Mercurial > hg > vamp-build-and-test
comparison DEPENDENCIES/generic/include/boost/math/tools/toms748_solve.hpp @ 16:2665513ce2d3
Add boost headers
author | Chris Cannam |
---|---|
date | Tue, 05 Aug 2014 11:11:38 +0100 |
parents | |
children | c530137014c0 |
comparison
equal
deleted
inserted
replaced
15:663ca0da4350 | 16:2665513ce2d3 |
---|---|
1 // (C) Copyright John Maddock 2006. | |
2 // Use, modification and distribution are subject to the | |
3 // Boost Software License, Version 1.0. (See accompanying file | |
4 // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) | |
5 | |
6 #ifndef BOOST_MATH_TOOLS_SOLVE_ROOT_HPP | |
7 #define BOOST_MATH_TOOLS_SOLVE_ROOT_HPP | |
8 | |
9 #ifdef _MSC_VER | |
10 #pragma once | |
11 #endif | |
12 | |
13 #include <boost/math/tools/precision.hpp> | |
14 #include <boost/math/policies/error_handling.hpp> | |
15 #include <boost/math/tools/config.hpp> | |
16 #include <boost/math/special_functions/sign.hpp> | |
17 #include <boost/cstdint.hpp> | |
18 #include <limits> | |
19 | |
20 namespace boost{ namespace math{ namespace tools{ | |
21 | |
22 template <class T> | |
23 class eps_tolerance | |
24 { | |
25 public: | |
26 eps_tolerance(unsigned bits) | |
27 { | |
28 BOOST_MATH_STD_USING | |
29 eps = (std::max)(T(ldexp(1.0F, 1-bits)), T(4 * tools::epsilon<T>())); | |
30 } | |
31 bool operator()(const T& a, const T& b) | |
32 { | |
33 BOOST_MATH_STD_USING | |
34 return fabs(a - b) <= (eps * (std::min)(fabs(a), fabs(b))); | |
35 } | |
36 private: | |
37 T eps; | |
38 }; | |
39 | |
40 struct equal_floor | |
41 { | |
42 equal_floor(){} | |
43 template <class T> | |
44 bool operator()(const T& a, const T& b) | |
45 { | |
46 BOOST_MATH_STD_USING | |
47 return floor(a) == floor(b); | |
48 } | |
49 }; | |
50 | |
51 struct equal_ceil | |
52 { | |
53 equal_ceil(){} | |
54 template <class T> | |
55 bool operator()(const T& a, const T& b) | |
56 { | |
57 BOOST_MATH_STD_USING | |
58 return ceil(a) == ceil(b); | |
59 } | |
60 }; | |
61 | |
62 struct equal_nearest_integer | |
63 { | |
64 equal_nearest_integer(){} | |
65 template <class T> | |
66 bool operator()(const T& a, const T& b) | |
67 { | |
68 BOOST_MATH_STD_USING | |
69 return floor(a + 0.5f) == floor(b + 0.5f); | |
70 } | |
71 }; | |
72 | |
73 namespace detail{ | |
74 | |
75 template <class F, class T> | |
76 void bracket(F f, T& a, T& b, T c, T& fa, T& fb, T& d, T& fd) | |
77 { | |
78 // | |
79 // Given a point c inside the existing enclosing interval | |
80 // [a, b] sets a = c if f(c) == 0, otherwise finds the new | |
81 // enclosing interval: either [a, c] or [c, b] and sets | |
82 // d and fd to the point that has just been removed from | |
83 // the interval. In other words d is the third best guess | |
84 // to the root. | |
85 // | |
86 BOOST_MATH_STD_USING // For ADL of std math functions | |
87 T tol = tools::epsilon<T>() * 2; | |
88 // | |
89 // If the interval [a,b] is very small, or if c is too close | |
90 // to one end of the interval then we need to adjust the | |
91 // location of c accordingly: | |
92 // | |
93 if((b - a) < 2 * tol * a) | |
94 { | |
95 c = a + (b - a) / 2; | |
96 } | |
97 else if(c <= a + fabs(a) * tol) | |
98 { | |
99 c = a + fabs(a) * tol; | |
100 } | |
101 else if(c >= b - fabs(b) * tol) | |
102 { | |
103 c = b - fabs(a) * tol; | |
104 } | |
105 // | |
106 // OK, lets invoke f(c): | |
107 // | |
108 T fc = f(c); | |
109 // | |
110 // if we have a zero then we have an exact solution to the root: | |
111 // | |
112 if(fc == 0) | |
113 { | |
114 a = c; | |
115 fa = 0; | |
116 d = 0; | |
117 fd = 0; | |
118 return; | |
119 } | |
120 // | |
121 // Non-zero fc, update the interval: | |
122 // | |
123 if(boost::math::sign(fa) * boost::math::sign(fc) < 0) | |
124 { | |
125 d = b; | |
126 fd = fb; | |
127 b = c; | |
128 fb = fc; | |
129 } | |
130 else | |
131 { | |
132 d = a; | |
133 fd = fa; | |
134 a = c; | |
135 fa= fc; | |
136 } | |
137 } | |
138 | |
139 template <class T> | |
140 inline T safe_div(T num, T denom, T r) | |
141 { | |
142 // | |
143 // return num / denom without overflow, | |
144 // return r if overflow would occur. | |
145 // | |
146 BOOST_MATH_STD_USING // For ADL of std math functions | |
147 | |
148 if(fabs(denom) < 1) | |
149 { | |
150 if(fabs(denom * tools::max_value<T>()) <= fabs(num)) | |
151 return r; | |
152 } | |
153 return num / denom; | |
154 } | |
155 | |
156 template <class T> | |
157 inline T secant_interpolate(const T& a, const T& b, const T& fa, const T& fb) | |
158 { | |
159 // | |
160 // Performs standard secant interpolation of [a,b] given | |
161 // function evaluations f(a) and f(b). Performs a bisection | |
162 // if secant interpolation would leave us very close to either | |
163 // a or b. Rationale: we only call this function when at least | |
164 // one other form of interpolation has already failed, so we know | |
165 // that the function is unlikely to be smooth with a root very | |
166 // close to a or b. | |
167 // | |
168 BOOST_MATH_STD_USING // For ADL of std math functions | |
169 | |
170 T tol = tools::epsilon<T>() * 5; | |
171 T c = a - (fa / (fb - fa)) * (b - a); | |
172 if((c <= a + fabs(a) * tol) || (c >= b - fabs(b) * tol)) | |
173 return (a + b) / 2; | |
174 return c; | |
175 } | |
176 | |
177 template <class T> | |
178 T quadratic_interpolate(const T& a, const T& b, T const& d, | |
179 const T& fa, const T& fb, T const& fd, | |
180 unsigned count) | |
181 { | |
182 // | |
183 // Performs quadratic interpolation to determine the next point, | |
184 // takes count Newton steps to find the location of the | |
185 // quadratic polynomial. | |
186 // | |
187 // Point d must lie outside of the interval [a,b], it is the third | |
188 // best approximation to the root, after a and b. | |
189 // | |
190 // Note: this does not guarentee to find a root | |
191 // inside [a, b], so we fall back to a secant step should | |
192 // the result be out of range. | |
193 // | |
194 // Start by obtaining the coefficients of the quadratic polynomial: | |
195 // | |
196 T B = safe_div(T(fb - fa), T(b - a), tools::max_value<T>()); | |
197 T A = safe_div(T(fd - fb), T(d - b), tools::max_value<T>()); | |
198 A = safe_div(T(A - B), T(d - a), T(0)); | |
199 | |
200 if(A == 0) | |
201 { | |
202 // failure to determine coefficients, try a secant step: | |
203 return secant_interpolate(a, b, fa, fb); | |
204 } | |
205 // | |
206 // Determine the starting point of the Newton steps: | |
207 // | |
208 T c; | |
209 if(boost::math::sign(A) * boost::math::sign(fa) > 0) | |
210 { | |
211 c = a; | |
212 } | |
213 else | |
214 { | |
215 c = b; | |
216 } | |
217 // | |
218 // Take the Newton steps: | |
219 // | |
220 for(unsigned i = 1; i <= count; ++i) | |
221 { | |
222 //c -= safe_div(B * c, (B + A * (2 * c - a - b)), 1 + c - a); | |
223 c -= safe_div(T(fa+(B+A*(c-b))*(c-a)), T(B + A * (2 * c - a - b)), T(1 + c - a)); | |
224 } | |
225 if((c <= a) || (c >= b)) | |
226 { | |
227 // Oops, failure, try a secant step: | |
228 c = secant_interpolate(a, b, fa, fb); | |
229 } | |
230 return c; | |
231 } | |
232 | |
233 template <class T> | |
234 T cubic_interpolate(const T& a, const T& b, const T& d, | |
235 const T& e, const T& fa, const T& fb, | |
236 const T& fd, const T& fe) | |
237 { | |
238 // | |
239 // Uses inverse cubic interpolation of f(x) at points | |
240 // [a,b,d,e] to obtain an approximate root of f(x). | |
241 // Points d and e lie outside the interval [a,b] | |
242 // and are the third and forth best approximations | |
243 // to the root that we have found so far. | |
244 // | |
245 // Note: this does not guarentee to find a root | |
246 // inside [a, b], so we fall back to quadratic | |
247 // interpolation in case of an erroneous result. | |
248 // | |
249 BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b | |
250 << " d = " << d << " e = " << e << " fa = " << fa << " fb = " << fb | |
251 << " fd = " << fd << " fe = " << fe); | |
252 T q11 = (d - e) * fd / (fe - fd); | |
253 T q21 = (b - d) * fb / (fd - fb); | |
254 T q31 = (a - b) * fa / (fb - fa); | |
255 T d21 = (b - d) * fd / (fd - fb); | |
256 T d31 = (a - b) * fb / (fb - fa); | |
257 BOOST_MATH_INSTRUMENT_CODE( | |
258 "q11 = " << q11 << " q21 = " << q21 << " q31 = " << q31 | |
259 << " d21 = " << d21 << " d31 = " << d31); | |
260 T q22 = (d21 - q11) * fb / (fe - fb); | |
261 T q32 = (d31 - q21) * fa / (fd - fa); | |
262 T d32 = (d31 - q21) * fd / (fd - fa); | |
263 T q33 = (d32 - q22) * fa / (fe - fa); | |
264 T c = q31 + q32 + q33 + a; | |
265 BOOST_MATH_INSTRUMENT_CODE( | |
266 "q22 = " << q22 << " q32 = " << q32 << " d32 = " << d32 | |
267 << " q33 = " << q33 << " c = " << c); | |
268 | |
269 if((c <= a) || (c >= b)) | |
270 { | |
271 // Out of bounds step, fall back to quadratic interpolation: | |
272 c = quadratic_interpolate(a, b, d, fa, fb, fd, 3); | |
273 BOOST_MATH_INSTRUMENT_CODE( | |
274 "Out of bounds interpolation, falling back to quadratic interpolation. c = " << c); | |
275 } | |
276 | |
277 return c; | |
278 } | |
279 | |
280 } // namespace detail | |
281 | |
282 template <class F, class T, class Tol, class Policy> | |
283 std::pair<T, T> toms748_solve(F f, const T& ax, const T& bx, const T& fax, const T& fbx, Tol tol, boost::uintmax_t& max_iter, const Policy& pol) | |
284 { | |
285 // | |
286 // Main entry point and logic for Toms Algorithm 748 | |
287 // root finder. | |
288 // | |
289 BOOST_MATH_STD_USING // For ADL of std math functions | |
290 | |
291 static const char* function = "boost::math::tools::toms748_solve<%1%>"; | |
292 | |
293 boost::uintmax_t count = max_iter; | |
294 T a, b, fa, fb, c, u, fu, a0, b0, d, fd, e, fe; | |
295 static const T mu = 0.5f; | |
296 | |
297 // initialise a, b and fa, fb: | |
298 a = ax; | |
299 b = bx; | |
300 if(a >= b) | |
301 policies::raise_domain_error( | |
302 function, | |
303 "Parameters a and b out of order: a=%1%", a, pol); | |
304 fa = fax; | |
305 fb = fbx; | |
306 | |
307 if(tol(a, b) || (fa == 0) || (fb == 0)) | |
308 { | |
309 max_iter = 0; | |
310 if(fa == 0) | |
311 b = a; | |
312 else if(fb == 0) | |
313 a = b; | |
314 return std::make_pair(a, b); | |
315 } | |
316 | |
317 if(boost::math::sign(fa) * boost::math::sign(fb) > 0) | |
318 policies::raise_domain_error( | |
319 function, | |
320 "Parameters a and b do not bracket the root: a=%1%", a, pol); | |
321 // dummy value for fd, e and fe: | |
322 fe = e = fd = 1e5F; | |
323 | |
324 if(fa != 0) | |
325 { | |
326 // | |
327 // On the first step we take a secant step: | |
328 // | |
329 c = detail::secant_interpolate(a, b, fa, fb); | |
330 detail::bracket(f, a, b, c, fa, fb, d, fd); | |
331 --count; | |
332 BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b); | |
333 | |
334 if(count && (fa != 0) && !tol(a, b)) | |
335 { | |
336 // | |
337 // On the second step we take a quadratic interpolation: | |
338 // | |
339 c = detail::quadratic_interpolate(a, b, d, fa, fb, fd, 2); | |
340 e = d; | |
341 fe = fd; | |
342 detail::bracket(f, a, b, c, fa, fb, d, fd); | |
343 --count; | |
344 BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b); | |
345 } | |
346 } | |
347 | |
348 while(count && (fa != 0) && !tol(a, b)) | |
349 { | |
350 // save our brackets: | |
351 a0 = a; | |
352 b0 = b; | |
353 // | |
354 // Starting with the third step taken | |
355 // we can use either quadratic or cubic interpolation. | |
356 // Cubic interpolation requires that all four function values | |
357 // fa, fb, fd, and fe are distinct, should that not be the case | |
358 // then variable prof will get set to true, and we'll end up | |
359 // taking a quadratic step instead. | |
360 // | |
361 T min_diff = tools::min_value<T>() * 32; | |
362 bool prof = (fabs(fa - fb) < min_diff) || (fabs(fa - fd) < min_diff) || (fabs(fa - fe) < min_diff) || (fabs(fb - fd) < min_diff) || (fabs(fb - fe) < min_diff) || (fabs(fd - fe) < min_diff); | |
363 if(prof) | |
364 { | |
365 c = detail::quadratic_interpolate(a, b, d, fa, fb, fd, 2); | |
366 BOOST_MATH_INSTRUMENT_CODE("Can't take cubic step!!!!"); | |
367 } | |
368 else | |
369 { | |
370 c = detail::cubic_interpolate(a, b, d, e, fa, fb, fd, fe); | |
371 } | |
372 // | |
373 // re-bracket, and check for termination: | |
374 // | |
375 e = d; | |
376 fe = fd; | |
377 detail::bracket(f, a, b, c, fa, fb, d, fd); | |
378 if((0 == --count) || (fa == 0) || tol(a, b)) | |
379 break; | |
380 BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b); | |
381 // | |
382 // Now another interpolated step: | |
383 // | |
384 prof = (fabs(fa - fb) < min_diff) || (fabs(fa - fd) < min_diff) || (fabs(fa - fe) < min_diff) || (fabs(fb - fd) < min_diff) || (fabs(fb - fe) < min_diff) || (fabs(fd - fe) < min_diff); | |
385 if(prof) | |
386 { | |
387 c = detail::quadratic_interpolate(a, b, d, fa, fb, fd, 3); | |
388 BOOST_MATH_INSTRUMENT_CODE("Can't take cubic step!!!!"); | |
389 } | |
390 else | |
391 { | |
392 c = detail::cubic_interpolate(a, b, d, e, fa, fb, fd, fe); | |
393 } | |
394 // | |
395 // Bracket again, and check termination condition, update e: | |
396 // | |
397 detail::bracket(f, a, b, c, fa, fb, d, fd); | |
398 if((0 == --count) || (fa == 0) || tol(a, b)) | |
399 break; | |
400 BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b); | |
401 // | |
402 // Now we take a double-length secant step: | |
403 // | |
404 if(fabs(fa) < fabs(fb)) | |
405 { | |
406 u = a; | |
407 fu = fa; | |
408 } | |
409 else | |
410 { | |
411 u = b; | |
412 fu = fb; | |
413 } | |
414 c = u - 2 * (fu / (fb - fa)) * (b - a); | |
415 if(fabs(c - u) > (b - a) / 2) | |
416 { | |
417 c = a + (b - a) / 2; | |
418 } | |
419 // | |
420 // Bracket again, and check termination condition: | |
421 // | |
422 e = d; | |
423 fe = fd; | |
424 detail::bracket(f, a, b, c, fa, fb, d, fd); | |
425 BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b); | |
426 BOOST_MATH_INSTRUMENT_CODE(" tol = " << T((fabs(a) - fabs(b)) / fabs(a))); | |
427 if((0 == --count) || (fa == 0) || tol(a, b)) | |
428 break; | |
429 // | |
430 // And finally... check to see if an additional bisection step is | |
431 // to be taken, we do this if we're not converging fast enough: | |
432 // | |
433 if((b - a) < mu * (b0 - a0)) | |
434 continue; | |
435 // | |
436 // bracket again on a bisection: | |
437 // | |
438 e = d; | |
439 fe = fd; | |
440 detail::bracket(f, a, b, T(a + (b - a) / 2), fa, fb, d, fd); | |
441 --count; | |
442 BOOST_MATH_INSTRUMENT_CODE("Not converging: Taking a bisection!!!!"); | |
443 BOOST_MATH_INSTRUMENT_CODE(" a = " << a << " b = " << b); | |
444 } // while loop | |
445 | |
446 max_iter -= count; | |
447 if(fa == 0) | |
448 { | |
449 b = a; | |
450 } | |
451 else if(fb == 0) | |
452 { | |
453 a = b; | |
454 } | |
455 return std::make_pair(a, b); | |
456 } | |
457 | |
458 template <class F, class T, class Tol> | |
459 inline std::pair<T, T> toms748_solve(F f, const T& ax, const T& bx, const T& fax, const T& fbx, Tol tol, boost::uintmax_t& max_iter) | |
460 { | |
461 return toms748_solve(f, ax, bx, fax, fbx, tol, max_iter, policies::policy<>()); | |
462 } | |
463 | |
464 template <class F, class T, class Tol, class Policy> | |
465 inline std::pair<T, T> toms748_solve(F f, const T& ax, const T& bx, Tol tol, boost::uintmax_t& max_iter, const Policy& pol) | |
466 { | |
467 max_iter -= 2; | |
468 std::pair<T, T> r = toms748_solve(f, ax, bx, f(ax), f(bx), tol, max_iter, pol); | |
469 max_iter += 2; | |
470 return r; | |
471 } | |
472 | |
473 template <class F, class T, class Tol> | |
474 inline std::pair<T, T> toms748_solve(F f, const T& ax, const T& bx, Tol tol, boost::uintmax_t& max_iter) | |
475 { | |
476 return toms748_solve(f, ax, bx, tol, max_iter, policies::policy<>()); | |
477 } | |
478 | |
479 template <class F, class T, class Tol, class Policy> | |
480 std::pair<T, T> bracket_and_solve_root(F f, const T& guess, T factor, bool rising, Tol tol, boost::uintmax_t& max_iter, const Policy& pol) | |
481 { | |
482 BOOST_MATH_STD_USING | |
483 static const char* function = "boost::math::tools::bracket_and_solve_root<%1%>"; | |
484 // | |
485 // Set up inital brackets: | |
486 // | |
487 T a = guess; | |
488 T b = a; | |
489 T fa = f(a); | |
490 T fb = fa; | |
491 // | |
492 // Set up invocation count: | |
493 // | |
494 boost::uintmax_t count = max_iter - 1; | |
495 | |
496 if((fa < 0) == (guess < 0 ? !rising : rising)) | |
497 { | |
498 // | |
499 // Zero is to the right of b, so walk upwards | |
500 // until we find it: | |
501 // | |
502 while((boost::math::sign)(fb) == (boost::math::sign)(fa)) | |
503 { | |
504 if(count == 0) | |
505 policies::raise_evaluation_error(function, "Unable to bracket root, last nearest value was %1%", b, pol); | |
506 // | |
507 // Heuristic: every 20 iterations we double the growth factor in case the | |
508 // initial guess was *really* bad ! | |
509 // | |
510 if((max_iter - count) % 20 == 0) | |
511 factor *= 2; | |
512 // | |
513 // Now go ahead and move our guess by "factor": | |
514 // | |
515 a = b; | |
516 fa = fb; | |
517 b *= factor; | |
518 fb = f(b); | |
519 --count; | |
520 BOOST_MATH_INSTRUMENT_CODE("a = " << a << " b = " << b << " fa = " << fa << " fb = " << fb << " count = " << count); | |
521 } | |
522 } | |
523 else | |
524 { | |
525 // | |
526 // Zero is to the left of a, so walk downwards | |
527 // until we find it: | |
528 // | |
529 while((boost::math::sign)(fb) == (boost::math::sign)(fa)) | |
530 { | |
531 if(fabs(a) < tools::min_value<T>()) | |
532 { | |
533 // Escape route just in case the answer is zero! | |
534 max_iter -= count; | |
535 max_iter += 1; | |
536 return a > 0 ? std::make_pair(T(0), T(a)) : std::make_pair(T(a), T(0)); | |
537 } | |
538 if(count == 0) | |
539 policies::raise_evaluation_error(function, "Unable to bracket root, last nearest value was %1%", a, pol); | |
540 // | |
541 // Heuristic: every 20 iterations we double the growth factor in case the | |
542 // initial guess was *really* bad ! | |
543 // | |
544 if((max_iter - count) % 20 == 0) | |
545 factor *= 2; | |
546 // | |
547 // Now go ahead and move are guess by "factor": | |
548 // | |
549 b = a; | |
550 fb = fa; | |
551 a /= factor; | |
552 fa = f(a); | |
553 --count; | |
554 BOOST_MATH_INSTRUMENT_CODE("a = " << a << " b = " << b << " fa = " << fa << " fb = " << fb << " count = " << count); | |
555 } | |
556 } | |
557 max_iter -= count; | |
558 max_iter += 1; | |
559 std::pair<T, T> r = toms748_solve( | |
560 f, | |
561 (a < 0 ? b : a), | |
562 (a < 0 ? a : b), | |
563 (a < 0 ? fb : fa), | |
564 (a < 0 ? fa : fb), | |
565 tol, | |
566 count, | |
567 pol); | |
568 max_iter += count; | |
569 BOOST_MATH_INSTRUMENT_CODE("max_iter = " << max_iter << " count = " << count); | |
570 return r; | |
571 } | |
572 | |
573 template <class F, class T, class Tol> | |
574 inline std::pair<T, T> bracket_and_solve_root(F f, const T& guess, const T& factor, bool rising, Tol tol, boost::uintmax_t& max_iter) | |
575 { | |
576 return bracket_and_solve_root(f, guess, factor, rising, tol, max_iter, policies::policy<>()); | |
577 } | |
578 | |
579 } // namespace tools | |
580 } // namespace math | |
581 } // namespace boost | |
582 | |
583 | |
584 #endif // BOOST_MATH_TOOLS_SOLVE_ROOT_HPP | |
585 |