
Chris@16
|
702 static const mpfr_class P[] = {
|
Chris@16
|
703 -0.0167431005076633737133,
|
Chris@16
|
704 -0.00112951438745580278863,
|
Chris@16
|
705 0.00105628862152492910091,
|
Chris@16
|
706 0.000209386317487588078668,
|
Chris@16
|
707 0.149624783758342370182e-4,
|
Chris@16
|
708 0.449696789927706453732e-6,
|
Chris@16
|
709 0.462596163522878599135e-8,
|
Chris@16
|
710 -0.281128735628831791805e-13,
|
Chris@16
|
711 0.99055709973310326855e-16
|
Chris@16
|
712 };
|
Chris@16
|
713 static const mpfr_class Q[] = {
|
Chris@16
|
714 1,
|
Chris@16
|
715 0.591429344886417493481,
|
Chris@16
|
716 0.138151865749083321638,
|
Chris@16
|
717 0.0160746087093676504695,
|
Chris@16
|
718 0.000964011807005165528527,
|
Chris@16
|
719 0.275335474764726041141e-4,
|
Chris@16
|
720 0.282243172016108031869e-6
|
Chris@16
|
721 };
|
Chris@16
|
722 mpfr_class xs = x - 6;
|
Chris@16
|
723 mpfr_class R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs);
|
Chris@16
|
724 result = Y * x + R * x;
|
Chris@16
|
725 }
|
Chris@16
|
726 else if(x < 44)
|
Chris@16
|
727 {
|
Chris@16
|
728 // Max empfr_classor found: 5.697761e-20
|
Chris@16
|
729 static const float Y = 0.99714565277099609375f;
|
Chris@16
|
730 static const mpfr_class P[] = {
|
Chris@16
|
731 -0.0024978212791898131227,
|
Chris@16
|
732 -0.779190719229053954292e-5,
|
Chris@16
|
733 0.254723037413027451751e-4,
|
Chris@16
|
734 0.162397777342510920873e-5,
|
Chris@16
|
735 0.396341011304801168516e-7,
|
Chris@16
|
736 0.411632831190944208473e-9,
|
Chris@16
|
737 0.145596286718675035587e-11,
|
Chris@16
|
738 -0.116765012397184275695e-17
|
Chris@16
|
739 };
|
Chris@16
|
740 static const mpfr_class Q[] = {
|
Chris@16
|
741 1,
|
Chris@16
|
742 0.207123112214422517181,
|
Chris@16
|
743 0.0169410838120975906478,
|
Chris@16
|
744 0.000690538265622684595676,
|
Chris@16
|
745 0.145007359818232637924e-4,
|
Chris@16
|
746 0.144437756628144157666e-6,
|
Chris@16
|
747 0.509761276599778486139e-9
|
Chris@16
|
748 };
|
Chris@16
|
749 mpfr_class xs = x - 18;
|
Chris@16
|
750 mpfr_class R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs);
|
Chris@16
|
751 result = Y * x + R * x;
|
Chris@16
|
752 }
|
Chris@16
|
753 else
|
Chris@16
|
754 {
|
Chris@16
|
755 // Max empfr_classor found: 1.279746e-20
|
Chris@16
|
756 static const float Y = 0.99941349029541015625f;
|
Chris@16
|
757 static const mpfr_class P[] = {
|
Chris@16
|
758 -0.000539042911019078575891,
|
Chris@16
|
759 -0.28398759004727721098e-6,
|
Chris@16
|
760 0.899465114892291446442e-6,
|
Chris@16
|
761 0.229345859265920864296e-7,
|
Chris@16
|
762 0.225561444863500149219e-9,
|
Chris@16
|
763 0.947846627503022684216e-12,
|
Chris@16
|
764 0.135880130108924861008e-14,
|
Chris@16
|
765 -0.348890393399948882918e-21
|
Chris@16
|
766 };
|
Chris@16
|
767 static const mpfr_class Q[] = {
|
Chris@16
|
768 1,
|
Chris@16
|
769 0.0845746234001899436914,
|
Chris@16
|
770 0.00282092984726264681981,
|
Chris@16
|
771 0.468292921940894236786e-4,
|
Chris@16
|
772 0.399968812193862100054e-6,
|
Chris@16
|
773 0.161809290887904476097e-8,
|
Chris@16
|
774 0.231558608310259605225e-11
|
Chris@16
|
775 };
|
Chris@16
|
776 mpfr_class xs = x - 44;
|
Chris@16
|
777 mpfr_class R = tools::evaluate_polynomial(P, xs) / tools::evaluate_polynomial(Q, xs);
|
Chris@16
|
778 result = Y * x + R * x;
|
Chris@16
|
779 }
|
Chris@16
|
780 }
|
Chris@16
|
781 return result;
|
Chris@16
|
782 }
|
Chris@16
|
783
|
Chris@16
|
784 inline mpfr_class bessel_i0(mpfr_class x)
|
Chris@16
|
785 {
|
Chris@16
|
786 static const mpfr_class P1[] = {
|
Chris@16
|
787 boost::lexical_cast<mpfr_class>("-2.2335582639474375249e+15"),
|
Chris@16
|
788 boost::lexical_cast<mpfr_class>("-5.5050369673018427753e+14"),
|
Chris@16
|
789 boost::lexical_cast<mpfr_class>("-3.2940087627407749166e+13"),
|
Chris@16
|
790 boost::lexical_cast<mpfr_class>("-8.4925101247114157499e+11"),
|
Chris@16
|
791 boost::lexical_cast<mpfr_class>("-1.1912746104985237192e+10"),
|
Chris@16
|
792 boost::lexical_cast<mpfr_class>("-1.0313066708737980747e+08"),
|
Chris@16
|
793 boost::lexical_cast<mpfr_class>("-5.9545626019847898221e+05"),
|
Chris@16
|
794 boost::lexical_cast<mpfr_class>("-2.4125195876041896775e+03"),
|
Chris@16
|
795 boost::lexical_cast<mpfr_class>("-7.0935347449210549190e+00"),
|
Chris@16
|
796 boost::lexical_cast<mpfr_class>("-1.5453977791786851041e-02"),
|
Chris@16
|
797 boost::lexical_cast<mpfr_class>("-2.5172644670688975051e-05"),
|
Chris@16
|
798 boost::lexical_cast<mpfr_class>("-3.0517226450451067446e-08"),
|
Chris@16
|
799 boost::lexical_cast<mpfr_class>("-2.6843448573468483278e-11"),
|
Chris@16
|
800 boost::lexical_cast<mpfr_class>("-1.5982226675653184646e-14"),
|
Chris@16
|
801 boost::lexical_cast<mpfr_class>("-5.2487866627945699800e-18"),
|
Chris@16
|
802 };
|
Chris@16
|
803 static const mpfr_class Q1[] = {
|
Chris@16
|
804 boost::lexical_cast<mpfr_class>("-2.2335582639474375245e+15"),
|
Chris@16
|
805 boost::lexical_cast<mpfr_class>("7.8858692566751002988e+12"),
|
Chris@16
|
806 boost::lexical_cast<mpfr_class>("-1.2207067397808979846e+10"),
|
Chris@16
|
807 boost::lexical_cast<mpfr_class>("1.0377081058062166144e+07"),
|
Chris@16
|
808 boost::lexical_cast<mpfr_class>("-4.8527560179962773045e+03"),
|
Chris@16
|
809 boost::lexical_cast<mpfr_class>("1.0"),
|
Chris@16
|
810 };
|
Chris@16
|
811 static const mpfr_class P2[] = {
|
Chris@16
|
812 boost::lexical_cast<mpfr_class>("-2.2210262233306573296e-04"),
|
Chris@16
|
813 boost::lexical_cast<mpfr_class>("1.3067392038106924055e-02"),
|
Chris@16
|
814 boost::lexical_cast<mpfr_class>("-4.4700805721174453923e-01"),
|
Chris@16
|
815 boost::lexical_cast<mpfr_class>("5.5674518371240761397e+00"),
|
Chris@16
|
816 boost::lexical_cast<mpfr_class>("-2.3517945679239481621e+01"),
|
Chris@16
|
817 boost::lexical_cast<mpfr_class>("3.1611322818701131207e+01"),
|
Chris@16
|
818 boost::lexical_cast<mpfr_class>("-9.6090021968656180000e+00"),
|
Chris@16
|
819 };
|
Chris@16
|
820 static const mpfr_class Q2[] = {
|
Chris@16
|
821 boost::lexical_cast<mpfr_class>("-5.5194330231005480228e-04"),
|
Chris@16
|
822 boost::lexical_cast<mpfr_class>("3.2547697594819615062e-02"),
|
Chris@16
|
823 boost::lexical_cast<mpfr_class>("-1.1151759188741312645e+00"),
|
Chris@16
|
824 boost::lexical_cast<mpfr_class>("1.3982595353892851542e+01"),
|
Chris@16
|
825 boost::lexical_cast<mpfr_class>("-6.0228002066743340583e+01"),
|
Chris@16
|
826 boost::lexical_cast<mpfr_class>("8.5539563258012929600e+01"),
|
Chris@16
|
827 boost::lexical_cast<mpfr_class>("-3.1446690275135491500e+01"),
|
Chris@16
|
828 boost::lexical_cast<mpfr_class>("1.0"),
|
Chris@16
|
829 };
|
Chris@16
|
830 mpfr_class value, factor, r;
|
Chris@16
|
831
|
Chris@16
|
832 BOOST_MATH_STD_USING
|
Chris@16
|
833 using namespace boost::math::tools;
|
Chris@16
|
834
|
Chris@16
|
835 if (x < 0)
|
Chris@16
|
836 {
|
Chris@16
|
837 x = -x; // even function
|
Chris@16
|
838 }
|
Chris@16
|
839 if (x == 0)
|
Chris@16
|
840 {
|
Chris@16
|
841 return static_cast<mpfr_class>(1);
|
Chris@16
|
842 }
|
Chris@16
|
843 if (x <= 15) // x in (0, 15]
|
Chris@16
|
844 {
|
Chris@16
|
845 mpfr_class y = x * x;
|
Chris@16
|
846 value = evaluate_polynomial(P1, y) / evaluate_polynomial(Q1, y);
|
Chris@16
|
847 }
|
Chris@16
|
848 else // x in (15, \infty)
|
Chris@16
|
849 {
|
Chris@16
|
850 mpfr_class y = 1 / x - mpfr_class(1) / 15;
|
Chris@16
|
851 r = evaluate_polynomial(P2, y) / evaluate_polynomial(Q2, y);
|
Chris@16
|
852 factor = exp(x) / sqrt(x);
|
Chris@16
|
853 value = factor * r;
|
Chris@16
|
854 }
|
Chris@16
|
855
|
Chris@16
|
856 return value;
|
Chris@16
|
857 }
|
Chris@16
|
858
|
Chris@16
|
859 inline mpfr_class bessel_i1(mpfr_class x)
|
Chris@16
|
860 {
|
Chris@16
|
861 static const mpfr_class P1[] = {
|
Chris@16
|
862 static_cast<mpfr_class>("-1.4577180278143463643e+15"),
|
Chris@16
|
863 static_cast<mpfr_class>("-1.7732037840791591320e+14"),
|
Chris@16
|
864 static_cast<mpfr_class>("-6.9876779648010090070e+12"),
|
Chris@16
|
865 static_cast<mpfr_class>("-1.3357437682275493024e+11"),
|
Chris@16
|
866 static_cast<mpfr_class>("-1.4828267606612366099e+09"),
|
Chris@16
|
867 static_cast<mpfr_class>("-1.0588550724769347106e+07"),
|
Chris@16
|
868 static_cast<mpfr_class>("-5.1894091982308017540e+04"),
|
Chris@16
|
869 static_cast<mpfr_class>("-1.8225946631657315931e+02"),
|
Chris@16
|
870 static_cast<mpfr_class>("-4.7207090827310162436e-01"),
|
Chris@16
|
871 static_cast<mpfr_class>("-9.1746443287817501309e-04"),
|
Chris@16
|
872 static_cast<mpfr_class>("-1.3466829827635152875e-06"),
|
Chris@16
|
873 static_cast<mpfr_class>("-1.4831904935994647675e-09"),
|
Chris@16
|
874 static_cast<mpfr_class>("-1.1928788903603238754e-12"),
|
Chris@16
|
875 static_cast<mpfr_class>("-6.5245515583151902910e-16"),
|
Chris@16
|
876 static_cast<mpfr_class>("-1.9705291802535139930e-19"),
|
Chris@16
|
877 };
|
Chris@16
|
878 static const mpfr_class Q1[] = {
|
Chris@16
|
879 static_cast<mpfr_class>("-2.9154360556286927285e+15"),
|
Chris@16
|
880 static_cast<mpfr_class>("9.7887501377547640438e+12"),
|
Chris@16
|
881 static_cast<mpfr_class>("-1.4386907088588283434e+10"),
|
Chris@16
|
882 static_cast<mpfr_class>("1.1594225856856884006e+07"),
|
Chris@16
|
883 static_cast<mpfr_class>("-5.1326864679904189920e+03"),
|
Chris@16
|
884 static_cast<mpfr_class>("1.0"),
|
Chris@16
|
885 };
|
Chris@16
|
886 static const mpfr_class P2[] = {
|
Chris@16
|
887 static_cast<mpfr_class>("1.4582087408985668208e-05"),
|
Chris@16
|
888 static_cast<mpfr_class>("-8.9359825138577646443e-04"),
|
Chris@16
|
889 static_cast<mpfr_class>("2.9204895411257790122e-02"),
|
Chris@16
|
890 static_cast<mpfr_class>("-3.4198728018058047439e-01"),
|
Chris@16
|
891 static_cast<mpfr_class>("1.3960118277609544334e+00"),
|
Chris@16
|
892 static_cast<mpfr_class>("-1.9746376087200685843e+00"),
|
Chris@16
|
893 static_cast<mpfr_class>("8.5591872901933459000e-01"),
|
Chris@16
|
894 static_cast<mpfr_class>("-6.0437159056137599999e-02"),
|
Chris@16
|
895 };
|
Chris@16
|
896 static const mpfr_class Q2[] = {
|
Chris@16
|
897 static_cast<mpfr_class>("3.7510433111922824643e-05"),
|
Chris@16
|
898 static_cast<mpfr_class>("-2.2835624489492512649e-03"),
|
Chris@16
|
899 static_cast<mpfr_class>("7.4212010813186530069e-02"),
|
Chris@16
|
900 static_cast<mpfr_class>("-8.5017476463217924408e-01"),
|
Chris@16
|
901 static_cast<mpfr_class>("3.2593714889036996297e+00"),
|
Chris@16
|
902 static_cast<mpfr_class>("-3.8806586721556593450e+00"),
|
Chris@16
|
903 static_cast<mpfr_class>("1.0"),
|
Chris@16
|
904 };
|
Chris@16
|
905 mpfr_class value, factor, r, w;
|
Chris@16
|
906
|
Chris@16
|
907 BOOST_MATH_STD_USING
|
Chris@16
|
908 using namespace boost::math::tools;
|
Chris@16
|
909
|
Chris@16
|
910 w = abs(x);
|
Chris@16
|
911 if (x == 0)
|
Chris@16
|
912 {
|
Chris@16
|
913 return static_cast<mpfr_class>(0);
|
Chris@16
|
914 }
|
Chris@16
|
915 if (w <= 15) // w in (0, 15]
|
Chris@16
|
916 {
|
Chris@16
|
917 mpfr_class y = x * x;
|
Chris@16
|
918 r = evaluate_polynomial(P1, y) / evaluate_polynomial(Q1, y);
|
Chris@16
|
919 factor = w;
|
Chris@16
|
920 value = factor * r;
|
Chris@16
|
921 }
|
Chris@16
|
922 else // w in (15, \infty)
|
Chris@16
|
923 {
|
Chris@16
|
924 mpfr_class y = 1 / w - mpfr_class(1) / 15;
|
Chris@16
|
925 r = evaluate_polynomial(P2, y) / evaluate_polynomial(Q2, y);
|
Chris@16
|
926 factor = exp(w) / sqrt(w);
|
Chris@16
|
927 value = factor * r;
|
Chris@16
|
928 }
|
Chris@16
|
929
|
Chris@16
|
930 if (x < 0)
|
Chris@16
|
931 {
|
Chris@16
|
932 value *= -value; // odd function
|
Chris@16
|
933 }
|
Chris@16
|
934 return value;
|
Chris@16
|
935 }
|
Chris@16
|
936
|
Chris@16
|
937 } // namespace detail
|
Chris@16
|
938
|
Chris@16
|
939 }
|
Chris@16
|
940
|
Chris@16
|
941 template<> struct is_convertible<long double, mpfr_class> : public mpl::false_{};
|
Chris@16
|
942
|
Chris@16
|
943 }
|
Chris@16
|
944
|
Chris@16
|
945 #endif // BOOST_MATH_MPLFR_BINDINGS_HPP
|
Chris@16
|
946
|