Chris@16
|
1 // (C) Copyright John Maddock 2006.
|
Chris@16
|
2 // Use, modification and distribution are subject to the
|
Chris@16
|
3 // Boost Software License, Version 1.0. (See accompanying file
|
Chris@16
|
4 // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
Chris@16
|
5
|
Chris@16
|
6 #ifndef BOOST_MATH_TOOLS_SOLVE_ROOT_HPP
|
Chris@16
|
7 #define BOOST_MATH_TOOLS_SOLVE_ROOT_HPP
|
Chris@16
|
8
|
Chris@16
|
9 #ifdef _MSC_VER
|
Chris@16
|
10 #pragma once
|
Chris@16
|
11 #endif
|
Chris@16
|
12
|
Chris@16
|
13 #include <boost/math/tools/precision.hpp>
|
Chris@16
|
14 #include <boost/math/policies/error_handling.hpp>
|
Chris@16
|
15 #include <boost/math/tools/config.hpp>
|
Chris@16
|
16 #include <boost/math/special_functions/sign.hpp>
|
Chris@16
|
17 #include <boost/cstdint.hpp>
|
Chris@16
|
18 #include <limits>
|
Chris@16
|
19
|
Chris@16
|
20 namespace boost{ namespace math{ namespace tools{
|
Chris@16
|
21
|
Chris@16
|
22 template <class T>
|
Chris@16
|
23 class eps_tolerance
|
Chris@16
|
24 {
|
Chris@16
|
25 public:
|
Chris@16
|
26 eps_tolerance(unsigned bits)
|
Chris@16
|
27 {
|
Chris@16
|
28 BOOST_MATH_STD_USING
|
Chris@16
|
29 eps = (std::max)(T(ldexp(1.0F, 1-bits)), T(4 * tools::epsilon<T>()));
|
Chris@16
|
30 }
|
Chris@16
|
31 bool operator()(const T& a, const T& b)
|
Chris@16
|
32 {
|
Chris@16
|
33 BOOST_MATH_STD_USING
|
Chris@16
|
34 return fabs(a - b) <= (eps * (std::min)(fabs(a), fabs(b)));
|
Chris@16
|
35 }
|
Chris@16
|
36 private:
|
Chris@16
|
37 T eps;
|
Chris@16
|
38 };
|
Chris@16
|
39
|
Chris@16
|
40 struct equal_floor
|
Chris@16
|
41 {
|
Chris@16
|
42 equal_floor(){}
|
Chris@16
|
43 template <class T>
|
Chris@16
|
44 bool operator()(const T& a, const T& b)
|
Chris@16
|
45 {
|
Chris@16
|
46 BOOST_MATH_STD_USING
|
Chris@16
|
47 return floor(a) == floor(b);
|
Chris@16
|
48 }
|
Chris@16
|
49 };
|
Chris@16
|
50
|
Chris@16
|
51 struct equal_ceil
|
Chris@16
|
52 {
|
Chris@16
|
53 equal_ceil(){}
|
Chris@16
|
54 template <class T>
|
Chris@16
|
55 bool operator()(const T& a, const T& b)
|
Chris@16
|
56 {
|
Chris@16
|
57 BOOST_MATH_STD_USING
|
Chris@16
|
58 return ceil(a) == ceil(b);
|
Chris@16
|
59 }
|
Chris@16
|
60 };
|
Chris@16
|
61
|
Chris@16
|
62 struct equal_nearest_integer
|
Chris@16
|
63 {
|
Chris@16
|
64 equal_nearest_integer(){}
|
Chris@16
|
65 template <class T>
|
Chris@16
|
66 bool operator()(const T& a, const T& b)
|
Chris@16
|
67 {
|
Chris@16
|
68 BOOST_MATH_STD_USING
|
Chris@16
|
69 return floor(a + 0.5f) == floor(b + 0.5f);
|
Chris@16
|
70 }
|
Chris@16
|
71 };
|
Chris@16
|
72
|
Chris@16
|
73 namespace detail{
|
Chris@16
|
74
|
Chris@16
|
75 template <class F, class T>
|
Chris@16
|
76 void bracket(F f, T& a, T& b, T c, T& fa, T& fb, T& d, T& fd)
|
Chris@16
|
77 {
|
Chris@16
|
78 //
|
Chris@16
|
79 // Given a point c inside the existing enclosing interval
|
Chris@16
|
80 // [a, b] sets a = c if f(c) == 0, otherwise finds the new
|
Chris@16
|
81 // enclosing interval: either [a, c] or [c, b] and sets
|
Chris@16
|
82 // d and fd to the point that has just been removed from
|
Chris@16
|
83 // the interval. In other words d is the third best guess
|
Chris@16
|
84 // to the root.
|
Chris@16
|
85 //
|
Chris@16
|
86 BOOST_MATH_STD_USING // For ADL of std math functions
|
Chris@16
|
87 T tol = tools::epsilon<T>() * 2;
|
Chris@16
|
88 //
|
Chris@16
|
89 // If the interval [a,b] is very small, or if c is too close
|
Chris@16
|
90 // to one end of the interval then we need to adjust the
|
Chris@16
|
91 // location of c accordingly:
|
Chris@16
|
92 //
|
Chris@16
|
93 if((b - a) < 2 * tol * a)
|
Chris@16
|
94 {
|
Chris@16
|
95 c = a + (b - a) / 2;
|
Chris@16
|
96 }
|
Chris@16
|
97 else if(c <= a + fabs(a) * tol)
|
Chris@16
|
98 {
|
Chris@16
|
99 c = a + fabs(a) * tol;
|
Chris@16
|
100 }
|
Chris@16
|
101 else if(c >= b - fabs(b) * tol)
|
Chris@16
|
102 {
|
Chris@16
|
103 c = b - fabs(a) * tol;
|
Chris@16
|
104 }
|
Chris@16
|
105 //
|
Chris@16
|
106 // OK, lets invoke f(c):
|
Chris@16
|
107 //
|
Chris@16
|
108 T fc = f(c);
|
Chris@16
|
109 //
|
Chris@16
|
110 // if we have a zero then we have an exact solution to the root:
|
Chris@16
|
111 //
|
Chris@16
|
112 if(fc == 0)
|
Chris@16
|
113 {
|
Chris@16
|
114 a = c;
|
Chris@16
|
115 fa = 0;
|
Chris@16
|
116 d = 0;
|
Chris@16
|
117 fd = 0;
|
Chris@16
|
118 return;
|
Chris@16
|
119 }
|
Chris@16
|
120 //
|
Chris@16
|
121 // Non-zero fc, update the interval:
|
Chris@16
|
122 //
|
Chris@16
|
123 if(boost::math::sign(fa) * boost::math::sign(fc) < 0)
|
Chris@16
|
124 {
|
Chris@16
|
125 d = b;
|
Chris@16
|
126 fd = fb;
|
Chris@16
|
127 b = c;
|
Chris@16
|
128 fb = fc;
|
Chris@16
|
129 }
|
Chris@16
|
130 else
|
Chris@16
|
131 {
|
Chris@16
|
132 d = a;
|
Chris@16
|
133 fd = fa;
|
Chris@16
|
134 a = c;
|
Chris@16
|
135 fa= fc;
|
Chris@16
|
136 }
|
Chris@16
|
137 }
|
Chris@16
|
138
|
Chris@16
|
139 template <class T>
|
Chris@16
|
140 inline T safe_div(T num, T denom, T r)
|
Chris@16
|
141 {
|
Chris@16
|
142 //
|
Chris@16
|
143 // return num / denom without overflow,
|
Chris@16
|
144 // return r if overflow would occur.
|
Chris@16
|
145 //
|
Chris@16
|
146 BOOST_MATH_STD_USING // For ADL of std math functions
|
Chris@16
|
147
|
Chris@16
|
148 if(fabs(denom) < 1)
|
Chris@16
|
149 {
|
Chris@16
|
150 if(fabs(denom * tools::max_value<T>()) <= fabs(num))
|
Chris@16
|
151 return r;
|
Chris@16
|
152 }
|
Chris@16
|
153 return num / denom;
|
Chris@16
|
154 }
|
Chris@16
|
155
|
Chris@16
|
156 template <class T>
|
Chris@16
|
157 inline T secant_interpolate(const T& a, const T& b, const T& fa, const T& fb)
|
Chris@16
|
158 {
|
Chris@16
|
159 //
|
Chris@16
|
160 // Performs standard secant interpolation of [a,b] given
|
Chris@16
|
161 // function evaluations f(a) and f(b). Performs a bisection
|
Chris@16
|
162 // if secant interpolation would leave us very close to either
|
Chris@16
|
163 // a or b. Rationale: we only call this function when at least
|
Chris@16
|
164 // one other form of interpolation has already failed, so we know
|
Chris@16
|
165 // that the function is unlikely to be smooth with a root very
|
Chris@16
|
166 // close to a or b.
|
Chris@16
|
167 //
|
Chris@16
|
168 BOOST_MATH_STD_USING // For ADL of std math functions
|
Chris@16
|
169
|
Chris@16
|
170 T tol = tools::epsilon<T>() * 5;
|
Chris@16
|
171 T c = a - (fa / (fb - fa)) * (b - a);
|
Chris@16
|
172 if((c <= a + fabs(a) * tol) || (c >= b - fabs(b) * tol))
|
Chris@16
|
173 return (a + b) / 2;
|
Chris@16
|
174 return c;
|
Chris@16
|
175 }
|
Chris@16
|
176
|
Chris@16
|
177 template <class T>
|
Chris@16
|
178 T quadratic_interpolate(const T& a, const T& b, T const& d,
|
Chris@16
|
179 const T& fa, const T& fb, T const& fd,
|
Chris@16
|
180 unsigned count)
|
Chris@16
|
181 {
|
Chris@16
|
182 //
|
Chris@16
|
183 // Performs quadratic interpolation to determine the next point,
|
Chris@16
|
184 // takes count Newton steps to find the location of the
|
Chris@16
|
185 // quadratic polynomial.
|
Chris@16
|
186 //
|
Chris@16
|
187 // Point d must lie outside of the interval [a,b], it is the third
|
Chris@16
|
188 // best approximation to the root, after a and b.
|
Chris@16
|
189 //
|
Chris@16
|
190 // Note: this does not guarentee to find a root
|
Chris@16
|
191 // inside [a, b], so we fall back to a secant step should
|
Chris@16
|
192 // the result be out of range.
|
Chris@16
|
193 //
|
Chris@16
|
194 // Start by obtaining the coefficients of the quadratic polynomial:
|
Chris@16
|
195 //
|
Chris@16
|
196 T B = safe_div(T(fb - fa), T(b - a), tools::max_value<T>());
|
Chris@16
|
197 T A = safe_div(T(fd - fb), T(d - b), tools::max_value<T>());
|
Chris@16
|
198 A = safe_div(T(A - B), T(d - a), T(0));
|
Chris@16
|
199
|
Chris@16
|
200 if(A == 0)
|
Chris@16
|
201 {
|
Chris@16
|
202 // failure to determine coefficients, try a secant step:
|
Chris@16
|
203 return secant_interpolate(a, b, fa, fb);
|
Chris@16
|
204 }
|
Chris@16
|
205 //
|
Chris@16
|
206 // Determine the starting point of the Newton steps:
|
Chris@16
|
207 //
|
Chris@16
|
208 T c;
|
Chris@16
|
209 if(boost::math::sign(A) * boost::math::sign(fa) > 0)
|
Chris@16
|
210 {
|
Chris@16
|
211 c = a;
|
Chris@16
|
212 }
|
Chris@16
|
213 else
|
Chris@16
|
214 {
|
Chris@16
|
215 c = b;
|
Chris@16
|
216 }
|
Chris@16
|
217 //
|
Chris@16
|
218 // Take the Newton steps:
|
Chris@16
|
219 //
|
Chris@16
|
220 for(unsigned i = 1; i <= count; ++i)
|
Chris@16
|
221 {
|
Chris@16
|
222 //c -= safe_div(B * c, (B + A * (2 * c - a - b)), 1 + c - a);
|
Chris@16
|
223 c -= safe_div(T(fa+(B+A*(c-b))*(c-a)), T(B + A * (2 * c - a - b)), T(1 + c - a));
|
Chris@16
|
224 }
|
Chris@16
|
225 if((c <= a) || (c >= b))
|
Chris@16
|
226 {
|
Chris@16
|
227 // Oops, failure, try a secant step:
|
Chris@16
|
228 c = secant_interpolate(a, b, fa, fb);
|
Chris@16
|
229 }
|
Chris@16
|
230 return c;
|
Chris@16
|
231 }
|
Chris@16
|
232
|
Chris@16
|
233 template <class T>
|
Chris@16
|
234 T cubic_interpolate(const T& a, const T& b, const T& d,
|
Chris@16
|
235 const T& e, const T& fa, const T& fb,
|
Chris@16
|
236 const T& fd, const T& fe)
|
Chris@16
|
237 {
|
Chris@16
|
238 //
|
Chris@16
|
239 // Uses inverse cubic interpolation of f(x) at points
|
Chris@16
|
240 // [a,b,d,e] to obtain an approximate root of f(x).
|
Chris@16
|
241 // Points d and e lie outside the interval [a,b]
|
Chris@16
|
242 // and are the third and forth best approximations
|
Chris@16
|
243 // to the root that we have found so far.
|
Chris@16
|
244 //
|
Chris@16
|
245 // Note: this does not guarentee to find a root
|
Chris@16
|
246 // inside [a, b], so we fall back to quadratic
|
Chris@16
|
247 // interpolation in case of an erroneous result.
|
Chris@16
|
248 //
|
Chris@16
|
249 BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b
|
Chris@16
|
250 << " d = " << d << " e = " << e << " fa = " << fa << " fb = " << fb
|
Chris@16
|
251 << " fd = " << fd << " fe = " << fe);
|
Chris@16
|
252 T q11 = (d - e) * fd / (fe - fd);
|
Chris@16
|
253 T q21 = (b - d) * fb / (fd - fb);
|
Chris@16
|
254 T q31 = (a - b) * fa / (fb - fa);
|
Chris@16
|
255 T d21 = (b - d) * fd / (fd - fb);
|
Chris@16
|
256 T d31 = (a - b) * fb / (fb - fa);
|
Chris@16
|
257 BOOST_MATH_INSTRUMENT_CODE(
|
Chris@16
|
258 "q11 = " << q11 << " q21 = " << q21 << " q31 = " << q31
|
Chris@16
|
259 << " d21 = " << d21 << " d31 = " << d31);
|
Chris@16
|
260 T q22 = (d21 - q11) * fb / (fe - fb);
|
Chris@16
|
261 T q32 = (d31 - q21) * fa / (fd - fa);
|
Chris@16
|
262 T d32 = (d31 - q21) * fd / (fd - fa);
|
Chris@16
|
263 T q33 = (d32 - q22) * fa / (fe - fa);
|
Chris@16
|
264 T c = q31 + q32 + q33 + a;
|
Chris@16
|
265 BOOST_MATH_INSTRUMENT_CODE(
|
Chris@16
|
266 "q22 = " << q22 << " q32 = " << q32 << " d32 = " << d32
|
Chris@16
|
267 << " q33 = " << q33 << " c = " << c);
|
Chris@16
|
268
|
Chris@16
|
269 if((c <= a) || (c >= b))
|
Chris@16
|
270 {
|
Chris@16
|
271 // Out of bounds step, fall back to quadratic interpolation:
|
Chris@16
|
272 c = quadratic_interpolate(a, b, d, fa, fb, fd, 3);
|
Chris@16
|
273 BOOST_MATH_INSTRUMENT_CODE(
|
Chris@16
|
274 "Out of bounds interpolation, falling back to quadratic interpolation. c = " << c);
|
Chris@16
|
275 }
|
Chris@16
|
276
|
Chris@16
|
277 return c;
|
Chris@16
|
278 }
|
Chris@16
|
279
|
Chris@16
|
280 } // namespace detail
|
Chris@16
|
281
|
Chris@16
|
282 template <class F, class T, class Tol, class Policy>
|
Chris@16
|
283 std::pair<T, T> toms748_solve(F f, const T& ax, const T& bx, const T& fax, const T& fbx, Tol tol, boost::uintmax_t& max_iter, const Policy& pol)
|
Chris@16
|
284 {
|
Chris@16
|
285 //
|
Chris@16
|
286 // Main entry point and logic for Toms Algorithm 748
|
Chris@16
|
287 // root finder.
|
Chris@16
|
288 //
|
Chris@16
|
289 BOOST_MATH_STD_USING // For ADL of std math functions
|
Chris@16
|
290
|
Chris@16
|
291 static const char* function = "boost::math::tools::toms748_solve<%1%>";
|
Chris@16
|
292
|
Chris@16
|
293 boost::uintmax_t count = max_iter;
|
Chris@16
|
294 T a, b, fa, fb, c, u, fu, a0, b0, d, fd, e, fe;
|
Chris@16
|
295 static const T mu = 0.5f;
|
Chris@16
|
296
|
Chris@16
|
297 // initialise a, b and fa, fb:
|
Chris@16
|
298 a = ax;
|
Chris@16
|
299 b = bx;
|
Chris@16
|
300 if(a >= b)
|
Chris@16
|
301 policies::raise_domain_error(
|
Chris@16
|
302 function,
|
Chris@16
|
303 "Parameters a and b out of order: a=%1%", a, pol);
|
Chris@16
|
304 fa = fax;
|
Chris@16
|
305 fb = fbx;
|
Chris@16
|
306
|
Chris@16
|
307 if(tol(a, b) || (fa == 0) || (fb == 0))
|
Chris@16
|
308 {
|
Chris@16
|
309 max_iter = 0;
|
Chris@16
|
310 if(fa == 0)
|
Chris@16
|
311 b = a;
|
Chris@16
|
312 else if(fb == 0)
|
Chris@16
|
313 a = b;
|
Chris@16
|
314 return std::make_pair(a, b);
|
Chris@16
|
315 }
|
Chris@16
|
316
|
Chris@16
|
317 if(boost::math::sign(fa) * boost::math::sign(fb) > 0)
|
Chris@16
|
318 policies::raise_domain_error(
|
Chris@16
|
319 function,
|
Chris@16
|
320 "Parameters a and b do not bracket the root: a=%1%", a, pol);
|
Chris@16
|
321 // dummy value for fd, e and fe:
|
Chris@16
|
322 fe = e = fd = 1e5F;
|
Chris@16
|
323
|
Chris@16
|
324 if(fa != 0)
|
Chris@16
|
325 {
|
Chris@16
|
326 //
|
Chris@16
|
327 // On the first step we take a secant step:
|
Chris@16
|
328 //
|
Chris@16
|
329 c = detail::secant_interpolate(a, b, fa, fb);
|
Chris@16
|
330 detail::bracket(f, a, b, c, fa, fb, d, fd);
|
Chris@16
|
331 --count;
|
Chris@16
|
332 BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b);
|
Chris@16
|
333
|
Chris@16
|
334 if(count && (fa != 0) && !tol(a, b))
|
Chris@16
|
335 {
|
Chris@16
|
336 //
|
Chris@16
|
337 // On the second step we take a quadratic interpolation:
|
Chris@16
|
338 //
|
Chris@16
|
339 c = detail::quadratic_interpolate(a, b, d, fa, fb, fd, 2);
|
Chris@16
|
340 e = d;
|
Chris@16
|
341 fe = fd;
|
Chris@16
|
342 detail::bracket(f, a, b, c, fa, fb, d, fd);
|
Chris@16
|
343 --count;
|
Chris@16
|
344 BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b);
|
Chris@16
|
345 }
|
Chris@16
|
346 }
|
Chris@16
|
347
|
Chris@16
|
348 while(count && (fa != 0) && !tol(a, b))
|
Chris@16
|
349 {
|
Chris@16
|
350 // save our brackets:
|
Chris@16
|
351 a0 = a;
|
Chris@16
|
352 b0 = b;
|
Chris@16
|
353 //
|
Chris@16
|
354 // Starting with the third step taken
|
Chris@16
|
355 // we can use either quadratic or cubic interpolation.
|
Chris@16
|
356 // Cubic interpolation requires that all four function values
|
Chris@16
|
357 // fa, fb, fd, and fe are distinct, should that not be the case
|
Chris@16
|
358 // then variable prof will get set to true, and we'll end up
|
Chris@16
|
359 // taking a quadratic step instead.
|
Chris@16
|
360 //
|
Chris@16
|
361 T min_diff = tools::min_value<T>() * 32;
|
Chris@16
|
362 bool prof = (fabs(fa - fb) < min_diff) || (fabs(fa - fd) < min_diff) || (fabs(fa - fe) < min_diff) || (fabs(fb - fd) < min_diff) || (fabs(fb - fe) < min_diff) || (fabs(fd - fe) < min_diff);
|
Chris@16
|
363 if(prof)
|
Chris@16
|
364 {
|
Chris@16
|
365 c = detail::quadratic_interpolate(a, b, d, fa, fb, fd, 2);
|
Chris@16
|
366 BOOST_MATH_INSTRUMENT_CODE("Can't take cubic step!!!!");
|
Chris@16
|
367 }
|
Chris@16
|
368 else
|
Chris@16
|
369 {
|
Chris@16
|
370 c = detail::cubic_interpolate(a, b, d, e, fa, fb, fd, fe);
|
Chris@16
|
371 }
|
Chris@16
|
372 //
|
Chris@16
|
373 // re-bracket, and check for termination:
|
Chris@16
|
374 //
|
Chris@16
|
375 e = d;
|
Chris@16
|
376 fe = fd;
|
Chris@16
|
377 detail::bracket(f, a, b, c, fa, fb, d, fd);
|
Chris@16
|
378 if((0 == --count) || (fa == 0) || tol(a, b))
|
Chris@16
|
379 break;
|
Chris@16
|
380 BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b);
|
Chris@16
|
381 //
|
Chris@16
|
382 // Now another interpolated step:
|
Chris@16
|
383 //
|
Chris@16
|
384 prof = (fabs(fa - fb) < min_diff) || (fabs(fa - fd) < min_diff) || (fabs(fa - fe) < min_diff) || (fabs(fb - fd) < min_diff) || (fabs(fb - fe) < min_diff) || (fabs(fd - fe) < min_diff);
|
Chris@16
|
385 if(prof)
|
Chris@16
|
386 {
|
Chris@16
|
387 c = detail::quadratic_interpolate(a, b, d, fa, fb, fd, 3);
|
Chris@16
|
388 BOOST_MATH_INSTRUMENT_CODE("Can't take cubic step!!!!");
|
Chris@16
|
389 }
|
Chris@16
|
390 else
|
Chris@16
|
391 {
|
Chris@16
|
392 c = detail::cubic_interpolate(a, b, d, e, fa, fb, fd, fe);
|
Chris@16
|
393 }
|
Chris@16
|
394 //
|
Chris@16
|
395 // Bracket again, and check termination condition, update e:
|
Chris@16
|
396 //
|
Chris@16
|
397 detail::bracket(f, a, b, c, fa, fb, d, fd);
|
Chris@16
|
398 if((0 == --count) || (fa == 0) || tol(a, b))
|
Chris@16
|
399 break;
|
Chris@16
|
400 BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b);
|
Chris@16
|
401 //
|
Chris@16
|
402 // Now we take a double-length secant step:
|
Chris@16
|
403 //
|
Chris@16
|
404 if(fabs(fa) < fabs(fb))
|
Chris@16
|
405 {
|
Chris@16
|
406 u = a;
|
Chris@16
|
407 fu = fa;
|
Chris@16
|
408 }
|
Chris@16
|
409 else
|
Chris@16
|
410 {
|
Chris@16
|
411 u = b;
|
Chris@16
|
412 fu = fb;
|
Chris@16
|
413 }
|
Chris@16
|
414 c = u - 2 * (fu / (fb - fa)) * (b - a);
|
Chris@16
|
415 if(fabs(c - u) > (b - a) / 2)
|
Chris@16
|
416 {
|
Chris@16
|
417 c = a + (b - a) / 2;
|
Chris@16
|
418 }
|
Chris@16
|
419 //
|
Chris@16
|
420 // Bracket again, and check termination condition:
|
Chris@16
|
421 //
|
Chris@16
|
422 e = d;
|
Chris@16
|
423 fe = fd;
|
Chris@16
|
424 detail::bracket(f, a, b, c, fa, fb, d, fd);
|
Chris@16
|
425 BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b);
|
Chris@16
|
426 BOOST_MATH_INSTRUMENT_CODE(" tol = " << T((fabs(a) - fabs(b)) / fabs(a)));
|
Chris@16
|
427 if((0 == --count) || (fa == 0) || tol(a, b))
|
Chris@16
|
428 break;
|
Chris@16
|
429 //
|
Chris@16
|
430 // And finally... check to see if an additional bisection step is
|
Chris@16
|
431 // to be taken, we do this if we're not converging fast enough:
|
Chris@16
|
432 //
|
Chris@16
|
433 if((b - a) < mu * (b0 - a0))
|
Chris@16
|
434 continue;
|
Chris@16
|
435 //
|
Chris@16
|
436 // bracket again on a bisection:
|
Chris@16
|
437 //
|
Chris@16
|
438 e = d;
|
Chris@16
|
439 fe = fd;
|
Chris@16
|
440 detail::bracket(f, a, b, T(a + (b - a) / 2), fa, fb, d, fd);
|
Chris@16
|
441 --count;
|
Chris@16
|
442 BOOST_MATH_INSTRUMENT_CODE("Not converging: Taking a bisection!!!!");
|
Chris@16
|
443 BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b);
|
Chris@16
|
444 } // while loop
|
Chris@16
|
445
|
Chris@16
|
446 max_iter -= count;
|
Chris@16
|
447 if(fa == 0)
|
Chris@16
|
448 {
|
Chris@16
|
449 b = a;
|
Chris@16
|
450 }
|
Chris@16
|
451 else if(fb == 0)
|
Chris@16
|
452 {
|
Chris@16
|
453 a = b;
|
Chris@16
|
454 }
|
Chris@16
|
455 return std::make_pair(a, b);
|
Chris@16
|
456 }
|
Chris@16
|
457
|
Chris@16
|
458 template <class F, class T, class Tol>
|
Chris@16
|
459 inline std::pair<T, T> toms748_solve(F f, const T& ax, const T& bx, const T& fax, const T& fbx, Tol tol, boost::uintmax_t& max_iter)
|
Chris@16
|
460 {
|
Chris@16
|
461 return toms748_solve(f, ax, bx, fax, fbx, tol, max_iter, policies::policy<>());
|
Chris@16
|
462 }
|
Chris@16
|
463
|
Chris@16
|
464 template <class F, class T, class Tol, class Policy>
|
Chris@16
|
465 inline std::pair<T, T> toms748_solve(F f, const T& ax, const T& bx, Tol tol, boost::uintmax_t& max_iter, const Policy& pol)
|
Chris@16
|
466 {
|
Chris@16
|
467 max_iter -= 2;
|
Chris@16
|
468 std::pair<T, T> r = toms748_solve(f, ax, bx, f(ax), f(bx), tol, max_iter, pol);
|
Chris@16
|
469 max_iter += 2;
|
Chris@16
|
470 return r;
|
Chris@16
|
471 }
|
Chris@16
|
472
|
Chris@16
|
473 template <class F, class T, class Tol>
|
Chris@16
|
474 inline std::pair<T, T> toms748_solve(F f, const T& ax, const T& bx, Tol tol, boost::uintmax_t& max_iter)
|
Chris@16
|
475 {
|
Chris@16
|
476 return toms748_solve(f, ax, bx, tol, max_iter, policies::policy<>());
|
Chris@16
|
477 }
|
Chris@16
|
478
|
Chris@16
|
479 template <class F, class T, class Tol, class Policy>
|
Chris@16
|
480 std::pair<T, T> bracket_and_solve_root(F f, const T& guess, T factor, bool rising, Tol tol, boost::uintmax_t& max_iter, const Policy& pol)
|
Chris@16
|
481 {
|
Chris@16
|
482 BOOST_MATH_STD_USING
|
Chris@16
|
483 static const char* function = "boost::math::tools::bracket_and_solve_root<%1%>";
|
Chris@16
|
484 //
|
Chris@16
|
485 // Set up inital brackets:
|
Chris@16
|
486 //
|
Chris@16
|
487 T a = guess;
|
Chris@16
|
488 T b = a;
|
Chris@16
|
489 T fa = f(a);
|
Chris@16
|
490 T fb = fa;
|
Chris@16
|
491 //
|
Chris@16
|
492 // Set up invocation count:
|
Chris@16
|
493 //
|
Chris@16
|
494 boost::uintmax_t count = max_iter - 1;
|
Chris@16
|
495
|
Chris@16
|
496 if((fa < 0) == (guess < 0 ? !rising : rising))
|
Chris@16
|
497 {
|
Chris@16
|
498 //
|
Chris@16
|
499 // Zero is to the right of b, so walk upwards
|
Chris@16
|
500 // until we find it:
|
Chris@16
|
501 //
|
Chris@16
|
502 while((boost::math::sign)(fb) == (boost::math::sign)(fa))
|
Chris@16
|
503 {
|
Chris@16
|
504 if(count == 0)
|
Chris@16
|
505 policies::raise_evaluation_error(function, "Unable to bracket root, last nearest value was %1%", b, pol);
|
Chris@16
|
506 //
|
Chris@16
|
507 // Heuristic: every 20 iterations we double the growth factor in case the
|
Chris@16
|
508 // initial guess was *really* bad !
|
Chris@16
|
509 //
|
Chris@16
|
510 if((max_iter - count) % 20 == 0)
|
Chris@16
|
511 factor *= 2;
|
Chris@16
|
512 //
|
Chris@16
|
513 // Now go ahead and move our guess by "factor":
|
Chris@16
|
514 //
|
Chris@16
|
515 a = b;
|
Chris@16
|
516 fa = fb;
|
Chris@16
|
517 b *= factor;
|
Chris@16
|
518 fb = f(b);
|
Chris@16
|
519 --count;
|
Chris@16
|
520 BOOST_MATH_INSTRUMENT_CODE("a = " << a << " b = " << b << " fa = " << fa << " fb = " << fb << " count = " << count);
|
Chris@16
|
521 }
|
Chris@16
|
522 }
|
Chris@16
|
523 else
|
Chris@16
|
524 {
|
Chris@16
|
525 //
|
Chris@16
|
526 // Zero is to the left of a, so walk downwards
|
Chris@16
|
527 // until we find it:
|
Chris@16
|
528 //
|
Chris@16
|
529 while((boost::math::sign)(fb) == (boost::math::sign)(fa))
|
Chris@16
|
530 {
|
Chris@16
|
531 if(fabs(a) < tools::min_value<T>())
|
Chris@16
|
532 {
|
Chris@16
|
533 // Escape route just in case the answer is zero!
|
Chris@16
|
534 max_iter -= count;
|
Chris@16
|
535 max_iter += 1;
|
Chris@16
|
536 return a > 0 ? std::make_pair(T(0), T(a)) : std::make_pair(T(a), T(0));
|
Chris@16
|
537 }
|
Chris@16
|
538 if(count == 0)
|
Chris@16
|
539 policies::raise_evaluation_error(function, "Unable to bracket root, last nearest value was %1%", a, pol);
|
Chris@16
|
540 //
|
Chris@16
|
541 // Heuristic: every 20 iterations we double the growth factor in case the
|
Chris@16
|
542 // initial guess was *really* bad !
|
Chris@16
|
543 //
|
Chris@16
|
544 if((max_iter - count) % 20 == 0)
|
Chris@16
|
545 factor *= 2;
|
Chris@16
|
546 //
|
Chris@16
|
547 // Now go ahead and move are guess by "factor":
|
Chris@16
|
548 //
|
Chris@16
|
549 b = a;
|
Chris@16
|
550 fb = fa;
|
Chris@16
|
551 a /= factor;
|
Chris@16
|
552 fa = f(a);
|
Chris@16
|
553 --count;
|
Chris@16
|
554 BOOST_MATH_INSTRUMENT_CODE("a = " << a << " b = " << b << " fa = " << fa << " fb = " << fb << " count = " << count);
|
Chris@16
|
555 }
|
Chris@16
|
556 }
|
Chris@16
|
557 max_iter -= count;
|
Chris@16
|
558 max_iter += 1;
|
Chris@16
|
559 std::pair<T, T> r = toms748_solve(
|
Chris@16
|
560 f,
|
Chris@16
|
561 (a < 0 ? b : a),
|
Chris@16
|
562 (a < 0 ? a : b),
|
Chris@16
|
563 (a < 0 ? fb : fa),
|
Chris@16
|
564 (a < 0 ? fa : fb),
|
Chris@16
|
565 tol,
|
Chris@16
|
566 count,
|
Chris@16
|
567 pol);
|
Chris@16
|
568 max_iter += count;
|
Chris@16
|
569 BOOST_MATH_INSTRUMENT_CODE("max_iter = " << max_iter << " count = " << count);
|
Chris@16
|
570 return r;
|
Chris@16
|
571 }
|
Chris@16
|
572
|
Chris@16
|
573 template <class F, class T, class Tol>
|
Chris@16
|
574 inline std::pair<T, T> bracket_and_solve_root(F f, const T& guess, const T& factor, bool rising, Tol tol, boost::uintmax_t& max_iter)
|
Chris@16
|
575 {
|
Chris@16
|
576 return bracket_and_solve_root(f, guess, factor, rising, tol, max_iter, policies::policy<>());
|
Chris@16
|
577 }
|
Chris@16
|
578
|
Chris@16
|
579 } // namespace tools
|
Chris@16
|
580 } // namespace math
|
Chris@16
|
581 } // namespace boost
|
Chris@16
|
582
|
Chris@16
|
583
|
Chris@16
|
584 #endif // BOOST_MATH_TOOLS_SOLVE_ROOT_HPP
|
Chris@16
|
585
|