diff DEPENDENCIES/generic/include/boost/polygon/polygon_set_data.hpp @ 16:2665513ce2d3

Add boost headers
author Chris Cannam
date Tue, 05 Aug 2014 11:11:38 +0100
parents
children c530137014c0
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/DEPENDENCIES/generic/include/boost/polygon/polygon_set_data.hpp	Tue Aug 05 11:11:38 2014 +0100
@@ -0,0 +1,1005 @@
+/*
+  Copyright 2008 Intel Corporation
+
+  Use, modification and distribution are subject to the Boost Software License,
+  Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
+  http://www.boost.org/LICENSE_1_0.txt).
+*/
+#ifndef BOOST_POLYGON_POLYGON_SET_DATA_HPP
+#define BOOST_POLYGON_POLYGON_SET_DATA_HPP
+#include "polygon_45_set_data.hpp"
+#include "polygon_45_set_concept.hpp"
+#include "polygon_traits.hpp"
+#include "detail/polygon_arbitrary_formation.hpp"
+
+namespace boost { namespace polygon {
+
+
+  // utility function to round coordinate types down
+  // rounds down for both negative and positive numbers
+  // intended really for integer type T (does not make sense for float)
+  template <typename T>
+  static inline T round_down(double val) {
+     T rounded_val = (T)(val);
+     if(val < (double)rounded_val)
+        --rounded_val;
+     return rounded_val;
+  }
+  template <typename T>
+  static inline point_data<T> round_down(point_data<double> v) {
+     return point_data<T>(round_down<T>(v.x()),round_down<T>(v.y()));
+  }
+
+
+
+  //foward declare view
+  template <typename ltype, typename rtype, int op_type> class polygon_set_view;
+
+  template <typename T>
+  class polygon_set_data {
+  public:
+    typedef T coordinate_type;
+    typedef point_data<T> point_type;
+    typedef std::pair<point_type, point_type> edge_type;
+    typedef std::pair<edge_type, int> element_type;
+    typedef std::vector<element_type> value_type;
+    typedef typename value_type::const_iterator iterator_type;
+    typedef polygon_set_data operator_arg_type;
+
+    // default constructor
+    inline polygon_set_data() : data_(), dirty_(false), unsorted_(false), is_45_(true) {}
+
+    // constructor from an iterator pair over edge data
+    template <typename iT>
+    inline polygon_set_data(iT input_begin, iT input_end) : data_(), dirty_(false), unsorted_(false), is_45_(true) {
+      for( ; input_begin != input_end; ++input_begin) { insert(*input_begin); }
+    }
+
+    // copy constructor
+    inline polygon_set_data(const polygon_set_data& that) :
+      data_(that.data_), dirty_(that.dirty_), unsorted_(that.unsorted_), is_45_(that.is_45_) {}
+
+    // copy constructor
+    template <typename ltype, typename rtype, int op_type>
+    inline polygon_set_data(const polygon_set_view<ltype, rtype, op_type>& that);
+
+    // destructor
+    inline ~polygon_set_data() {}
+
+    // assignement operator
+    inline polygon_set_data& operator=(const polygon_set_data& that) {
+      if(this == &that) return *this;
+      data_ = that.data_;
+      dirty_ = that.dirty_;
+      unsorted_ = that.unsorted_;
+      is_45_ = that.is_45_;
+      return *this;
+    }
+
+    template <typename ltype, typename rtype, int op_type>
+    inline polygon_set_data& operator=(const polygon_set_view<ltype, rtype, op_type>& geometry) {
+      (*this) = geometry.value();
+      dirty_ = false;
+      unsorted_ = false;
+      return *this;
+    }
+
+    template <typename geometry_object>
+    inline polygon_set_data& operator=(const geometry_object& geometry) {
+      data_.clear();
+      insert(geometry);
+      return *this;
+    }
+
+
+    // insert iterator range
+    inline void insert(iterator_type input_begin, iterator_type input_end, bool is_hole = false) {
+      if(input_begin == input_end || (!data_.empty() && &(*input_begin) == &(*(data_.begin())))) return;
+      dirty_ = true;
+      unsorted_ = true;
+      while(input_begin != input_end) {
+        insert(*input_begin, is_hole);
+        ++input_begin;
+      }
+    }
+
+    // insert iterator range
+    template <typename iT>
+    inline void insert(iT input_begin, iT input_end, bool is_hole = false) {
+      if(input_begin == input_end) return;
+      for(; input_begin != input_end; ++input_begin) {
+        insert(*input_begin, is_hole);
+      }
+    }
+
+    template <typename geometry_type>
+    inline void insert(const geometry_type& geometry_object, bool is_hole = false) {
+      insert(geometry_object, is_hole, typename geometry_concept<geometry_type>::type());
+    }
+
+    template <typename polygon_type>
+    inline void insert(const polygon_type& polygon_object, bool is_hole, polygon_concept ) {
+      insert_vertex_sequence(begin_points(polygon_object), end_points(polygon_object), winding(polygon_object), is_hole);
+    }
+
+    inline void insert(const polygon_set_data& ps, bool is_hole = false) {
+      insert(ps.data_.begin(), ps.data_.end(), is_hole);
+    }
+
+    template <typename polygon_45_set_type>
+    inline void insert(const polygon_45_set_type& ps, bool is_hole, polygon_45_set_concept) {
+      std::vector<polygon_45_with_holes_data<typename polygon_45_set_traits<polygon_45_set_type>::coordinate_type> > polys;
+      assign(polys, ps);
+      insert(polys.begin(), polys.end(), is_hole);
+    }
+
+    template <typename polygon_90_set_type>
+    inline void insert(const polygon_90_set_type& ps, bool is_hole, polygon_90_set_concept) {
+      std::vector<polygon_90_with_holes_data<typename polygon_90_set_traits<polygon_90_set_type>::coordinate_type> > polys;
+      assign(polys, ps);
+      insert(polys.begin(), polys.end(), is_hole);
+    }
+
+    template <typename polygon_type>
+    inline void insert(const polygon_type& polygon_object, bool is_hole, polygon_45_concept ) {
+      insert(polygon_object, is_hole, polygon_concept()); }
+
+    template <typename polygon_type>
+    inline void insert(const polygon_type& polygon_object, bool is_hole, polygon_90_concept ) {
+      insert(polygon_object, is_hole, polygon_concept()); }
+
+    template <typename polygon_with_holes_type>
+    inline void insert(const polygon_with_holes_type& polygon_with_holes_object, bool is_hole,
+                       polygon_with_holes_concept ) {
+      insert(polygon_with_holes_object, is_hole, polygon_concept());
+      for(typename polygon_with_holes_traits<polygon_with_holes_type>::iterator_holes_type itr =
+            begin_holes(polygon_with_holes_object);
+          itr != end_holes(polygon_with_holes_object); ++itr) {
+        insert(*itr, !is_hole, polygon_concept());
+      }
+    }
+
+    template <typename polygon_with_holes_type>
+    inline void insert(const polygon_with_holes_type& polygon_with_holes_object, bool is_hole,
+                       polygon_45_with_holes_concept ) {
+      insert(polygon_with_holes_object, is_hole, polygon_with_holes_concept()); }
+
+    template <typename polygon_with_holes_type>
+    inline void insert(const polygon_with_holes_type& polygon_with_holes_object, bool is_hole,
+                       polygon_90_with_holes_concept ) {
+      insert(polygon_with_holes_object, is_hole, polygon_with_holes_concept()); }
+
+    template <typename rectangle_type>
+    inline void insert(const rectangle_type& rectangle_object, bool is_hole, rectangle_concept ) {
+      polygon_90_data<coordinate_type> poly;
+      assign(poly, rectangle_object);
+      insert(poly, is_hole, polygon_concept());
+    }
+
+    inline void insert_clean(const element_type& edge, bool is_hole = false) {
+      if( ! scanline_base<coordinate_type>::is_45_degree(edge.first) &&
+          ! scanline_base<coordinate_type>::is_horizontal(edge.first) &&
+          ! scanline_base<coordinate_type>::is_vertical(edge.first) ) is_45_ = false;
+      data_.push_back(edge);
+      if(data_.back().first.second < data_.back().first.first) {
+        std::swap(data_.back().first.second, data_.back().first.first);
+        data_.back().second *= -1;
+      }
+      if(is_hole)
+        data_.back().second *= -1;
+    }
+
+    inline void insert(const element_type& edge, bool is_hole = false) {
+      insert_clean(edge, is_hole);
+      dirty_ = true;
+      unsorted_ = true;
+    }
+
+    template <class iT>
+    inline void insert_vertex_sequence(iT begin_vertex, iT end_vertex, direction_1d winding, bool is_hole) {
+      bool first_iteration = true;
+      point_type first_point;
+      point_type previous_point;
+      point_type current_point;
+      direction_1d winding_dir = winding;
+      int multiplier = winding_dir == COUNTERCLOCKWISE ? 1 : -1;
+      if(is_hole) multiplier *= -1;
+      for( ; begin_vertex != end_vertex; ++begin_vertex) {
+        assign(current_point, *begin_vertex);
+        if(first_iteration) {
+          first_iteration = false;
+          first_point = previous_point = current_point;
+        } else {
+          if(previous_point != current_point) {
+            element_type elem(edge_type(previous_point, current_point),
+                              ( previous_point.get(HORIZONTAL) == current_point.get(HORIZONTAL) ? -1 : 1) * multiplier);
+            insert_clean(elem);
+          }
+        }
+        previous_point = current_point;
+      }
+      current_point = first_point;
+      if(!first_iteration) {
+        if(previous_point != current_point) {
+          element_type elem(edge_type(previous_point, current_point),
+                            ( previous_point.get(HORIZONTAL) == current_point.get(HORIZONTAL) ? -1 : 1) * multiplier);
+          insert_clean(elem);
+        }
+        dirty_ = true;
+        unsorted_ = true;
+      }
+    }
+
+    template <typename output_container>
+    inline void get(output_container& output) const {
+      get_dispatch(output, typename geometry_concept<typename output_container::value_type>::type());
+    }
+
+    // append to the container cT with polygons of three or four verticies
+    // slicing orientation is vertical
+    template <class cT>
+    void get_trapezoids(cT& container) const {
+      clean();
+      trapezoid_arbitrary_formation<coordinate_type> pf;
+      typedef typename polygon_arbitrary_formation<coordinate_type>::vertex_half_edge vertex_half_edge;
+      std::vector<vertex_half_edge> data;
+      for(iterator_type itr = data_.begin(); itr != data_.end(); ++itr){
+        data.push_back(vertex_half_edge((*itr).first.first, (*itr).first.second, (*itr).second));
+        data.push_back(vertex_half_edge((*itr).first.second, (*itr).first.first, -1 * (*itr).second));
+      }
+      polygon_sort(data.begin(), data.end());
+      pf.scan(container, data.begin(), data.end());
+      //std::cout << "DONE FORMING POLYGONS\n";
+    }
+
+    // append to the container cT with polygons of three or four verticies
+    template <class cT>
+    void get_trapezoids(cT& container, orientation_2d slicing_orientation) const {
+      if(slicing_orientation == VERTICAL) {
+        get_trapezoids(container);
+      } else {
+        polygon_set_data<T> ps(*this);
+        ps.transform(axis_transformation(axis_transformation::SWAP_XY));
+        cT result;
+        ps.get_trapezoids(result);
+        for(typename cT::iterator itr = result.begin(); itr != result.end(); ++itr) {
+          ::boost::polygon::transform(*itr, axis_transformation(axis_transformation::SWAP_XY));
+        }
+        container.insert(container.end(), result.begin(), result.end());
+      }
+    }
+
+    // equivalence operator
+    inline bool operator==(const polygon_set_data& p) const;
+    
+    // inequivalence operator
+    inline bool operator!=(const polygon_set_data& p) const {
+      return !((*this) == p);
+    }
+
+    // get iterator to begin vertex data
+    inline iterator_type begin() const {
+      return data_.begin();
+    }
+
+    // get iterator to end vertex data
+    inline iterator_type end() const {
+      return data_.end();
+    }
+
+    const value_type& value() const {
+      return data_;
+    }
+
+    // clear the contents of the polygon_set_data
+    inline void clear() { data_.clear(); dirty_ = unsorted_ = false; }
+
+    // find out if Polygon set is empty
+    inline bool empty() const { return data_.empty(); }
+
+    // get the Polygon set size in vertices
+    inline std::size_t size() const { clean(); return data_.size(); }
+
+    // get the current Polygon set capacity in vertices
+    inline std::size_t capacity() const { return data_.capacity(); }
+
+    // reserve size of polygon set in vertices
+    inline void reserve(std::size_t size) { return data_.reserve(size); }
+
+    // find out if Polygon set is sorted
+    inline bool sorted() const { return !unsorted_; }
+
+    // find out if Polygon set is clean
+    inline bool dirty() const { return dirty_; }
+
+    void clean() const;
+
+    void sort() const{
+      if(unsorted_) {
+        polygon_sort(data_.begin(), data_.end());
+        unsorted_ = false;
+      }
+    }
+
+    template <typename input_iterator_type>
+    void set(input_iterator_type input_begin, input_iterator_type input_end) {
+      clear();
+      reserve(std::distance(input_begin,input_end));
+      insert(input_begin, input_end);
+      dirty_ = true;
+      unsorted_ = true;
+    }
+
+    void set(const value_type& value) {
+      data_ = value;
+      dirty_ = true;
+      unsorted_ = true;
+    }
+
+    template <typename rectangle_type>
+    bool extents(rectangle_type& rect) {
+      clean();
+      if(empty()) return false;
+      bool first_iteration = true;
+      for(iterator_type itr = begin();
+          itr != end(); ++itr) {
+        rectangle_type edge_box;
+        set_points(edge_box, (*itr).first.first, (*itr).first.second);
+        if(first_iteration)
+          rect = edge_box;
+        else
+          encompass(rect, edge_box);
+        first_iteration = false;
+      }
+      return true;
+    }
+
+    inline polygon_set_data&
+    resize(coordinate_type resizing, bool corner_fill_arc = false, unsigned int num_circle_segments=0);
+
+    template <typename transform_type>
+    inline polygon_set_data&
+    transform(const transform_type& tr) {
+      std::vector<polygon_with_holes_data<T> > polys;
+      get(polys);
+      clear();
+      for(std::size_t i = 0 ; i < polys.size(); ++i) {
+        ::boost::polygon::transform(polys[i], tr);
+        insert(polys[i]);
+      }
+      unsorted_ = true;
+      dirty_ = true;
+      return *this;
+    }
+
+    inline polygon_set_data&
+    scale_up(typename coordinate_traits<coordinate_type>::unsigned_area_type factor) {
+      for(typename value_type::iterator itr = data_.begin(); itr != data_.end(); ++itr) {
+        ::boost::polygon::scale_up((*itr).first.first, factor);
+        ::boost::polygon::scale_up((*itr).first.second, factor);
+      }
+      return *this;
+    }
+
+    inline polygon_set_data&
+    scale_down(typename coordinate_traits<coordinate_type>::unsigned_area_type factor) {
+      for(typename value_type::iterator itr = data_.begin(); itr != data_.end(); ++itr) {
+        bool vb = (*itr).first.first.x() == (*itr).first.second.x();
+        ::boost::polygon::scale_down((*itr).first.first, factor);
+        ::boost::polygon::scale_down((*itr).first.second, factor);
+        bool va = (*itr).first.first.x() == (*itr).first.second.x();
+        if(!vb && va) {
+          (*itr).second *= -1;
+        }
+      }
+      unsorted_ = true;
+      dirty_ = true;
+      return *this;
+    }
+
+    template <typename scaling_type>
+    inline polygon_set_data& scale(polygon_set_data& polygon_set,
+                                   const scaling_type& scaling) {
+      for(typename value_type::iterator itr = begin(); itr != end(); ++itr) {
+        bool vb = (*itr).first.first.x() == (*itr).first.second.x();
+        ::boost::polygon::scale((*itr).first.first, scaling);
+        ::boost::polygon::scale((*itr).first.second, scaling);
+        bool va = (*itr).first.first.x() == (*itr).first.second.x();
+        if(!vb && va) {
+          (*itr).second *= -1;
+        }
+      }
+      unsorted_ = true;
+      dirty_ = true;
+      return *this;
+    }
+
+    static inline void compute_offset_edge(point_data<long double>& pt1, point_data<long double>& pt2,
+                                           const point_data<long double>&  prev_pt,
+                                           const point_data<long double>&  current_pt,
+                                           long double distance, int multiplier) {
+      long double dx = current_pt.x() - prev_pt.x();
+      long double dy = current_pt.y() - prev_pt.y();
+      long double edge_length = std::sqrt(dx*dx + dy*dy);
+      long double dnx = dy;
+      long double dny = -dx;
+      dnx = dnx * (long double)distance / edge_length;
+      dny = dny * (long double)distance / edge_length;
+      pt1.x(prev_pt.x() + (long double)dnx * (long double)multiplier);
+      pt2.x(current_pt.x() + (long double)dnx * (long double)multiplier);
+      pt1.y(prev_pt.y() + (long double)dny * (long double)multiplier);
+      pt2.y(current_pt.y() + (long double)dny * (long double)multiplier);
+    }
+
+    static inline void modify_pt(point_data<coordinate_type>& pt, const point_data<coordinate_type>&  prev_pt,
+                                 const point_data<coordinate_type>&  current_pt,  const point_data<coordinate_type>&  next_pt,
+                                 coordinate_type distance, coordinate_type multiplier) {
+      std::pair<point_data<long double>, point_data<long double> > he1, he2;
+      he1.first.x((long double)(prev_pt.x()));
+      he1.first.y((long double)(prev_pt.y()));
+      he1.second.x((long double)(current_pt.x()));
+      he1.second.y((long double)(current_pt.y()));
+      he2.first.x((long double)(current_pt.x()));
+      he2.first.y((long double)(current_pt.y()));
+      he2.second.x((long double)(next_pt.x()));
+      he2.second.y((long double)(next_pt.y()));
+      compute_offset_edge(he1.first, he1.second, prev_pt, current_pt, distance, multiplier);
+      compute_offset_edge(he2.first, he2.second, current_pt, next_pt, distance, multiplier);
+      typedef scanline_base<long double>::compute_intersection_pack pack;
+      point_data<long double> rpt;
+      point_data<long double> bisectorpt((he1.second.x()+he2.first.x())/2,
+                                         (he1.second.y()+he2.first.y())/2);
+      point_data<long double> orig_pt((long double)pt.x(), (long double)pt.y());
+      if(euclidean_distance(bisectorpt, orig_pt) < distance/2) {
+        if(!pack::compute_lazy_intersection(rpt, he1, he2, true, false)) {
+          rpt = he1.second; //colinear offset edges use shared point
+        }
+      } else {
+        if(!pack::compute_lazy_intersection(rpt, he1, std::pair<point_data<long double>, point_data<long double> >(orig_pt, bisectorpt), true, false)) {
+          rpt = he1.second; //colinear offset edges use shared point
+        }
+      }
+      pt.x((coordinate_type)(std::floor(rpt.x()+0.5)));
+      pt.y((coordinate_type)(std::floor(rpt.y()+0.5)));
+    }
+
+    static void resize_poly_up(std::vector<point_data<coordinate_type> >& poly, coordinate_type distance, coordinate_type multiplier) {
+      point_data<coordinate_type> first_pt = poly[0];
+      point_data<coordinate_type> second_pt = poly[1];
+      point_data<coordinate_type> prev_pt = poly[0];
+      point_data<coordinate_type> current_pt = poly[1];
+      for(std::size_t i = 2; i < poly.size()-1; ++i) {
+        point_data<coordinate_type> next_pt = poly[i];
+        modify_pt(poly[i-1], prev_pt, current_pt, next_pt, distance, multiplier);
+        prev_pt = current_pt;
+        current_pt = next_pt;
+      }
+      point_data<coordinate_type> next_pt = first_pt;
+      modify_pt(poly[poly.size()-2], prev_pt, current_pt, next_pt, distance, multiplier);
+      prev_pt = current_pt;
+      current_pt = next_pt;
+      next_pt = second_pt;
+      modify_pt(poly[0], prev_pt, current_pt, next_pt, distance, multiplier);
+      poly.back() = poly.front();
+    }
+    static bool resize_poly_down(std::vector<point_data<coordinate_type> >& poly, coordinate_type distance, coordinate_type multiplier) {
+      std::vector<point_data<coordinate_type> > orig_poly(poly);
+      rectangle_data<coordinate_type> extents_rectangle;
+      set_points(extents_rectangle, poly[0], poly[0]);
+      point_data<coordinate_type> first_pt = poly[0];
+      point_data<coordinate_type> second_pt = poly[1];
+      point_data<coordinate_type> prev_pt = poly[0];
+      point_data<coordinate_type> current_pt = poly[1];
+      encompass(extents_rectangle, current_pt);
+      for(std::size_t i = 2; i < poly.size()-1; ++i) {
+        point_data<coordinate_type> next_pt = poly[i];
+        encompass(extents_rectangle, next_pt);
+        modify_pt(poly[i-1], prev_pt, current_pt, next_pt, distance, multiplier);
+        prev_pt = current_pt;
+        current_pt = next_pt;
+      }
+      if(delta(extents_rectangle, HORIZONTAL) <= std::abs(2*distance))
+        return false;
+      if(delta(extents_rectangle, VERTICAL) <= std::abs(2*distance))
+        return false;
+      point_data<coordinate_type> next_pt = first_pt;
+      modify_pt(poly[poly.size()-2], prev_pt, current_pt, next_pt, distance, multiplier);
+      prev_pt = current_pt;
+      current_pt = next_pt;
+      next_pt = second_pt;
+      modify_pt(poly[0], prev_pt, current_pt, next_pt, distance, multiplier);
+      poly.back() = poly.front();
+      //if the line segments formed between orignial and new points cross for an edge that edge inverts
+      //if all edges invert the polygon should be discarded
+      //if even one edge does not invert return true because the polygon is valid
+      bool non_inverting_edge = false;
+      for(std::size_t i = 1; i < poly.size(); ++i) {
+        std::pair<point_data<coordinate_type>, point_data<coordinate_type> >
+          he1(poly[i], orig_poly[i]),
+          he2(poly[i-1], orig_poly[i-1]);
+        if(!scanline_base<coordinate_type>::intersects(he1, he2)) {
+          non_inverting_edge = true;
+          break;
+        }
+      }
+      return non_inverting_edge;
+    }
+
+    polygon_set_data&
+    bloat(typename coordinate_traits<coordinate_type>::unsigned_area_type distance) {
+      std::list<polygon_with_holes_data<coordinate_type> > polys;
+      get(polys);
+      clear();
+      for(typename std::list<polygon_with_holes_data<coordinate_type> >::iterator itr = polys.begin();
+          itr != polys.end(); ++itr) {
+        resize_poly_up((*itr).self_.coords_, (coordinate_type)distance, (coordinate_type)1);
+        insert_vertex_sequence((*itr).self_.begin(), (*itr).self_.end(), COUNTERCLOCKWISE, false); //inserts without holes
+        for(typename std::list<polygon_data<coordinate_type> >::iterator itrh = (*itr).holes_.begin();
+            itrh != (*itr).holes_.end(); ++itrh) {
+          if(resize_poly_down((*itrh).coords_, (coordinate_type)distance, (coordinate_type)1)) {
+            insert_vertex_sequence((*itrh).coords_.begin(), (*itrh).coords_.end(), CLOCKWISE, true);
+          }
+        }
+      }
+      return *this;
+    }
+
+    polygon_set_data&
+    shrink(typename coordinate_traits<coordinate_type>::unsigned_area_type distance) {
+      std::list<polygon_with_holes_data<coordinate_type> > polys;
+      get(polys);
+      clear();
+      for(typename std::list<polygon_with_holes_data<coordinate_type> >::iterator itr = polys.begin();
+          itr != polys.end(); ++itr) {
+        if(resize_poly_down((*itr).self_.coords_, (coordinate_type)distance, (coordinate_type)-1)) {
+          insert_vertex_sequence((*itr).self_.begin(), (*itr).self_.end(), COUNTERCLOCKWISE, false); //inserts without holes
+          for(typename std::list<polygon_data<coordinate_type> >::iterator itrh = (*itr).holes_.begin();
+              itrh != (*itr).holes_.end(); ++itrh) {
+            resize_poly_up((*itrh).coords_, (coordinate_type)distance, (coordinate_type)-1);
+            insert_vertex_sequence((*itrh).coords_.begin(), (*itrh).coords_.end(), CLOCKWISE, true);
+          }
+        }
+      }
+      return *this;
+    }
+
+    // TODO:: should be private
+    template <typename geometry_type>
+    inline polygon_set_data&
+    insert_with_resize(const geometry_type& poly, coordinate_type resizing, bool corner_fill_arc=false, unsigned int num_circle_segments=0, bool hole = false) {
+      return insert_with_resize_dispatch(poly, resizing,  corner_fill_arc, num_circle_segments, hole, typename geometry_concept<geometry_type>::type());
+    }
+
+    template <typename geometry_type>
+    inline polygon_set_data&
+    insert_with_resize_dispatch(const geometry_type& poly, coordinate_type resizing, bool corner_fill_arc, unsigned int num_circle_segments, bool hole,
+                               polygon_with_holes_concept tag) {
+      insert_with_resize_dispatch(poly, resizing, corner_fill_arc, num_circle_segments, hole, polygon_concept());
+      for(typename polygon_with_holes_traits<geometry_type>::iterator_holes_type itr =
+            begin_holes(poly); itr != end_holes(poly);
+          ++itr) {
+        insert_with_resize_dispatch(*itr, resizing,  corner_fill_arc, num_circle_segments, !hole, polygon_concept());
+      }
+      return *this;
+    }
+
+    template <typename geometry_type>
+    inline polygon_set_data&
+    insert_with_resize_dispatch(const geometry_type& poly, coordinate_type resizing, bool corner_fill_arc, unsigned int num_circle_segments, bool hole,
+                          polygon_concept tag) {
+
+      if (resizing==0)
+         return *this;
+
+
+      // one dimensional used to store CCW/CW flag
+      //direction_1d wdir = winding(poly);
+      // LOW==CLOCKWISE just faster to type
+      // so > 0 is CCW
+      //int multiplier = wdir == LOW ? -1 : 1;
+      //std::cout<<" multiplier : "<<multiplier<<std::endl;
+      //if(hole) resizing *= -1;
+      direction_1d resize_wdir = resizing>0?COUNTERCLOCKWISE:CLOCKWISE;
+
+      typedef typename polygon_data<T>::iterator_type piterator;
+      piterator first, second, third, end, real_end;
+      real_end = end_points(poly);
+      third = begin_points(poly);
+      first = third;
+      if(first == real_end) return *this;
+      ++third;
+      if(third == real_end) return *this;
+      second = end = third;
+      ++third;
+      if(third == real_end) return *this;
+
+        // for 1st corner
+      std::vector<point_data<T> > first_pts;
+      std::vector<point_data<T> > all_pts;
+      direction_1d first_wdir = CLOCKWISE;
+
+      // for all corners
+      polygon_set_data<T> sizingSet;
+      bool sizing_sign = resizing<0;
+      bool prev_concave = true;
+      point_data<T> prev_point;
+      //int iCtr=0;
+
+
+      //insert minkofski shapes on edges and corners
+      do { // REAL WORK IS HERE
+
+
+        //first, second and third point to points in correct CCW order
+        // check if convex or concave case
+        point_data<coordinate_type> normal1( second->y()-first->y(), first->x()-second->x());
+        point_data<coordinate_type> normal2( third->y()-second->y(), second->x()-third->x());
+        double direction = normal1.x()*normal2.y()- normal2.x()*normal1.y();
+        bool convex = direction>0;
+
+        bool treat_as_concave = !convex;
+        if(sizing_sign)
+          treat_as_concave = convex;
+        point_data<double> v;
+        assign(v, normal1);
+        double s2 = (v.x()*v.x()+v.y()*v.y());
+        double s = std::sqrt(s2)/resizing;
+        v = point_data<double>(v.x()/s,v.y()/s);
+        point_data<T> curr_prev;
+        if (prev_concave)
+          //TODO missing round_down()
+          curr_prev = point_data<T>(first->x()+v.x(),first->y()+v.y());
+        else
+          curr_prev = prev_point;
+
+           // around concave corners - insert rectangle
+           // if previous corner is concave it's point info may be ignored
+        if ( treat_as_concave) {
+           std::vector<point_data<T> > pts;
+
+           pts.push_back(point_data<T>(second->x()+v.x(),second->y()+v.y()));
+           pts.push_back(*second);
+           pts.push_back(*first);
+           pts.push_back(point_data<T>(curr_prev));
+           if (first_pts.size()){
+              sizingSet.insert_vertex_sequence(pts.begin(),pts.end(), resize_wdir,false);
+           }else {
+               first_pts=pts;
+               first_wdir = resize_wdir;
+           }
+        } else {
+
+            // add either intersection_quad or pie_shape, based on corner_fill_arc option
+           // for convex corner (convexity depends on sign of resizing, whether we shrink or grow)
+           std::vector< std::vector<point_data<T> > > pts;
+           direction_1d winding;
+           winding = convex?COUNTERCLOCKWISE:CLOCKWISE;
+           if (make_resizing_vertex_list(pts, curr_prev, prev_concave, *first, *second, *third, resizing
+                                         , num_circle_segments, corner_fill_arc))
+           {
+               if (first_pts.size()) {
+                  for (int i=0; i<pts.size(); i++) {
+                    sizingSet.insert_vertex_sequence(pts[i].begin(),pts[i].end(),winding,false);
+                  }
+
+               } else {
+                  first_pts = pts[0];
+                  first_wdir = resize_wdir;
+                  for (int i=1; i<pts.size(); i++) {
+                    sizingSet.insert_vertex_sequence(pts[i].begin(),pts[i].end(),winding,false);
+                  }
+               }
+               prev_point = curr_prev;
+
+           } else {
+              treat_as_concave = true;
+           }
+        }
+
+        prev_concave = treat_as_concave;
+        first = second;
+        second = third;
+        ++third;
+        if(third == real_end) {
+          third = begin_points(poly);
+          if(*second == *third) {
+            ++third; //skip first point if it is duplicate of last point
+          }
+        }
+      } while(second != end);
+
+      // handle insertion of first point
+      if (!prev_concave) {
+          first_pts[first_pts.size()-1]=prev_point;
+      }
+      sizingSet.insert_vertex_sequence(first_pts.begin(),first_pts.end(),first_wdir,false);
+
+      polygon_set_data<coordinate_type> tmp;
+
+      //insert original shape
+      tmp.insert(poly, false, polygon_concept());
+      if((resizing < 0) ^ hole) tmp -= sizingSet;
+      else tmp += sizingSet;
+      //tmp.clean();
+      insert(tmp, hole);
+      return (*this);
+    }
+
+
+    inline polygon_set_data&
+    interact(const polygon_set_data& that);
+
+    inline bool downcast(polygon_45_set_data<coordinate_type>& result) const {
+      if(!is_45_) return false;
+      for(iterator_type itr = begin(); itr != end(); ++itr) {
+        const element_type& elem = *itr;
+        int count = elem.second;
+        int rise = 1; //up sloping 45
+        if(scanline_base<coordinate_type>::is_horizontal(elem.first)) rise = 0;
+        else if(scanline_base<coordinate_type>::is_vertical(elem.first)) rise = 2;
+        else {
+          if(!scanline_base<coordinate_type>::is_45_degree(elem.first)) {
+            is_45_ = false;
+            return false; //consider throwing because is_45_ has be be wrong
+          }
+          if(elem.first.first.y() > elem.first.second.y()) rise = -1; //down sloping 45
+        }
+        typename polygon_45_set_data<coordinate_type>::Vertex45Compact vertex(elem.first.first, rise, count);
+        result.insert(vertex);
+        typename polygon_45_set_data<coordinate_type>::Vertex45Compact vertex2(elem.first.second, rise, -count);
+        result.insert(vertex2);
+      }
+      return true;
+    }
+
+    inline GEOMETRY_CONCEPT_ID concept_downcast() const {
+      typedef typename coordinate_traits<coordinate_type>::coordinate_difference delta_type;
+      bool is_45 = false;
+      for(iterator_type itr = begin(); itr != end(); ++itr) {
+        const element_type& elem = *itr;
+        delta_type h_delta = euclidean_distance(elem.first.first, elem.first.second, HORIZONTAL);
+        delta_type v_delta = euclidean_distance(elem.first.first, elem.first.second, VERTICAL);
+        if(h_delta != 0 || v_delta != 0) {
+          //neither delta is zero and the edge is not MANHATTAN
+          if(v_delta != h_delta && v_delta != -h_delta) return POLYGON_SET_CONCEPT;
+          else is_45 = true;
+        }
+      }
+      if(is_45) return POLYGON_45_SET_CONCEPT;
+      return POLYGON_90_SET_CONCEPT;
+    }
+
+  private:
+    mutable value_type data_;
+    mutable bool dirty_;
+    mutable bool unsorted_;
+    mutable bool is_45_;
+
+  private:
+    //functions
+
+    template <typename output_container>
+    void get_dispatch(output_container& output, polygon_concept tag) const {
+      get_fracture(output, true, tag);
+    }
+    template <typename output_container>
+    void get_dispatch(output_container& output, polygon_with_holes_concept tag) const {
+      get_fracture(output, false, tag);
+    }
+    template <typename output_container, typename concept_type>
+    void get_fracture(output_container& container, bool fracture_holes, concept_type ) const {
+      clean();
+      polygon_arbitrary_formation<coordinate_type> pf(fracture_holes);
+      typedef typename polygon_arbitrary_formation<coordinate_type>::vertex_half_edge vertex_half_edge;
+      std::vector<vertex_half_edge> data;
+      for(iterator_type itr = data_.begin(); itr != data_.end(); ++itr){
+        data.push_back(vertex_half_edge((*itr).first.first, (*itr).first.second, (*itr).second));
+        data.push_back(vertex_half_edge((*itr).first.second, (*itr).first.first, -1 * (*itr).second));
+      }
+      polygon_sort(data.begin(), data.end());
+      pf.scan(container, data.begin(), data.end());
+    }
+  };
+
+  struct polygon_set_concept;
+  template <typename T>
+  struct geometry_concept<polygon_set_data<T> > {
+    typedef polygon_set_concept type;
+  };
+
+//   template <typename  T>
+//   inline double compute_area(point_data<T>& a, point_data<T>& b, point_data<T>& c) {
+
+//      return (double)(b.x()-a.x())*(double)(c.y()-a.y())- (double)(c.x()-a.x())*(double)(b.y()-a.y());
+
+
+//   }
+
+  template <typename  T>
+  inline int make_resizing_vertex_list(std::vector<std::vector<point_data< T> > >& return_points,
+                       point_data<T>& curr_prev, bool ignore_prev_point,
+                       point_data< T> start, point_data<T> middle, point_data< T>  end,
+                       double sizing_distance, unsigned int num_circle_segments, bool corner_fill_arc) {
+
+      // handle the case of adding an intersection point
+      point_data<double> dn1( middle.y()-start.y(), start.x()-middle.x());
+      double size = sizing_distance/std::sqrt( dn1.x()*dn1.x()+dn1.y()*dn1.y());
+      dn1 = point_data<double>( dn1.x()*size, dn1.y()* size);
+      point_data<double> dn2( end.y()-middle.y(), middle.x()-end.x());
+      size = sizing_distance/std::sqrt( dn2.x()*dn2.x()+dn2.y()*dn2.y());
+      dn2 = point_data<double>( dn2.x()*size, dn2.y()* size);
+      point_data<double> start_offset((start.x()+dn1.x()),(start.y()+dn1.y()));
+      point_data<double> mid1_offset((middle.x()+dn1.x()),(middle.y()+dn1.y()));
+      point_data<double> end_offset((end.x()+dn2.x()),(end.y()+dn2.y()));
+      point_data<double> mid2_offset((middle.x()+dn2.x()),(middle.y()+dn2.y()));
+      if (ignore_prev_point)
+            curr_prev = round_down<T>(start_offset);
+
+
+      if (corner_fill_arc) {
+         std::vector<point_data< T> > return_points1;
+         return_points.push_back(return_points1);
+         std::vector<point_data< T> >& return_points_back = return_points[return_points.size()-1];
+         return_points_back.push_back(round_down<T>(mid1_offset));
+         return_points_back.push_back(middle);
+         return_points_back.push_back(start);
+         return_points_back.push_back(curr_prev);
+         point_data<double> dmid(middle.x(),middle.y());
+         return_points.push_back(return_points1);
+         int num = make_arc(return_points[return_points.size()-1],mid1_offset,mid2_offset,dmid,sizing_distance,num_circle_segments);
+         curr_prev = round_down<T>(mid2_offset);
+         return num;
+
+      }
+
+      std::pair<point_data<double>,point_data<double> > he1(start_offset,mid1_offset);
+      std::pair<point_data<double>,point_data<double> > he2(mid2_offset ,end_offset);
+      //typedef typename high_precision_type<double>::type high_precision;
+
+      point_data<T> intersect;
+      typename scanline_base<T>::compute_intersection_pack pack;
+      bool res = pack.compute_intersection(intersect,he1,he2,true);
+      if( res ) {
+         std::vector<point_data< T> > return_points1;
+         return_points.push_back(return_points1);
+         std::vector<point_data< T> >& return_points_back = return_points[return_points.size()-1];
+         return_points_back.push_back(intersect);
+         return_points_back.push_back(middle);
+         return_points_back.push_back(start);
+         return_points_back.push_back(curr_prev);
+
+         //double d1= compute_area(intersect,middle,start);
+         //double d2= compute_area(start,curr_prev,intersect);
+
+         curr_prev = intersect;
+
+
+         return return_points.size();
+      }
+      return 0;
+
+  }
+
+  // this routine should take in start and end point s.t. end point is CCW from start
+  // it sould make a pie slice polygon  that is an intersection of that arc
+  // with an ngon segments approximation of the circle centered at center with radius r
+  // point start is gauaranteed to be on the segmentation
+  // returnPoints will start with the first point after start
+  // returnPoints vector  may be empty
+  template <typename  T>
+  inline int  make_arc(std::vector<point_data< T> >& return_points,
+                       point_data< double> start, point_data< double>  end,
+                       point_data< double> center,  double r, unsigned int num_circle_segments) {
+      const double our_pi=3.1415926535897932384626433832795028841971;
+
+      // derive start and end angles
+      double ps = atan2(start.y()-center.y(), start.x()-center.x());
+      double pe = atan2(end.y()-center.y(), end.x()-center.x());
+      if (ps <  0.0)
+         ps += 2.0 * our_pi;
+      if (pe <= 0.0)
+         pe += 2.0 * our_pi;
+      if (ps >= 2.0 * our_pi)
+         ps -= 2.0 * our_pi;
+      while (pe <= ps)
+         pe += 2.0 * our_pi;
+      double delta_angle = (2.0 * our_pi) / (double)num_circle_segments;
+      if ( start==end) // full circle?
+      {
+          ps = delta_angle*0.5;
+          pe = ps + our_pi * 2.0;
+          double x,y;
+          x =  center.x() + r * cos(ps);
+          y = center.y() + r * sin(ps);
+          start = point_data<double>(x,y);
+          end = start;
+      }
+      return_points.push_back(round_down<T>(center));
+      return_points.push_back(round_down<T>(start));
+      unsigned int i=0;
+      double curr_angle = ps+delta_angle;
+      while( curr_angle < pe - 0.01 && i < 2 * num_circle_segments) {
+         i++;
+         double x = center.x() + r * cos( curr_angle);
+         double y = center.y() + r * sin( curr_angle);
+         return_points.push_back( round_down<T>((point_data<double>(x,y))));
+         curr_angle+=delta_angle;
+      }
+      return_points.push_back(round_down<T>(end));
+      return return_points.size();
+  }
+
+}// close namespace
+}// close name space
+
+#include "detail/scan_arbitrary.hpp"
+
+namespace boost { namespace polygon {
+  //ConnectivityExtraction computes the graph of connectivity between rectangle, polygon and
+  //polygon set graph nodes where an edge is created whenever the geometry in two nodes overlap
+  template <typename coordinate_type>
+  class connectivity_extraction{
+  private:
+    typedef arbitrary_connectivity_extraction<coordinate_type, int> ce;
+    ce ce_;
+    unsigned int nodeCount_;
+  public:
+    inline connectivity_extraction() : ce_(), nodeCount_(0) {}
+    inline connectivity_extraction(const connectivity_extraction& that) : ce_(that.ce_),
+                                                                          nodeCount_(that.nodeCount_) {}
+    inline connectivity_extraction& operator=(const connectivity_extraction& that) {
+      ce_ = that.ce_;
+      nodeCount_ = that.nodeCount_; {}
+      return *this;
+    }
+
+    //insert a polygon set graph node, the value returned is the id of the graph node
+    inline unsigned int insert(const polygon_set_data<coordinate_type>& ps) {
+      ps.clean();
+      ce_.populateTouchSetData(ps.begin(), ps.end(), nodeCount_);
+      return nodeCount_++;
+    }
+    template <class GeoObjT>
+    inline unsigned int insert(const GeoObjT& geoObj) {
+      polygon_set_data<coordinate_type> ps;
+      ps.insert(geoObj);
+      return insert(ps);
+    }
+
+    //extract connectivity and store the edges in the graph
+    //graph must be indexable by graph node id and the indexed value must be a std::set of
+    //graph node id
+    template <class GraphT>
+    inline void extract(GraphT& graph) {
+      ce_.execute(graph);
+    }
+  };
+
+  template <typename T>
+  polygon_set_data<T>&
+  polygon_set_data<T>::interact(const polygon_set_data<T>& that) {
+    connectivity_extraction<coordinate_type> ce;
+    std::vector<polygon_with_holes_data<T> > polys;
+    get(polys);
+    clear();
+    for(std::size_t i = 0; i < polys.size(); ++i) {
+      ce.insert(polys[i]);
+    }
+    int id = ce.insert(that);
+    std::vector<std::set<int> > graph(id+1);
+    ce.extract(graph);
+    for(std::set<int>::iterator itr = graph[id].begin();
+        itr != graph[id].end(); ++itr) {
+      insert(polys[*itr]);
+    }
+    return *this;
+  }
+}
+}
+
+#include "polygon_set_traits.hpp"
+#include "detail/polygon_set_view.hpp"
+
+#include "polygon_set_concept.hpp"
+#include "detail/minkowski.hpp"
+#endif