comparison DEPENDENCIES/generic/include/boost/math/tools/toms748_solve.hpp @ 16:2665513ce2d3

Add boost headers
author Chris Cannam
date Tue, 05 Aug 2014 11:11:38 +0100
parents
children c530137014c0
comparison
equal deleted inserted replaced
15:663ca0da4350 16:2665513ce2d3
1 // (C) Copyright John Maddock 2006.
2 // Use, modification and distribution are subject to the
3 // Boost Software License, Version 1.0. (See accompanying file
4 // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
5
6 #ifndef BOOST_MATH_TOOLS_SOLVE_ROOT_HPP
7 #define BOOST_MATH_TOOLS_SOLVE_ROOT_HPP
8
9 #ifdef _MSC_VER
10 #pragma once
11 #endif
12
13 #include <boost/math/tools/precision.hpp>
14 #include <boost/math/policies/error_handling.hpp>
15 #include <boost/math/tools/config.hpp>
16 #include <boost/math/special_functions/sign.hpp>
17 #include <boost/cstdint.hpp>
18 #include <limits>
19
20 namespace boost{ namespace math{ namespace tools{
21
22 template <class T>
23 class eps_tolerance
24 {
25 public:
26 eps_tolerance(unsigned bits)
27 {
28 BOOST_MATH_STD_USING
29 eps = (std::max)(T(ldexp(1.0F, 1-bits)), T(4 * tools::epsilon<T>()));
30 }
31 bool operator()(const T& a, const T& b)
32 {
33 BOOST_MATH_STD_USING
34 return fabs(a - b) <= (eps * (std::min)(fabs(a), fabs(b)));
35 }
36 private:
37 T eps;
38 };
39
40 struct equal_floor
41 {
42 equal_floor(){}
43 template <class T>
44 bool operator()(const T& a, const T& b)
45 {
46 BOOST_MATH_STD_USING
47 return floor(a) == floor(b);
48 }
49 };
50
51 struct equal_ceil
52 {
53 equal_ceil(){}
54 template <class T>
55 bool operator()(const T& a, const T& b)
56 {
57 BOOST_MATH_STD_USING
58 return ceil(a) == ceil(b);
59 }
60 };
61
62 struct equal_nearest_integer
63 {
64 equal_nearest_integer(){}
65 template <class T>
66 bool operator()(const T& a, const T& b)
67 {
68 BOOST_MATH_STD_USING
69 return floor(a + 0.5f) == floor(b + 0.5f);
70 }
71 };
72
73 namespace detail{
74
75 template <class F, class T>
76 void bracket(F f, T& a, T& b, T c, T& fa, T& fb, T& d, T& fd)
77 {
78 //
79 // Given a point c inside the existing enclosing interval
80 // [a, b] sets a = c if f(c) == 0, otherwise finds the new
81 // enclosing interval: either [a, c] or [c, b] and sets
82 // d and fd to the point that has just been removed from
83 // the interval. In other words d is the third best guess
84 // to the root.
85 //
86 BOOST_MATH_STD_USING // For ADL of std math functions
87 T tol = tools::epsilon<T>() * 2;
88 //
89 // If the interval [a,b] is very small, or if c is too close
90 // to one end of the interval then we need to adjust the
91 // location of c accordingly:
92 //
93 if((b - a) < 2 * tol * a)
94 {
95 c = a + (b - a) / 2;
96 }
97 else if(c <= a + fabs(a) * tol)
98 {
99 c = a + fabs(a) * tol;
100 }
101 else if(c >= b - fabs(b) * tol)
102 {
103 c = b - fabs(a) * tol;
104 }
105 //
106 // OK, lets invoke f(c):
107 //
108 T fc = f(c);
109 //
110 // if we have a zero then we have an exact solution to the root:
111 //
112 if(fc == 0)
113 {
114 a = c;
115 fa = 0;
116 d = 0;
117 fd = 0;
118 return;
119 }
120 //
121 // Non-zero fc, update the interval:
122 //
123 if(boost::math::sign(fa) * boost::math::sign(fc) < 0)
124 {
125 d = b;
126 fd = fb;
127 b = c;
128 fb = fc;
129 }
130 else
131 {
132 d = a;
133 fd = fa;
134 a = c;
135 fa= fc;
136 }
137 }
138
139 template <class T>
140 inline T safe_div(T num, T denom, T r)
141 {
142 //
143 // return num / denom without overflow,
144 // return r if overflow would occur.
145 //
146 BOOST_MATH_STD_USING // For ADL of std math functions
147
148 if(fabs(denom) < 1)
149 {
150 if(fabs(denom * tools::max_value<T>()) <= fabs(num))
151 return r;
152 }
153 return num / denom;
154 }
155
156 template <class T>
157 inline T secant_interpolate(const T& a, const T& b, const T& fa, const T& fb)
158 {
159 //
160 // Performs standard secant interpolation of [a,b] given
161 // function evaluations f(a) and f(b). Performs a bisection
162 // if secant interpolation would leave us very close to either
163 // a or b. Rationale: we only call this function when at least
164 // one other form of interpolation has already failed, so we know
165 // that the function is unlikely to be smooth with a root very
166 // close to a or b.
167 //
168 BOOST_MATH_STD_USING // For ADL of std math functions
169
170 T tol = tools::epsilon<T>() * 5;
171 T c = a - (fa / (fb - fa)) * (b - a);
172 if((c <= a + fabs(a) * tol) || (c >= b - fabs(b) * tol))
173 return (a + b) / 2;
174 return c;
175 }
176
177 template <class T>
178 T quadratic_interpolate(const T& a, const T& b, T const& d,
179 const T& fa, const T& fb, T const& fd,
180 unsigned count)
181 {
182 //
183 // Performs quadratic interpolation to determine the next point,
184 // takes count Newton steps to find the location of the
185 // quadratic polynomial.
186 //
187 // Point d must lie outside of the interval [a,b], it is the third
188 // best approximation to the root, after a and b.
189 //
190 // Note: this does not guarentee to find a root
191 // inside [a, b], so we fall back to a secant step should
192 // the result be out of range.
193 //
194 // Start by obtaining the coefficients of the quadratic polynomial:
195 //
196 T B = safe_div(T(fb - fa), T(b - a), tools::max_value<T>());
197 T A = safe_div(T(fd - fb), T(d - b), tools::max_value<T>());
198 A = safe_div(T(A - B), T(d - a), T(0));
199
200 if(A == 0)
201 {
202 // failure to determine coefficients, try a secant step:
203 return secant_interpolate(a, b, fa, fb);
204 }
205 //
206 // Determine the starting point of the Newton steps:
207 //
208 T c;
209 if(boost::math::sign(A) * boost::math::sign(fa) > 0)
210 {
211 c = a;
212 }
213 else
214 {
215 c = b;
216 }
217 //
218 // Take the Newton steps:
219 //
220 for(unsigned i = 1; i <= count; ++i)
221 {
222 //c -= safe_div(B * c, (B + A * (2 * c - a - b)), 1 + c - a);
223 c -= safe_div(T(fa+(B+A*(c-b))*(c-a)), T(B + A * (2 * c - a - b)), T(1 + c - a));
224 }
225 if((c <= a) || (c >= b))
226 {
227 // Oops, failure, try a secant step:
228 c = secant_interpolate(a, b, fa, fb);
229 }
230 return c;
231 }
232
233 template <class T>
234 T cubic_interpolate(const T& a, const T& b, const T& d,
235 const T& e, const T& fa, const T& fb,
236 const T& fd, const T& fe)
237 {
238 //
239 // Uses inverse cubic interpolation of f(x) at points
240 // [a,b,d,e] to obtain an approximate root of f(x).
241 // Points d and e lie outside the interval [a,b]
242 // and are the third and forth best approximations
243 // to the root that we have found so far.
244 //
245 // Note: this does not guarentee to find a root
246 // inside [a, b], so we fall back to quadratic
247 // interpolation in case of an erroneous result.
248 //
249 BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b
250 << " d = " << d << " e = " << e << " fa = " << fa << " fb = " << fb
251 << " fd = " << fd << " fe = " << fe);
252 T q11 = (d - e) * fd / (fe - fd);
253 T q21 = (b - d) * fb / (fd - fb);
254 T q31 = (a - b) * fa / (fb - fa);
255 T d21 = (b - d) * fd / (fd - fb);
256 T d31 = (a - b) * fb / (fb - fa);
257 BOOST_MATH_INSTRUMENT_CODE(
258 "q11 = " << q11 << " q21 = " << q21 << " q31 = " << q31
259 << " d21 = " << d21 << " d31 = " << d31);
260 T q22 = (d21 - q11) * fb / (fe - fb);
261 T q32 = (d31 - q21) * fa / (fd - fa);
262 T d32 = (d31 - q21) * fd / (fd - fa);
263 T q33 = (d32 - q22) * fa / (fe - fa);
264 T c = q31 + q32 + q33 + a;
265 BOOST_MATH_INSTRUMENT_CODE(
266 "q22 = " << q22 << " q32 = " << q32 << " d32 = " << d32
267 << " q33 = " << q33 << " c = " << c);
268
269 if((c <= a) || (c >= b))
270 {
271 // Out of bounds step, fall back to quadratic interpolation:
272 c = quadratic_interpolate(a, b, d, fa, fb, fd, 3);
273 BOOST_MATH_INSTRUMENT_CODE(
274 "Out of bounds interpolation, falling back to quadratic interpolation. c = " << c);
275 }
276
277 return c;
278 }
279
280 } // namespace detail
281
282 template <class F, class T, class Tol, class Policy>
283 std::pair<T, T> toms748_solve(F f, const T& ax, const T& bx, const T& fax, const T& fbx, Tol tol, boost::uintmax_t& max_iter, const Policy& pol)
284 {
285 //
286 // Main entry point and logic for Toms Algorithm 748
287 // root finder.
288 //
289 BOOST_MATH_STD_USING // For ADL of std math functions
290
291 static const char* function = "boost::math::tools::toms748_solve<%1%>";
292
293 boost::uintmax_t count = max_iter;
294 T a, b, fa, fb, c, u, fu, a0, b0, d, fd, e, fe;
295 static const T mu = 0.5f;
296
297 // initialise a, b and fa, fb:
298 a = ax;
299 b = bx;
300 if(a >= b)
301 policies::raise_domain_error(
302 function,
303 "Parameters a and b out of order: a=%1%", a, pol);
304 fa = fax;
305 fb = fbx;
306
307 if(tol(a, b) || (fa == 0) || (fb == 0))
308 {
309 max_iter = 0;
310 if(fa == 0)
311 b = a;
312 else if(fb == 0)
313 a = b;
314 return std::make_pair(a, b);
315 }
316
317 if(boost::math::sign(fa) * boost::math::sign(fb) > 0)
318 policies::raise_domain_error(
319 function,
320 "Parameters a and b do not bracket the root: a=%1%", a, pol);
321 // dummy value for fd, e and fe:
322 fe = e = fd = 1e5F;
323
324 if(fa != 0)
325 {
326 //
327 // On the first step we take a secant step:
328 //
329 c = detail::secant_interpolate(a, b, fa, fb);
330 detail::bracket(f, a, b, c, fa, fb, d, fd);
331 --count;
332 BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b);
333
334 if(count && (fa != 0) && !tol(a, b))
335 {
336 //
337 // On the second step we take a quadratic interpolation:
338 //
339 c = detail::quadratic_interpolate(a, b, d, fa, fb, fd, 2);
340 e = d;
341 fe = fd;
342 detail::bracket(f, a, b, c, fa, fb, d, fd);
343 --count;
344 BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b);
345 }
346 }
347
348 while(count && (fa != 0) && !tol(a, b))
349 {
350 // save our brackets:
351 a0 = a;
352 b0 = b;
353 //
354 // Starting with the third step taken
355 // we can use either quadratic or cubic interpolation.
356 // Cubic interpolation requires that all four function values
357 // fa, fb, fd, and fe are distinct, should that not be the case
358 // then variable prof will get set to true, and we'll end up
359 // taking a quadratic step instead.
360 //
361 T min_diff = tools::min_value<T>() * 32;
362 bool prof = (fabs(fa - fb) < min_diff) || (fabs(fa - fd) < min_diff) || (fabs(fa - fe) < min_diff) || (fabs(fb - fd) < min_diff) || (fabs(fb - fe) < min_diff) || (fabs(fd - fe) < min_diff);
363 if(prof)
364 {
365 c = detail::quadratic_interpolate(a, b, d, fa, fb, fd, 2);
366 BOOST_MATH_INSTRUMENT_CODE("Can't take cubic step!!!!");
367 }
368 else
369 {
370 c = detail::cubic_interpolate(a, b, d, e, fa, fb, fd, fe);
371 }
372 //
373 // re-bracket, and check for termination:
374 //
375 e = d;
376 fe = fd;
377 detail::bracket(f, a, b, c, fa, fb, d, fd);
378 if((0 == --count) || (fa == 0) || tol(a, b))
379 break;
380 BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b);
381 //
382 // Now another interpolated step:
383 //
384 prof = (fabs(fa - fb) < min_diff) || (fabs(fa - fd) < min_diff) || (fabs(fa - fe) < min_diff) || (fabs(fb - fd) < min_diff) || (fabs(fb - fe) < min_diff) || (fabs(fd - fe) < min_diff);
385 if(prof)
386 {
387 c = detail::quadratic_interpolate(a, b, d, fa, fb, fd, 3);
388 BOOST_MATH_INSTRUMENT_CODE("Can't take cubic step!!!!");
389 }
390 else
391 {
392 c = detail::cubic_interpolate(a, b, d, e, fa, fb, fd, fe);
393 }
394 //
395 // Bracket again, and check termination condition, update e:
396 //
397 detail::bracket(f, a, b, c, fa, fb, d, fd);
398 if((0 == --count) || (fa == 0) || tol(a, b))
399 break;
400 BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b);
401 //
402 // Now we take a double-length secant step:
403 //
404 if(fabs(fa) < fabs(fb))
405 {
406 u = a;
407 fu = fa;
408 }
409 else
410 {
411 u = b;
412 fu = fb;
413 }
414 c = u - 2 * (fu / (fb - fa)) * (b - a);
415 if(fabs(c - u) > (b - a) / 2)
416 {
417 c = a + (b - a) / 2;
418 }
419 //
420 // Bracket again, and check termination condition:
421 //
422 e = d;
423 fe = fd;
424 detail::bracket(f, a, b, c, fa, fb, d, fd);
425 BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b);
426 BOOST_MATH_INSTRUMENT_CODE(" tol = " << T((fabs(a) - fabs(b)) / fabs(a)));
427 if((0 == --count) || (fa == 0) || tol(a, b))
428 break;
429 //
430 // And finally... check to see if an additional bisection step is
431 // to be taken, we do this if we're not converging fast enough:
432 //
433 if((b - a) < mu * (b0 - a0))
434 continue;
435 //
436 // bracket again on a bisection:
437 //
438 e = d;
439 fe = fd;
440 detail::bracket(f, a, b, T(a + (b - a) / 2), fa, fb, d, fd);
441 --count;
442 BOOST_MATH_INSTRUMENT_CODE("Not converging: Taking a bisection!!!!");
443 BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b);
444 } // while loop
445
446 max_iter -= count;
447 if(fa == 0)
448 {
449 b = a;
450 }
451 else if(fb == 0)
452 {
453 a = b;
454 }
455 return std::make_pair(a, b);
456 }
457
458 template <class F, class T, class Tol>
459 inline std::pair<T, T> toms748_solve(F f, const T& ax, const T& bx, const T& fax, const T& fbx, Tol tol, boost::uintmax_t& max_iter)
460 {
461 return toms748_solve(f, ax, bx, fax, fbx, tol, max_iter, policies::policy<>());
462 }
463
464 template <class F, class T, class Tol, class Policy>
465 inline std::pair<T, T> toms748_solve(F f, const T& ax, const T& bx, Tol tol, boost::uintmax_t& max_iter, const Policy& pol)
466 {
467 max_iter -= 2;
468 std::pair<T, T> r = toms748_solve(f, ax, bx, f(ax), f(bx), tol, max_iter, pol);
469 max_iter += 2;
470 return r;
471 }
472
473 template <class F, class T, class Tol>
474 inline std::pair<T, T> toms748_solve(F f, const T& ax, const T& bx, Tol tol, boost::uintmax_t& max_iter)
475 {
476 return toms748_solve(f, ax, bx, tol, max_iter, policies::policy<>());
477 }
478
479 template <class F, class T, class Tol, class Policy>
480 std::pair<T, T> bracket_and_solve_root(F f, const T& guess, T factor, bool rising, Tol tol, boost::uintmax_t& max_iter, const Policy& pol)
481 {
482 BOOST_MATH_STD_USING
483 static const char* function = "boost::math::tools::bracket_and_solve_root<%1%>";
484 //
485 // Set up inital brackets:
486 //
487 T a = guess;
488 T b = a;
489 T fa = f(a);
490 T fb = fa;
491 //
492 // Set up invocation count:
493 //
494 boost::uintmax_t count = max_iter - 1;
495
496 if((fa < 0) == (guess < 0 ? !rising : rising))
497 {
498 //
499 // Zero is to the right of b, so walk upwards
500 // until we find it:
501 //
502 while((boost::math::sign)(fb) == (boost::math::sign)(fa))
503 {
504 if(count == 0)
505 policies::raise_evaluation_error(function, "Unable to bracket root, last nearest value was %1%", b, pol);
506 //
507 // Heuristic: every 20 iterations we double the growth factor in case the
508 // initial guess was *really* bad !
509 //
510 if((max_iter - count) % 20 == 0)
511 factor *= 2;
512 //
513 // Now go ahead and move our guess by "factor":
514 //
515 a = b;
516 fa = fb;
517 b *= factor;
518 fb = f(b);
519 --count;
520 BOOST_MATH_INSTRUMENT_CODE("a = " << a << " b = " << b << " fa = " << fa << " fb = " << fb << " count = " << count);
521 }
522 }
523 else
524 {
525 //
526 // Zero is to the left of a, so walk downwards
527 // until we find it:
528 //
529 while((boost::math::sign)(fb) == (boost::math::sign)(fa))
530 {
531 if(fabs(a) < tools::min_value<T>())
532 {
533 // Escape route just in case the answer is zero!
534 max_iter -= count;
535 max_iter += 1;
536 return a > 0 ? std::make_pair(T(0), T(a)) : std::make_pair(T(a), T(0));
537 }
538 if(count == 0)
539 policies::raise_evaluation_error(function, "Unable to bracket root, last nearest value was %1%", a, pol);
540 //
541 // Heuristic: every 20 iterations we double the growth factor in case the
542 // initial guess was *really* bad !
543 //
544 if((max_iter - count) % 20 == 0)
545 factor *= 2;
546 //
547 // Now go ahead and move are guess by "factor":
548 //
549 b = a;
550 fb = fa;
551 a /= factor;
552 fa = f(a);
553 --count;
554 BOOST_MATH_INSTRUMENT_CODE("a = " << a << " b = " << b << " fa = " << fa << " fb = " << fb << " count = " << count);
555 }
556 }
557 max_iter -= count;
558 max_iter += 1;
559 std::pair<T, T> r = toms748_solve(
560 f,
561 (a < 0 ? b : a),
562 (a < 0 ? a : b),
563 (a < 0 ? fb : fa),
564 (a < 0 ? fa : fb),
565 tol,
566 count,
567 pol);
568 max_iter += count;
569 BOOST_MATH_INSTRUMENT_CODE("max_iter = " << max_iter << " count = " << count);
570 return r;
571 }
572
573 template <class F, class T, class Tol>
574 inline std::pair<T, T> bracket_and_solve_root(F f, const T& guess, const T& factor, bool rising, Tol tol, boost::uintmax_t& max_iter)
575 {
576 return bracket_and_solve_root(f, guess, factor, rising, tol, max_iter, policies::policy<>());
577 }
578
579 } // namespace tools
580 } // namespace math
581 } // namespace boost
582
583
584 #endif // BOOST_MATH_TOOLS_SOLVE_ROOT_HPP
585