annotate DEPENDENCIES/generic/include/boost/polygon/polygon_set_data.hpp @ 16:2665513ce2d3

Add boost headers
author Chris Cannam
date Tue, 05 Aug 2014 11:11:38 +0100
parents
children c530137014c0
rev   line source
Chris@16 1 /*
Chris@16 2 Copyright 2008 Intel Corporation
Chris@16 3
Chris@16 4 Use, modification and distribution are subject to the Boost Software License,
Chris@16 5 Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
Chris@16 6 http://www.boost.org/LICENSE_1_0.txt).
Chris@16 7 */
Chris@16 8 #ifndef BOOST_POLYGON_POLYGON_SET_DATA_HPP
Chris@16 9 #define BOOST_POLYGON_POLYGON_SET_DATA_HPP
Chris@16 10 #include "polygon_45_set_data.hpp"
Chris@16 11 #include "polygon_45_set_concept.hpp"
Chris@16 12 #include "polygon_traits.hpp"
Chris@16 13 #include "detail/polygon_arbitrary_formation.hpp"
Chris@16 14
Chris@16 15 namespace boost { namespace polygon {
Chris@16 16
Chris@16 17
Chris@16 18 // utility function to round coordinate types down
Chris@16 19 // rounds down for both negative and positive numbers
Chris@16 20 // intended really for integer type T (does not make sense for float)
Chris@16 21 template <typename T>
Chris@16 22 static inline T round_down(double val) {
Chris@16 23 T rounded_val = (T)(val);
Chris@16 24 if(val < (double)rounded_val)
Chris@16 25 --rounded_val;
Chris@16 26 return rounded_val;
Chris@16 27 }
Chris@16 28 template <typename T>
Chris@16 29 static inline point_data<T> round_down(point_data<double> v) {
Chris@16 30 return point_data<T>(round_down<T>(v.x()),round_down<T>(v.y()));
Chris@16 31 }
Chris@16 32
Chris@16 33
Chris@16 34
Chris@16 35 //foward declare view
Chris@16 36 template <typename ltype, typename rtype, int op_type> class polygon_set_view;
Chris@16 37
Chris@16 38 template <typename T>
Chris@16 39 class polygon_set_data {
Chris@16 40 public:
Chris@16 41 typedef T coordinate_type;
Chris@16 42 typedef point_data<T> point_type;
Chris@16 43 typedef std::pair<point_type, point_type> edge_type;
Chris@16 44 typedef std::pair<edge_type, int> element_type;
Chris@16 45 typedef std::vector<element_type> value_type;
Chris@16 46 typedef typename value_type::const_iterator iterator_type;
Chris@16 47 typedef polygon_set_data operator_arg_type;
Chris@16 48
Chris@16 49 // default constructor
Chris@16 50 inline polygon_set_data() : data_(), dirty_(false), unsorted_(false), is_45_(true) {}
Chris@16 51
Chris@16 52 // constructor from an iterator pair over edge data
Chris@16 53 template <typename iT>
Chris@16 54 inline polygon_set_data(iT input_begin, iT input_end) : data_(), dirty_(false), unsorted_(false), is_45_(true) {
Chris@16 55 for( ; input_begin != input_end; ++input_begin) { insert(*input_begin); }
Chris@16 56 }
Chris@16 57
Chris@16 58 // copy constructor
Chris@16 59 inline polygon_set_data(const polygon_set_data& that) :
Chris@16 60 data_(that.data_), dirty_(that.dirty_), unsorted_(that.unsorted_), is_45_(that.is_45_) {}
Chris@16 61
Chris@16 62 // copy constructor
Chris@16 63 template <typename ltype, typename rtype, int op_type>
Chris@16 64 inline polygon_set_data(const polygon_set_view<ltype, rtype, op_type>& that);
Chris@16 65
Chris@16 66 // destructor
Chris@16 67 inline ~polygon_set_data() {}
Chris@16 68
Chris@16 69 // assignement operator
Chris@16 70 inline polygon_set_data& operator=(const polygon_set_data& that) {
Chris@16 71 if(this == &that) return *this;
Chris@16 72 data_ = that.data_;
Chris@16 73 dirty_ = that.dirty_;
Chris@16 74 unsorted_ = that.unsorted_;
Chris@16 75 is_45_ = that.is_45_;
Chris@16 76 return *this;
Chris@16 77 }
Chris@16 78
Chris@16 79 template <typename ltype, typename rtype, int op_type>
Chris@16 80 inline polygon_set_data& operator=(const polygon_set_view<ltype, rtype, op_type>& geometry) {
Chris@16 81 (*this) = geometry.value();
Chris@16 82 dirty_ = false;
Chris@16 83 unsorted_ = false;
Chris@16 84 return *this;
Chris@16 85 }
Chris@16 86
Chris@16 87 template <typename geometry_object>
Chris@16 88 inline polygon_set_data& operator=(const geometry_object& geometry) {
Chris@16 89 data_.clear();
Chris@16 90 insert(geometry);
Chris@16 91 return *this;
Chris@16 92 }
Chris@16 93
Chris@16 94
Chris@16 95 // insert iterator range
Chris@16 96 inline void insert(iterator_type input_begin, iterator_type input_end, bool is_hole = false) {
Chris@16 97 if(input_begin == input_end || (!data_.empty() && &(*input_begin) == &(*(data_.begin())))) return;
Chris@16 98 dirty_ = true;
Chris@16 99 unsorted_ = true;
Chris@16 100 while(input_begin != input_end) {
Chris@16 101 insert(*input_begin, is_hole);
Chris@16 102 ++input_begin;
Chris@16 103 }
Chris@16 104 }
Chris@16 105
Chris@16 106 // insert iterator range
Chris@16 107 template <typename iT>
Chris@16 108 inline void insert(iT input_begin, iT input_end, bool is_hole = false) {
Chris@16 109 if(input_begin == input_end) return;
Chris@16 110 for(; input_begin != input_end; ++input_begin) {
Chris@16 111 insert(*input_begin, is_hole);
Chris@16 112 }
Chris@16 113 }
Chris@16 114
Chris@16 115 template <typename geometry_type>
Chris@16 116 inline void insert(const geometry_type& geometry_object, bool is_hole = false) {
Chris@16 117 insert(geometry_object, is_hole, typename geometry_concept<geometry_type>::type());
Chris@16 118 }
Chris@16 119
Chris@16 120 template <typename polygon_type>
Chris@16 121 inline void insert(const polygon_type& polygon_object, bool is_hole, polygon_concept ) {
Chris@16 122 insert_vertex_sequence(begin_points(polygon_object), end_points(polygon_object), winding(polygon_object), is_hole);
Chris@16 123 }
Chris@16 124
Chris@16 125 inline void insert(const polygon_set_data& ps, bool is_hole = false) {
Chris@16 126 insert(ps.data_.begin(), ps.data_.end(), is_hole);
Chris@16 127 }
Chris@16 128
Chris@16 129 template <typename polygon_45_set_type>
Chris@16 130 inline void insert(const polygon_45_set_type& ps, bool is_hole, polygon_45_set_concept) {
Chris@16 131 std::vector<polygon_45_with_holes_data<typename polygon_45_set_traits<polygon_45_set_type>::coordinate_type> > polys;
Chris@16 132 assign(polys, ps);
Chris@16 133 insert(polys.begin(), polys.end(), is_hole);
Chris@16 134 }
Chris@16 135
Chris@16 136 template <typename polygon_90_set_type>
Chris@16 137 inline void insert(const polygon_90_set_type& ps, bool is_hole, polygon_90_set_concept) {
Chris@16 138 std::vector<polygon_90_with_holes_data<typename polygon_90_set_traits<polygon_90_set_type>::coordinate_type> > polys;
Chris@16 139 assign(polys, ps);
Chris@16 140 insert(polys.begin(), polys.end(), is_hole);
Chris@16 141 }
Chris@16 142
Chris@16 143 template <typename polygon_type>
Chris@16 144 inline void insert(const polygon_type& polygon_object, bool is_hole, polygon_45_concept ) {
Chris@16 145 insert(polygon_object, is_hole, polygon_concept()); }
Chris@16 146
Chris@16 147 template <typename polygon_type>
Chris@16 148 inline void insert(const polygon_type& polygon_object, bool is_hole, polygon_90_concept ) {
Chris@16 149 insert(polygon_object, is_hole, polygon_concept()); }
Chris@16 150
Chris@16 151 template <typename polygon_with_holes_type>
Chris@16 152 inline void insert(const polygon_with_holes_type& polygon_with_holes_object, bool is_hole,
Chris@16 153 polygon_with_holes_concept ) {
Chris@16 154 insert(polygon_with_holes_object, is_hole, polygon_concept());
Chris@16 155 for(typename polygon_with_holes_traits<polygon_with_holes_type>::iterator_holes_type itr =
Chris@16 156 begin_holes(polygon_with_holes_object);
Chris@16 157 itr != end_holes(polygon_with_holes_object); ++itr) {
Chris@16 158 insert(*itr, !is_hole, polygon_concept());
Chris@16 159 }
Chris@16 160 }
Chris@16 161
Chris@16 162 template <typename polygon_with_holes_type>
Chris@16 163 inline void insert(const polygon_with_holes_type& polygon_with_holes_object, bool is_hole,
Chris@16 164 polygon_45_with_holes_concept ) {
Chris@16 165 insert(polygon_with_holes_object, is_hole, polygon_with_holes_concept()); }
Chris@16 166
Chris@16 167 template <typename polygon_with_holes_type>
Chris@16 168 inline void insert(const polygon_with_holes_type& polygon_with_holes_object, bool is_hole,
Chris@16 169 polygon_90_with_holes_concept ) {
Chris@16 170 insert(polygon_with_holes_object, is_hole, polygon_with_holes_concept()); }
Chris@16 171
Chris@16 172 template <typename rectangle_type>
Chris@16 173 inline void insert(const rectangle_type& rectangle_object, bool is_hole, rectangle_concept ) {
Chris@16 174 polygon_90_data<coordinate_type> poly;
Chris@16 175 assign(poly, rectangle_object);
Chris@16 176 insert(poly, is_hole, polygon_concept());
Chris@16 177 }
Chris@16 178
Chris@16 179 inline void insert_clean(const element_type& edge, bool is_hole = false) {
Chris@16 180 if( ! scanline_base<coordinate_type>::is_45_degree(edge.first) &&
Chris@16 181 ! scanline_base<coordinate_type>::is_horizontal(edge.first) &&
Chris@16 182 ! scanline_base<coordinate_type>::is_vertical(edge.first) ) is_45_ = false;
Chris@16 183 data_.push_back(edge);
Chris@16 184 if(data_.back().first.second < data_.back().first.first) {
Chris@16 185 std::swap(data_.back().first.second, data_.back().first.first);
Chris@16 186 data_.back().second *= -1;
Chris@16 187 }
Chris@16 188 if(is_hole)
Chris@16 189 data_.back().second *= -1;
Chris@16 190 }
Chris@16 191
Chris@16 192 inline void insert(const element_type& edge, bool is_hole = false) {
Chris@16 193 insert_clean(edge, is_hole);
Chris@16 194 dirty_ = true;
Chris@16 195 unsorted_ = true;
Chris@16 196 }
Chris@16 197
Chris@16 198 template <class iT>
Chris@16 199 inline void insert_vertex_sequence(iT begin_vertex, iT end_vertex, direction_1d winding, bool is_hole) {
Chris@16 200 bool first_iteration = true;
Chris@16 201 point_type first_point;
Chris@16 202 point_type previous_point;
Chris@16 203 point_type current_point;
Chris@16 204 direction_1d winding_dir = winding;
Chris@16 205 int multiplier = winding_dir == COUNTERCLOCKWISE ? 1 : -1;
Chris@16 206 if(is_hole) multiplier *= -1;
Chris@16 207 for( ; begin_vertex != end_vertex; ++begin_vertex) {
Chris@16 208 assign(current_point, *begin_vertex);
Chris@16 209 if(first_iteration) {
Chris@16 210 first_iteration = false;
Chris@16 211 first_point = previous_point = current_point;
Chris@16 212 } else {
Chris@16 213 if(previous_point != current_point) {
Chris@16 214 element_type elem(edge_type(previous_point, current_point),
Chris@16 215 ( previous_point.get(HORIZONTAL) == current_point.get(HORIZONTAL) ? -1 : 1) * multiplier);
Chris@16 216 insert_clean(elem);
Chris@16 217 }
Chris@16 218 }
Chris@16 219 previous_point = current_point;
Chris@16 220 }
Chris@16 221 current_point = first_point;
Chris@16 222 if(!first_iteration) {
Chris@16 223 if(previous_point != current_point) {
Chris@16 224 element_type elem(edge_type(previous_point, current_point),
Chris@16 225 ( previous_point.get(HORIZONTAL) == current_point.get(HORIZONTAL) ? -1 : 1) * multiplier);
Chris@16 226 insert_clean(elem);
Chris@16 227 }
Chris@16 228 dirty_ = true;
Chris@16 229 unsorted_ = true;
Chris@16 230 }
Chris@16 231 }
Chris@16 232
Chris@16 233 template <typename output_container>
Chris@16 234 inline void get(output_container& output) const {
Chris@16 235 get_dispatch(output, typename geometry_concept<typename output_container::value_type>::type());
Chris@16 236 }
Chris@16 237
Chris@16 238 // append to the container cT with polygons of three or four verticies
Chris@16 239 // slicing orientation is vertical
Chris@16 240 template <class cT>
Chris@16 241 void get_trapezoids(cT& container) const {
Chris@16 242 clean();
Chris@16 243 trapezoid_arbitrary_formation<coordinate_type> pf;
Chris@16 244 typedef typename polygon_arbitrary_formation<coordinate_type>::vertex_half_edge vertex_half_edge;
Chris@16 245 std::vector<vertex_half_edge> data;
Chris@16 246 for(iterator_type itr = data_.begin(); itr != data_.end(); ++itr){
Chris@16 247 data.push_back(vertex_half_edge((*itr).first.first, (*itr).first.second, (*itr).second));
Chris@16 248 data.push_back(vertex_half_edge((*itr).first.second, (*itr).first.first, -1 * (*itr).second));
Chris@16 249 }
Chris@16 250 polygon_sort(data.begin(), data.end());
Chris@16 251 pf.scan(container, data.begin(), data.end());
Chris@16 252 //std::cout << "DONE FORMING POLYGONS\n";
Chris@16 253 }
Chris@16 254
Chris@16 255 // append to the container cT with polygons of three or four verticies
Chris@16 256 template <class cT>
Chris@16 257 void get_trapezoids(cT& container, orientation_2d slicing_orientation) const {
Chris@16 258 if(slicing_orientation == VERTICAL) {
Chris@16 259 get_trapezoids(container);
Chris@16 260 } else {
Chris@16 261 polygon_set_data<T> ps(*this);
Chris@16 262 ps.transform(axis_transformation(axis_transformation::SWAP_XY));
Chris@16 263 cT result;
Chris@16 264 ps.get_trapezoids(result);
Chris@16 265 for(typename cT::iterator itr = result.begin(); itr != result.end(); ++itr) {
Chris@16 266 ::boost::polygon::transform(*itr, axis_transformation(axis_transformation::SWAP_XY));
Chris@16 267 }
Chris@16 268 container.insert(container.end(), result.begin(), result.end());
Chris@16 269 }
Chris@16 270 }
Chris@16 271
Chris@16 272 // equivalence operator
Chris@16 273 inline bool operator==(const polygon_set_data& p) const;
Chris@16 274
Chris@16 275 // inequivalence operator
Chris@16 276 inline bool operator!=(const polygon_set_data& p) const {
Chris@16 277 return !((*this) == p);
Chris@16 278 }
Chris@16 279
Chris@16 280 // get iterator to begin vertex data
Chris@16 281 inline iterator_type begin() const {
Chris@16 282 return data_.begin();
Chris@16 283 }
Chris@16 284
Chris@16 285 // get iterator to end vertex data
Chris@16 286 inline iterator_type end() const {
Chris@16 287 return data_.end();
Chris@16 288 }
Chris@16 289
Chris@16 290 const value_type& value() const {
Chris@16 291 return data_;
Chris@16 292 }
Chris@16 293
Chris@16 294 // clear the contents of the polygon_set_data
Chris@16 295 inline void clear() { data_.clear(); dirty_ = unsorted_ = false; }
Chris@16 296
Chris@16 297 // find out if Polygon set is empty
Chris@16 298 inline bool empty() const { return data_.empty(); }
Chris@16 299
Chris@16 300 // get the Polygon set size in vertices
Chris@16 301 inline std::size_t size() const { clean(); return data_.size(); }
Chris@16 302
Chris@16 303 // get the current Polygon set capacity in vertices
Chris@16 304 inline std::size_t capacity() const { return data_.capacity(); }
Chris@16 305
Chris@16 306 // reserve size of polygon set in vertices
Chris@16 307 inline void reserve(std::size_t size) { return data_.reserve(size); }
Chris@16 308
Chris@16 309 // find out if Polygon set is sorted
Chris@16 310 inline bool sorted() const { return !unsorted_; }
Chris@16 311
Chris@16 312 // find out if Polygon set is clean
Chris@16 313 inline bool dirty() const { return dirty_; }
Chris@16 314
Chris@16 315 void clean() const;
Chris@16 316
Chris@16 317 void sort() const{
Chris@16 318 if(unsorted_) {
Chris@16 319 polygon_sort(data_.begin(), data_.end());
Chris@16 320 unsorted_ = false;
Chris@16 321 }
Chris@16 322 }
Chris@16 323
Chris@16 324 template <typename input_iterator_type>
Chris@16 325 void set(input_iterator_type input_begin, input_iterator_type input_end) {
Chris@16 326 clear();
Chris@16 327 reserve(std::distance(input_begin,input_end));
Chris@16 328 insert(input_begin, input_end);
Chris@16 329 dirty_ = true;
Chris@16 330 unsorted_ = true;
Chris@16 331 }
Chris@16 332
Chris@16 333 void set(const value_type& value) {
Chris@16 334 data_ = value;
Chris@16 335 dirty_ = true;
Chris@16 336 unsorted_ = true;
Chris@16 337 }
Chris@16 338
Chris@16 339 template <typename rectangle_type>
Chris@16 340 bool extents(rectangle_type& rect) {
Chris@16 341 clean();
Chris@16 342 if(empty()) return false;
Chris@16 343 bool first_iteration = true;
Chris@16 344 for(iterator_type itr = begin();
Chris@16 345 itr != end(); ++itr) {
Chris@16 346 rectangle_type edge_box;
Chris@16 347 set_points(edge_box, (*itr).first.first, (*itr).first.second);
Chris@16 348 if(first_iteration)
Chris@16 349 rect = edge_box;
Chris@16 350 else
Chris@16 351 encompass(rect, edge_box);
Chris@16 352 first_iteration = false;
Chris@16 353 }
Chris@16 354 return true;
Chris@16 355 }
Chris@16 356
Chris@16 357 inline polygon_set_data&
Chris@16 358 resize(coordinate_type resizing, bool corner_fill_arc = false, unsigned int num_circle_segments=0);
Chris@16 359
Chris@16 360 template <typename transform_type>
Chris@16 361 inline polygon_set_data&
Chris@16 362 transform(const transform_type& tr) {
Chris@16 363 std::vector<polygon_with_holes_data<T> > polys;
Chris@16 364 get(polys);
Chris@16 365 clear();
Chris@16 366 for(std::size_t i = 0 ; i < polys.size(); ++i) {
Chris@16 367 ::boost::polygon::transform(polys[i], tr);
Chris@16 368 insert(polys[i]);
Chris@16 369 }
Chris@16 370 unsorted_ = true;
Chris@16 371 dirty_ = true;
Chris@16 372 return *this;
Chris@16 373 }
Chris@16 374
Chris@16 375 inline polygon_set_data&
Chris@16 376 scale_up(typename coordinate_traits<coordinate_type>::unsigned_area_type factor) {
Chris@16 377 for(typename value_type::iterator itr = data_.begin(); itr != data_.end(); ++itr) {
Chris@16 378 ::boost::polygon::scale_up((*itr).first.first, factor);
Chris@16 379 ::boost::polygon::scale_up((*itr).first.second, factor);
Chris@16 380 }
Chris@16 381 return *this;
Chris@16 382 }
Chris@16 383
Chris@16 384 inline polygon_set_data&
Chris@16 385 scale_down(typename coordinate_traits<coordinate_type>::unsigned_area_type factor) {
Chris@16 386 for(typename value_type::iterator itr = data_.begin(); itr != data_.end(); ++itr) {
Chris@16 387 bool vb = (*itr).first.first.x() == (*itr).first.second.x();
Chris@16 388 ::boost::polygon::scale_down((*itr).first.first, factor);
Chris@16 389 ::boost::polygon::scale_down((*itr).first.second, factor);
Chris@16 390 bool va = (*itr).first.first.x() == (*itr).first.second.x();
Chris@16 391 if(!vb && va) {
Chris@16 392 (*itr).second *= -1;
Chris@16 393 }
Chris@16 394 }
Chris@16 395 unsorted_ = true;
Chris@16 396 dirty_ = true;
Chris@16 397 return *this;
Chris@16 398 }
Chris@16 399
Chris@16 400 template <typename scaling_type>
Chris@16 401 inline polygon_set_data& scale(polygon_set_data& polygon_set,
Chris@16 402 const scaling_type& scaling) {
Chris@16 403 for(typename value_type::iterator itr = begin(); itr != end(); ++itr) {
Chris@16 404 bool vb = (*itr).first.first.x() == (*itr).first.second.x();
Chris@16 405 ::boost::polygon::scale((*itr).first.first, scaling);
Chris@16 406 ::boost::polygon::scale((*itr).first.second, scaling);
Chris@16 407 bool va = (*itr).first.first.x() == (*itr).first.second.x();
Chris@16 408 if(!vb && va) {
Chris@16 409 (*itr).second *= -1;
Chris@16 410 }
Chris@16 411 }
Chris@16 412 unsorted_ = true;
Chris@16 413 dirty_ = true;
Chris@16 414 return *this;
Chris@16 415 }
Chris@16 416
Chris@16 417 static inline void compute_offset_edge(point_data<long double>& pt1, point_data<long double>& pt2,
Chris@16 418 const point_data<long double>& prev_pt,
Chris@16 419 const point_data<long double>& current_pt,
Chris@16 420 long double distance, int multiplier) {
Chris@16 421 long double dx = current_pt.x() - prev_pt.x();
Chris@16 422 long double dy = current_pt.y() - prev_pt.y();
Chris@16 423 long double edge_length = std::sqrt(dx*dx + dy*dy);
Chris@16 424 long double dnx = dy;
Chris@16 425 long double dny = -dx;
Chris@16 426 dnx = dnx * (long double)distance / edge_length;
Chris@16 427 dny = dny * (long double)distance / edge_length;
Chris@16 428 pt1.x(prev_pt.x() + (long double)dnx * (long double)multiplier);
Chris@16 429 pt2.x(current_pt.x() + (long double)dnx * (long double)multiplier);
Chris@16 430 pt1.y(prev_pt.y() + (long double)dny * (long double)multiplier);
Chris@16 431 pt2.y(current_pt.y() + (long double)dny * (long double)multiplier);
Chris@16 432 }
Chris@16 433
Chris@16 434 static inline void modify_pt(point_data<coordinate_type>& pt, const point_data<coordinate_type>& prev_pt,
Chris@16 435 const point_data<coordinate_type>& current_pt, const point_data<coordinate_type>& next_pt,
Chris@16 436 coordinate_type distance, coordinate_type multiplier) {
Chris@16 437 std::pair<point_data<long double>, point_data<long double> > he1, he2;
Chris@16 438 he1.first.x((long double)(prev_pt.x()));
Chris@16 439 he1.first.y((long double)(prev_pt.y()));
Chris@16 440 he1.second.x((long double)(current_pt.x()));
Chris@16 441 he1.second.y((long double)(current_pt.y()));
Chris@16 442 he2.first.x((long double)(current_pt.x()));
Chris@16 443 he2.first.y((long double)(current_pt.y()));
Chris@16 444 he2.second.x((long double)(next_pt.x()));
Chris@16 445 he2.second.y((long double)(next_pt.y()));
Chris@16 446 compute_offset_edge(he1.first, he1.second, prev_pt, current_pt, distance, multiplier);
Chris@16 447 compute_offset_edge(he2.first, he2.second, current_pt, next_pt, distance, multiplier);
Chris@16 448 typedef scanline_base<long double>::compute_intersection_pack pack;
Chris@16 449 point_data<long double> rpt;
Chris@16 450 point_data<long double> bisectorpt((he1.second.x()+he2.first.x())/2,
Chris@16 451 (he1.second.y()+he2.first.y())/2);
Chris@16 452 point_data<long double> orig_pt((long double)pt.x(), (long double)pt.y());
Chris@16 453 if(euclidean_distance(bisectorpt, orig_pt) < distance/2) {
Chris@16 454 if(!pack::compute_lazy_intersection(rpt, he1, he2, true, false)) {
Chris@16 455 rpt = he1.second; //colinear offset edges use shared point
Chris@16 456 }
Chris@16 457 } else {
Chris@16 458 if(!pack::compute_lazy_intersection(rpt, he1, std::pair<point_data<long double>, point_data<long double> >(orig_pt, bisectorpt), true, false)) {
Chris@16 459 rpt = he1.second; //colinear offset edges use shared point
Chris@16 460 }
Chris@16 461 }
Chris@16 462 pt.x((coordinate_type)(std::floor(rpt.x()+0.5)));
Chris@16 463 pt.y((coordinate_type)(std::floor(rpt.y()+0.5)));
Chris@16 464 }
Chris@16 465
Chris@16 466 static void resize_poly_up(std::vector<point_data<coordinate_type> >& poly, coordinate_type distance, coordinate_type multiplier) {
Chris@16 467 point_data<coordinate_type> first_pt = poly[0];
Chris@16 468 point_data<coordinate_type> second_pt = poly[1];
Chris@16 469 point_data<coordinate_type> prev_pt = poly[0];
Chris@16 470 point_data<coordinate_type> current_pt = poly[1];
Chris@16 471 for(std::size_t i = 2; i < poly.size()-1; ++i) {
Chris@16 472 point_data<coordinate_type> next_pt = poly[i];
Chris@16 473 modify_pt(poly[i-1], prev_pt, current_pt, next_pt, distance, multiplier);
Chris@16 474 prev_pt = current_pt;
Chris@16 475 current_pt = next_pt;
Chris@16 476 }
Chris@16 477 point_data<coordinate_type> next_pt = first_pt;
Chris@16 478 modify_pt(poly[poly.size()-2], prev_pt, current_pt, next_pt, distance, multiplier);
Chris@16 479 prev_pt = current_pt;
Chris@16 480 current_pt = next_pt;
Chris@16 481 next_pt = second_pt;
Chris@16 482 modify_pt(poly[0], prev_pt, current_pt, next_pt, distance, multiplier);
Chris@16 483 poly.back() = poly.front();
Chris@16 484 }
Chris@16 485 static bool resize_poly_down(std::vector<point_data<coordinate_type> >& poly, coordinate_type distance, coordinate_type multiplier) {
Chris@16 486 std::vector<point_data<coordinate_type> > orig_poly(poly);
Chris@16 487 rectangle_data<coordinate_type> extents_rectangle;
Chris@16 488 set_points(extents_rectangle, poly[0], poly[0]);
Chris@16 489 point_data<coordinate_type> first_pt = poly[0];
Chris@16 490 point_data<coordinate_type> second_pt = poly[1];
Chris@16 491 point_data<coordinate_type> prev_pt = poly[0];
Chris@16 492 point_data<coordinate_type> current_pt = poly[1];
Chris@16 493 encompass(extents_rectangle, current_pt);
Chris@16 494 for(std::size_t i = 2; i < poly.size()-1; ++i) {
Chris@16 495 point_data<coordinate_type> next_pt = poly[i];
Chris@16 496 encompass(extents_rectangle, next_pt);
Chris@16 497 modify_pt(poly[i-1], prev_pt, current_pt, next_pt, distance, multiplier);
Chris@16 498 prev_pt = current_pt;
Chris@16 499 current_pt = next_pt;
Chris@16 500 }
Chris@16 501 if(delta(extents_rectangle, HORIZONTAL) <= std::abs(2*distance))
Chris@16 502 return false;
Chris@16 503 if(delta(extents_rectangle, VERTICAL) <= std::abs(2*distance))
Chris@16 504 return false;
Chris@16 505 point_data<coordinate_type> next_pt = first_pt;
Chris@16 506 modify_pt(poly[poly.size()-2], prev_pt, current_pt, next_pt, distance, multiplier);
Chris@16 507 prev_pt = current_pt;
Chris@16 508 current_pt = next_pt;
Chris@16 509 next_pt = second_pt;
Chris@16 510 modify_pt(poly[0], prev_pt, current_pt, next_pt, distance, multiplier);
Chris@16 511 poly.back() = poly.front();
Chris@16 512 //if the line segments formed between orignial and new points cross for an edge that edge inverts
Chris@16 513 //if all edges invert the polygon should be discarded
Chris@16 514 //if even one edge does not invert return true because the polygon is valid
Chris@16 515 bool non_inverting_edge = false;
Chris@16 516 for(std::size_t i = 1; i < poly.size(); ++i) {
Chris@16 517 std::pair<point_data<coordinate_type>, point_data<coordinate_type> >
Chris@16 518 he1(poly[i], orig_poly[i]),
Chris@16 519 he2(poly[i-1], orig_poly[i-1]);
Chris@16 520 if(!scanline_base<coordinate_type>::intersects(he1, he2)) {
Chris@16 521 non_inverting_edge = true;
Chris@16 522 break;
Chris@16 523 }
Chris@16 524 }
Chris@16 525 return non_inverting_edge;
Chris@16 526 }
Chris@16 527
Chris@16 528 polygon_set_data&
Chris@16 529 bloat(typename coordinate_traits<coordinate_type>::unsigned_area_type distance) {
Chris@16 530 std::list<polygon_with_holes_data<coordinate_type> > polys;
Chris@16 531 get(polys);
Chris@16 532 clear();
Chris@16 533 for(typename std::list<polygon_with_holes_data<coordinate_type> >::iterator itr = polys.begin();
Chris@16 534 itr != polys.end(); ++itr) {
Chris@16 535 resize_poly_up((*itr).self_.coords_, (coordinate_type)distance, (coordinate_type)1);
Chris@16 536 insert_vertex_sequence((*itr).self_.begin(), (*itr).self_.end(), COUNTERCLOCKWISE, false); //inserts without holes
Chris@16 537 for(typename std::list<polygon_data<coordinate_type> >::iterator itrh = (*itr).holes_.begin();
Chris@16 538 itrh != (*itr).holes_.end(); ++itrh) {
Chris@16 539 if(resize_poly_down((*itrh).coords_, (coordinate_type)distance, (coordinate_type)1)) {
Chris@16 540 insert_vertex_sequence((*itrh).coords_.begin(), (*itrh).coords_.end(), CLOCKWISE, true);
Chris@16 541 }
Chris@16 542 }
Chris@16 543 }
Chris@16 544 return *this;
Chris@16 545 }
Chris@16 546
Chris@16 547 polygon_set_data&
Chris@16 548 shrink(typename coordinate_traits<coordinate_type>::unsigned_area_type distance) {
Chris@16 549 std::list<polygon_with_holes_data<coordinate_type> > polys;
Chris@16 550 get(polys);
Chris@16 551 clear();
Chris@16 552 for(typename std::list<polygon_with_holes_data<coordinate_type> >::iterator itr = polys.begin();
Chris@16 553 itr != polys.end(); ++itr) {
Chris@16 554 if(resize_poly_down((*itr).self_.coords_, (coordinate_type)distance, (coordinate_type)-1)) {
Chris@16 555 insert_vertex_sequence((*itr).self_.begin(), (*itr).self_.end(), COUNTERCLOCKWISE, false); //inserts without holes
Chris@16 556 for(typename std::list<polygon_data<coordinate_type> >::iterator itrh = (*itr).holes_.begin();
Chris@16 557 itrh != (*itr).holes_.end(); ++itrh) {
Chris@16 558 resize_poly_up((*itrh).coords_, (coordinate_type)distance, (coordinate_type)-1);
Chris@16 559 insert_vertex_sequence((*itrh).coords_.begin(), (*itrh).coords_.end(), CLOCKWISE, true);
Chris@16 560 }
Chris@16 561 }
Chris@16 562 }
Chris@16 563 return *this;
Chris@16 564 }
Chris@16 565
Chris@16 566 // TODO:: should be private
Chris@16 567 template <typename geometry_type>
Chris@16 568 inline polygon_set_data&
Chris@16 569 insert_with_resize(const geometry_type& poly, coordinate_type resizing, bool corner_fill_arc=false, unsigned int num_circle_segments=0, bool hole = false) {
Chris@16 570 return insert_with_resize_dispatch(poly, resizing, corner_fill_arc, num_circle_segments, hole, typename geometry_concept<geometry_type>::type());
Chris@16 571 }
Chris@16 572
Chris@16 573 template <typename geometry_type>
Chris@16 574 inline polygon_set_data&
Chris@16 575 insert_with_resize_dispatch(const geometry_type& poly, coordinate_type resizing, bool corner_fill_arc, unsigned int num_circle_segments, bool hole,
Chris@16 576 polygon_with_holes_concept tag) {
Chris@16 577 insert_with_resize_dispatch(poly, resizing, corner_fill_arc, num_circle_segments, hole, polygon_concept());
Chris@16 578 for(typename polygon_with_holes_traits<geometry_type>::iterator_holes_type itr =
Chris@16 579 begin_holes(poly); itr != end_holes(poly);
Chris@16 580 ++itr) {
Chris@16 581 insert_with_resize_dispatch(*itr, resizing, corner_fill_arc, num_circle_segments, !hole, polygon_concept());
Chris@16 582 }
Chris@16 583 return *this;
Chris@16 584 }
Chris@16 585
Chris@16 586 template <typename geometry_type>
Chris@16 587 inline polygon_set_data&
Chris@16 588 insert_with_resize_dispatch(const geometry_type& poly, coordinate_type resizing, bool corner_fill_arc, unsigned int num_circle_segments, bool hole,
Chris@16 589 polygon_concept tag) {
Chris@16 590
Chris@16 591 if (resizing==0)
Chris@16 592 return *this;
Chris@16 593
Chris@16 594
Chris@16 595 // one dimensional used to store CCW/CW flag
Chris@16 596 //direction_1d wdir = winding(poly);
Chris@16 597 // LOW==CLOCKWISE just faster to type
Chris@16 598 // so > 0 is CCW
Chris@16 599 //int multiplier = wdir == LOW ? -1 : 1;
Chris@16 600 //std::cout<<" multiplier : "<<multiplier<<std::endl;
Chris@16 601 //if(hole) resizing *= -1;
Chris@16 602 direction_1d resize_wdir = resizing>0?COUNTERCLOCKWISE:CLOCKWISE;
Chris@16 603
Chris@16 604 typedef typename polygon_data<T>::iterator_type piterator;
Chris@16 605 piterator first, second, third, end, real_end;
Chris@16 606 real_end = end_points(poly);
Chris@16 607 third = begin_points(poly);
Chris@16 608 first = third;
Chris@16 609 if(first == real_end) return *this;
Chris@16 610 ++third;
Chris@16 611 if(third == real_end) return *this;
Chris@16 612 second = end = third;
Chris@16 613 ++third;
Chris@16 614 if(third == real_end) return *this;
Chris@16 615
Chris@16 616 // for 1st corner
Chris@16 617 std::vector<point_data<T> > first_pts;
Chris@16 618 std::vector<point_data<T> > all_pts;
Chris@16 619 direction_1d first_wdir = CLOCKWISE;
Chris@16 620
Chris@16 621 // for all corners
Chris@16 622 polygon_set_data<T> sizingSet;
Chris@16 623 bool sizing_sign = resizing<0;
Chris@16 624 bool prev_concave = true;
Chris@16 625 point_data<T> prev_point;
Chris@16 626 //int iCtr=0;
Chris@16 627
Chris@16 628
Chris@16 629 //insert minkofski shapes on edges and corners
Chris@16 630 do { // REAL WORK IS HERE
Chris@16 631
Chris@16 632
Chris@16 633 //first, second and third point to points in correct CCW order
Chris@16 634 // check if convex or concave case
Chris@16 635 point_data<coordinate_type> normal1( second->y()-first->y(), first->x()-second->x());
Chris@16 636 point_data<coordinate_type> normal2( third->y()-second->y(), second->x()-third->x());
Chris@16 637 double direction = normal1.x()*normal2.y()- normal2.x()*normal1.y();
Chris@16 638 bool convex = direction>0;
Chris@16 639
Chris@16 640 bool treat_as_concave = !convex;
Chris@16 641 if(sizing_sign)
Chris@16 642 treat_as_concave = convex;
Chris@16 643 point_data<double> v;
Chris@16 644 assign(v, normal1);
Chris@16 645 double s2 = (v.x()*v.x()+v.y()*v.y());
Chris@16 646 double s = std::sqrt(s2)/resizing;
Chris@16 647 v = point_data<double>(v.x()/s,v.y()/s);
Chris@16 648 point_data<T> curr_prev;
Chris@16 649 if (prev_concave)
Chris@16 650 //TODO missing round_down()
Chris@16 651 curr_prev = point_data<T>(first->x()+v.x(),first->y()+v.y());
Chris@16 652 else
Chris@16 653 curr_prev = prev_point;
Chris@16 654
Chris@16 655 // around concave corners - insert rectangle
Chris@16 656 // if previous corner is concave it's point info may be ignored
Chris@16 657 if ( treat_as_concave) {
Chris@16 658 std::vector<point_data<T> > pts;
Chris@16 659
Chris@16 660 pts.push_back(point_data<T>(second->x()+v.x(),second->y()+v.y()));
Chris@16 661 pts.push_back(*second);
Chris@16 662 pts.push_back(*first);
Chris@16 663 pts.push_back(point_data<T>(curr_prev));
Chris@16 664 if (first_pts.size()){
Chris@16 665 sizingSet.insert_vertex_sequence(pts.begin(),pts.end(), resize_wdir,false);
Chris@16 666 }else {
Chris@16 667 first_pts=pts;
Chris@16 668 first_wdir = resize_wdir;
Chris@16 669 }
Chris@16 670 } else {
Chris@16 671
Chris@16 672 // add either intersection_quad or pie_shape, based on corner_fill_arc option
Chris@16 673 // for convex corner (convexity depends on sign of resizing, whether we shrink or grow)
Chris@16 674 std::vector< std::vector<point_data<T> > > pts;
Chris@16 675 direction_1d winding;
Chris@16 676 winding = convex?COUNTERCLOCKWISE:CLOCKWISE;
Chris@16 677 if (make_resizing_vertex_list(pts, curr_prev, prev_concave, *first, *second, *third, resizing
Chris@16 678 , num_circle_segments, corner_fill_arc))
Chris@16 679 {
Chris@16 680 if (first_pts.size()) {
Chris@16 681 for (int i=0; i<pts.size(); i++) {
Chris@16 682 sizingSet.insert_vertex_sequence(pts[i].begin(),pts[i].end(),winding,false);
Chris@16 683 }
Chris@16 684
Chris@16 685 } else {
Chris@16 686 first_pts = pts[0];
Chris@16 687 first_wdir = resize_wdir;
Chris@16 688 for (int i=1; i<pts.size(); i++) {
Chris@16 689 sizingSet.insert_vertex_sequence(pts[i].begin(),pts[i].end(),winding,false);
Chris@16 690 }
Chris@16 691 }
Chris@16 692 prev_point = curr_prev;
Chris@16 693
Chris@16 694 } else {
Chris@16 695 treat_as_concave = true;
Chris@16 696 }
Chris@16 697 }
Chris@16 698
Chris@16 699 prev_concave = treat_as_concave;
Chris@16 700 first = second;
Chris@16 701 second = third;
Chris@16 702 ++third;
Chris@16 703 if(third == real_end) {
Chris@16 704 third = begin_points(poly);
Chris@16 705 if(*second == *third) {
Chris@16 706 ++third; //skip first point if it is duplicate of last point
Chris@16 707 }
Chris@16 708 }
Chris@16 709 } while(second != end);
Chris@16 710
Chris@16 711 // handle insertion of first point
Chris@16 712 if (!prev_concave) {
Chris@16 713 first_pts[first_pts.size()-1]=prev_point;
Chris@16 714 }
Chris@16 715 sizingSet.insert_vertex_sequence(first_pts.begin(),first_pts.end(),first_wdir,false);
Chris@16 716
Chris@16 717 polygon_set_data<coordinate_type> tmp;
Chris@16 718
Chris@16 719 //insert original shape
Chris@16 720 tmp.insert(poly, false, polygon_concept());
Chris@16 721 if((resizing < 0) ^ hole) tmp -= sizingSet;
Chris@16 722 else tmp += sizingSet;
Chris@16 723 //tmp.clean();
Chris@16 724 insert(tmp, hole);
Chris@16 725 return (*this);
Chris@16 726 }
Chris@16 727
Chris@16 728
Chris@16 729 inline polygon_set_data&
Chris@16 730 interact(const polygon_set_data& that);
Chris@16 731
Chris@16 732 inline bool downcast(polygon_45_set_data<coordinate_type>& result) const {
Chris@16 733 if(!is_45_) return false;
Chris@16 734 for(iterator_type itr = begin(); itr != end(); ++itr) {
Chris@16 735 const element_type& elem = *itr;
Chris@16 736 int count = elem.second;
Chris@16 737 int rise = 1; //up sloping 45
Chris@16 738 if(scanline_base<coordinate_type>::is_horizontal(elem.first)) rise = 0;
Chris@16 739 else if(scanline_base<coordinate_type>::is_vertical(elem.first)) rise = 2;
Chris@16 740 else {
Chris@16 741 if(!scanline_base<coordinate_type>::is_45_degree(elem.first)) {
Chris@16 742 is_45_ = false;
Chris@16 743 return false; //consider throwing because is_45_ has be be wrong
Chris@16 744 }
Chris@16 745 if(elem.first.first.y() > elem.first.second.y()) rise = -1; //down sloping 45
Chris@16 746 }
Chris@16 747 typename polygon_45_set_data<coordinate_type>::Vertex45Compact vertex(elem.first.first, rise, count);
Chris@16 748 result.insert(vertex);
Chris@16 749 typename polygon_45_set_data<coordinate_type>::Vertex45Compact vertex2(elem.first.second, rise, -count);
Chris@16 750 result.insert(vertex2);
Chris@16 751 }
Chris@16 752 return true;
Chris@16 753 }
Chris@16 754
Chris@16 755 inline GEOMETRY_CONCEPT_ID concept_downcast() const {
Chris@16 756 typedef typename coordinate_traits<coordinate_type>::coordinate_difference delta_type;
Chris@16 757 bool is_45 = false;
Chris@16 758 for(iterator_type itr = begin(); itr != end(); ++itr) {
Chris@16 759 const element_type& elem = *itr;
Chris@16 760 delta_type h_delta = euclidean_distance(elem.first.first, elem.first.second, HORIZONTAL);
Chris@16 761 delta_type v_delta = euclidean_distance(elem.first.first, elem.first.second, VERTICAL);
Chris@16 762 if(h_delta != 0 || v_delta != 0) {
Chris@16 763 //neither delta is zero and the edge is not MANHATTAN
Chris@16 764 if(v_delta != h_delta && v_delta != -h_delta) return POLYGON_SET_CONCEPT;
Chris@16 765 else is_45 = true;
Chris@16 766 }
Chris@16 767 }
Chris@16 768 if(is_45) return POLYGON_45_SET_CONCEPT;
Chris@16 769 return POLYGON_90_SET_CONCEPT;
Chris@16 770 }
Chris@16 771
Chris@16 772 private:
Chris@16 773 mutable value_type data_;
Chris@16 774 mutable bool dirty_;
Chris@16 775 mutable bool unsorted_;
Chris@16 776 mutable bool is_45_;
Chris@16 777
Chris@16 778 private:
Chris@16 779 //functions
Chris@16 780
Chris@16 781 template <typename output_container>
Chris@16 782 void get_dispatch(output_container& output, polygon_concept tag) const {
Chris@16 783 get_fracture(output, true, tag);
Chris@16 784 }
Chris@16 785 template <typename output_container>
Chris@16 786 void get_dispatch(output_container& output, polygon_with_holes_concept tag) const {
Chris@16 787 get_fracture(output, false, tag);
Chris@16 788 }
Chris@16 789 template <typename output_container, typename concept_type>
Chris@16 790 void get_fracture(output_container& container, bool fracture_holes, concept_type ) const {
Chris@16 791 clean();
Chris@16 792 polygon_arbitrary_formation<coordinate_type> pf(fracture_holes);
Chris@16 793 typedef typename polygon_arbitrary_formation<coordinate_type>::vertex_half_edge vertex_half_edge;
Chris@16 794 std::vector<vertex_half_edge> data;
Chris@16 795 for(iterator_type itr = data_.begin(); itr != data_.end(); ++itr){
Chris@16 796 data.push_back(vertex_half_edge((*itr).first.first, (*itr).first.second, (*itr).second));
Chris@16 797 data.push_back(vertex_half_edge((*itr).first.second, (*itr).first.first, -1 * (*itr).second));
Chris@16 798 }
Chris@16 799 polygon_sort(data.begin(), data.end());
Chris@16 800 pf.scan(container, data.begin(), data.end());
Chris@16 801 }
Chris@16 802 };
Chris@16 803
Chris@16 804 struct polygon_set_concept;
Chris@16 805 template <typename T>
Chris@16 806 struct geometry_concept<polygon_set_data<T> > {
Chris@16 807 typedef polygon_set_concept type;
Chris@16 808 };
Chris@16 809
Chris@16 810 // template <typename T>
Chris@16 811 // inline double compute_area(point_data<T>& a, point_data<T>& b, point_data<T>& c) {
Chris@16 812
Chris@16 813 // return (double)(b.x()-a.x())*(double)(c.y()-a.y())- (double)(c.x()-a.x())*(double)(b.y()-a.y());
Chris@16 814
Chris@16 815
Chris@16 816 // }
Chris@16 817
Chris@16 818 template <typename T>
Chris@16 819 inline int make_resizing_vertex_list(std::vector<std::vector<point_data< T> > >& return_points,
Chris@16 820 point_data<T>& curr_prev, bool ignore_prev_point,
Chris@16 821 point_data< T> start, point_data<T> middle, point_data< T> end,
Chris@16 822 double sizing_distance, unsigned int num_circle_segments, bool corner_fill_arc) {
Chris@16 823
Chris@16 824 // handle the case of adding an intersection point
Chris@16 825 point_data<double> dn1( middle.y()-start.y(), start.x()-middle.x());
Chris@16 826 double size = sizing_distance/std::sqrt( dn1.x()*dn1.x()+dn1.y()*dn1.y());
Chris@16 827 dn1 = point_data<double>( dn1.x()*size, dn1.y()* size);
Chris@16 828 point_data<double> dn2( end.y()-middle.y(), middle.x()-end.x());
Chris@16 829 size = sizing_distance/std::sqrt( dn2.x()*dn2.x()+dn2.y()*dn2.y());
Chris@16 830 dn2 = point_data<double>( dn2.x()*size, dn2.y()* size);
Chris@16 831 point_data<double> start_offset((start.x()+dn1.x()),(start.y()+dn1.y()));
Chris@16 832 point_data<double> mid1_offset((middle.x()+dn1.x()),(middle.y()+dn1.y()));
Chris@16 833 point_data<double> end_offset((end.x()+dn2.x()),(end.y()+dn2.y()));
Chris@16 834 point_data<double> mid2_offset((middle.x()+dn2.x()),(middle.y()+dn2.y()));
Chris@16 835 if (ignore_prev_point)
Chris@16 836 curr_prev = round_down<T>(start_offset);
Chris@16 837
Chris@16 838
Chris@16 839 if (corner_fill_arc) {
Chris@16 840 std::vector<point_data< T> > return_points1;
Chris@16 841 return_points.push_back(return_points1);
Chris@16 842 std::vector<point_data< T> >& return_points_back = return_points[return_points.size()-1];
Chris@16 843 return_points_back.push_back(round_down<T>(mid1_offset));
Chris@16 844 return_points_back.push_back(middle);
Chris@16 845 return_points_back.push_back(start);
Chris@16 846 return_points_back.push_back(curr_prev);
Chris@16 847 point_data<double> dmid(middle.x(),middle.y());
Chris@16 848 return_points.push_back(return_points1);
Chris@16 849 int num = make_arc(return_points[return_points.size()-1],mid1_offset,mid2_offset,dmid,sizing_distance,num_circle_segments);
Chris@16 850 curr_prev = round_down<T>(mid2_offset);
Chris@16 851 return num;
Chris@16 852
Chris@16 853 }
Chris@16 854
Chris@16 855 std::pair<point_data<double>,point_data<double> > he1(start_offset,mid1_offset);
Chris@16 856 std::pair<point_data<double>,point_data<double> > he2(mid2_offset ,end_offset);
Chris@16 857 //typedef typename high_precision_type<double>::type high_precision;
Chris@16 858
Chris@16 859 point_data<T> intersect;
Chris@16 860 typename scanline_base<T>::compute_intersection_pack pack;
Chris@16 861 bool res = pack.compute_intersection(intersect,he1,he2,true);
Chris@16 862 if( res ) {
Chris@16 863 std::vector<point_data< T> > return_points1;
Chris@16 864 return_points.push_back(return_points1);
Chris@16 865 std::vector<point_data< T> >& return_points_back = return_points[return_points.size()-1];
Chris@16 866 return_points_back.push_back(intersect);
Chris@16 867 return_points_back.push_back(middle);
Chris@16 868 return_points_back.push_back(start);
Chris@16 869 return_points_back.push_back(curr_prev);
Chris@16 870
Chris@16 871 //double d1= compute_area(intersect,middle,start);
Chris@16 872 //double d2= compute_area(start,curr_prev,intersect);
Chris@16 873
Chris@16 874 curr_prev = intersect;
Chris@16 875
Chris@16 876
Chris@16 877 return return_points.size();
Chris@16 878 }
Chris@16 879 return 0;
Chris@16 880
Chris@16 881 }
Chris@16 882
Chris@16 883 // this routine should take in start and end point s.t. end point is CCW from start
Chris@16 884 // it sould make a pie slice polygon that is an intersection of that arc
Chris@16 885 // with an ngon segments approximation of the circle centered at center with radius r
Chris@16 886 // point start is gauaranteed to be on the segmentation
Chris@16 887 // returnPoints will start with the first point after start
Chris@16 888 // returnPoints vector may be empty
Chris@16 889 template <typename T>
Chris@16 890 inline int make_arc(std::vector<point_data< T> >& return_points,
Chris@16 891 point_data< double> start, point_data< double> end,
Chris@16 892 point_data< double> center, double r, unsigned int num_circle_segments) {
Chris@16 893 const double our_pi=3.1415926535897932384626433832795028841971;
Chris@16 894
Chris@16 895 // derive start and end angles
Chris@16 896 double ps = atan2(start.y()-center.y(), start.x()-center.x());
Chris@16 897 double pe = atan2(end.y()-center.y(), end.x()-center.x());
Chris@16 898 if (ps < 0.0)
Chris@16 899 ps += 2.0 * our_pi;
Chris@16 900 if (pe <= 0.0)
Chris@16 901 pe += 2.0 * our_pi;
Chris@16 902 if (ps >= 2.0 * our_pi)
Chris@16 903 ps -= 2.0 * our_pi;
Chris@16 904 while (pe <= ps)
Chris@16 905 pe += 2.0 * our_pi;
Chris@16 906 double delta_angle = (2.0 * our_pi) / (double)num_circle_segments;
Chris@16 907 if ( start==end) // full circle?
Chris@16 908 {
Chris@16 909 ps = delta_angle*0.5;
Chris@16 910 pe = ps + our_pi * 2.0;
Chris@16 911 double x,y;
Chris@16 912 x = center.x() + r * cos(ps);
Chris@16 913 y = center.y() + r * sin(ps);
Chris@16 914 start = point_data<double>(x,y);
Chris@16 915 end = start;
Chris@16 916 }
Chris@16 917 return_points.push_back(round_down<T>(center));
Chris@16 918 return_points.push_back(round_down<T>(start));
Chris@16 919 unsigned int i=0;
Chris@16 920 double curr_angle = ps+delta_angle;
Chris@16 921 while( curr_angle < pe - 0.01 && i < 2 * num_circle_segments) {
Chris@16 922 i++;
Chris@16 923 double x = center.x() + r * cos( curr_angle);
Chris@16 924 double y = center.y() + r * sin( curr_angle);
Chris@16 925 return_points.push_back( round_down<T>((point_data<double>(x,y))));
Chris@16 926 curr_angle+=delta_angle;
Chris@16 927 }
Chris@16 928 return_points.push_back(round_down<T>(end));
Chris@16 929 return return_points.size();
Chris@16 930 }
Chris@16 931
Chris@16 932 }// close namespace
Chris@16 933 }// close name space
Chris@16 934
Chris@16 935 #include "detail/scan_arbitrary.hpp"
Chris@16 936
Chris@16 937 namespace boost { namespace polygon {
Chris@16 938 //ConnectivityExtraction computes the graph of connectivity between rectangle, polygon and
Chris@16 939 //polygon set graph nodes where an edge is created whenever the geometry in two nodes overlap
Chris@16 940 template <typename coordinate_type>
Chris@16 941 class connectivity_extraction{
Chris@16 942 private:
Chris@16 943 typedef arbitrary_connectivity_extraction<coordinate_type, int> ce;
Chris@16 944 ce ce_;
Chris@16 945 unsigned int nodeCount_;
Chris@16 946 public:
Chris@16 947 inline connectivity_extraction() : ce_(), nodeCount_(0) {}
Chris@16 948 inline connectivity_extraction(const connectivity_extraction& that) : ce_(that.ce_),
Chris@16 949 nodeCount_(that.nodeCount_) {}
Chris@16 950 inline connectivity_extraction& operator=(const connectivity_extraction& that) {
Chris@16 951 ce_ = that.ce_;
Chris@16 952 nodeCount_ = that.nodeCount_; {}
Chris@16 953 return *this;
Chris@16 954 }
Chris@16 955
Chris@16 956 //insert a polygon set graph node, the value returned is the id of the graph node
Chris@16 957 inline unsigned int insert(const polygon_set_data<coordinate_type>& ps) {
Chris@16 958 ps.clean();
Chris@16 959 ce_.populateTouchSetData(ps.begin(), ps.end(), nodeCount_);
Chris@16 960 return nodeCount_++;
Chris@16 961 }
Chris@16 962 template <class GeoObjT>
Chris@16 963 inline unsigned int insert(const GeoObjT& geoObj) {
Chris@16 964 polygon_set_data<coordinate_type> ps;
Chris@16 965 ps.insert(geoObj);
Chris@16 966 return insert(ps);
Chris@16 967 }
Chris@16 968
Chris@16 969 //extract connectivity and store the edges in the graph
Chris@16 970 //graph must be indexable by graph node id and the indexed value must be a std::set of
Chris@16 971 //graph node id
Chris@16 972 template <class GraphT>
Chris@16 973 inline void extract(GraphT& graph) {
Chris@16 974 ce_.execute(graph);
Chris@16 975 }
Chris@16 976 };
Chris@16 977
Chris@16 978 template <typename T>
Chris@16 979 polygon_set_data<T>&
Chris@16 980 polygon_set_data<T>::interact(const polygon_set_data<T>& that) {
Chris@16 981 connectivity_extraction<coordinate_type> ce;
Chris@16 982 std::vector<polygon_with_holes_data<T> > polys;
Chris@16 983 get(polys);
Chris@16 984 clear();
Chris@16 985 for(std::size_t i = 0; i < polys.size(); ++i) {
Chris@16 986 ce.insert(polys[i]);
Chris@16 987 }
Chris@16 988 int id = ce.insert(that);
Chris@16 989 std::vector<std::set<int> > graph(id+1);
Chris@16 990 ce.extract(graph);
Chris@16 991 for(std::set<int>::iterator itr = graph[id].begin();
Chris@16 992 itr != graph[id].end(); ++itr) {
Chris@16 993 insert(polys[*itr]);
Chris@16 994 }
Chris@16 995 return *this;
Chris@16 996 }
Chris@16 997 }
Chris@16 998 }
Chris@16 999
Chris@16 1000 #include "polygon_set_traits.hpp"
Chris@16 1001 #include "detail/polygon_set_view.hpp"
Chris@16 1002
Chris@16 1003 #include "polygon_set_concept.hpp"
Chris@16 1004 #include "detail/minkowski.hpp"
Chris@16 1005 #endif