christopher@45
|
1 '''
|
christopher@45
|
2 Author: Chunyang Song
|
christopher@45
|
3 Institution: Centre for Digital Music, Queen Mary University of London
|
christopher@45
|
4
|
christopher@45
|
5 '''
|
christopher@45
|
6
|
christopher@45
|
7 from basic_functions import get_H, velocity_sequence_to_min_timespan, get_rhythm_category, upsample_velocity_sequence
|
christopher@45
|
8 from parameter_setter import are_parameters_valid
|
christopher@45
|
9
|
christopher@45
|
10 def get_syncopation(bar, parameters = None):
|
christopher@45
|
11 syncopation = None
|
christopher@45
|
12 velocitySequence = bar.get_velocity_sequence()
|
christopher@45
|
13 subdivisionSequence = bar.get_subdivision_sequence()
|
christopher@45
|
14
|
christopher@45
|
15 if get_rhythm_category(velocitySequence, subdivisionSequence) == 'poly':
|
christopher@45
|
16 print 'Warning: SG model detects polyrhythms so returning None.'
|
christopher@45
|
17 else:
|
christopher@45
|
18 #velocitySequence = velocity_sequence_to_min_timespan(velocitySequence) # converting to the minimum time-span format
|
christopher@45
|
19
|
christopher@45
|
20 # set the defaults
|
christopher@45
|
21 Lmax = 5
|
christopher@45
|
22 weightSequence = range(Lmax+1) # i.e. [0,1,2,3,4,5]
|
christopher@45
|
23 if parameters!= None:
|
christopher@45
|
24 if 'Lmax' in parameters:
|
christopher@45
|
25 Lmax = parameters['Lmax']
|
christopher@45
|
26 if 'W' in parameters:
|
christopher@45
|
27 weightSequence = parameters['W']
|
christopher@45
|
28
|
christopher@45
|
29 if not are_parameters_valid(Lmax, weightSequence, subdivisionSequence):
|
christopher@45
|
30 print 'Error: the given parameters are not valid.'
|
christopher@45
|
31 else:
|
christopher@45
|
32 # generate the metrical weights of level Lmax, and upsample(stretch) the velocity sequence to match the length of H
|
christopher@45
|
33 H = get_H(weightSequence,subdivisionSequence, Lmax)
|
christopher@45
|
34
|
christopher@45
|
35 velocitySequence = upsample_velocity_sequence(velocitySequence, len(H))
|
christopher@45
|
36
|
christopher@45
|
37 # The ave_dif_neighbours function calculates the (weighted) average of the difference between the note at a certain index and its neighbours in a certain metrical level
|
christopher@45
|
38 def ave_dif_neighbours(index, level):
|
christopher@45
|
39
|
christopher@45
|
40 averages = []
|
christopher@45
|
41 parameterGarma = 0.8
|
christopher@45
|
42
|
christopher@45
|
43 # The findPre function is to calculate the index of the previous neighbour at a certain metrical level.
|
christopher@45
|
44 def find_pre(index, level):
|
christopher@45
|
45 preIndex = (index - 1)%len(H) # using % is to restrict the index varies within range(0, len(H))
|
christopher@45
|
46 while(H[preIndex] > level):
|
christopher@45
|
47 preIndex = (preIndex - 1)%len(H)
|
christopher@45
|
48 #print 'preIndex', preIndex
|
christopher@45
|
49 return preIndex
|
christopher@45
|
50
|
christopher@45
|
51 # The findPost function is to calculate the index of the next neighbour at a certain metrical level.
|
christopher@45
|
52 def find_post(index, level):
|
christopher@45
|
53 postIndex = (index + 1)%len(H)
|
christopher@45
|
54 while(H[postIndex] > level):
|
christopher@45
|
55 postIndex = (postIndex + 1)%len(H)
|
christopher@45
|
56 #print 'postIndex', postIndex
|
christopher@45
|
57 return postIndex
|
christopher@45
|
58
|
christopher@45
|
59 # The dif function is to calculate a difference level factor between two notes (at note position index1 and index 2) in velocity sequence
|
christopher@45
|
60 def dif(index1,index2):
|
christopher@45
|
61 parameterBeta = 0.5
|
christopher@45
|
62 dif_v = velocitySequence[index1]-velocitySequence[index2]
|
christopher@45
|
63 dif_h = abs(H[index1]-H[index2])
|
christopher@45
|
64 dif = dif_v*(parameterBeta*dif_h/4+1-parameterBeta)
|
christopher@45
|
65 #print 'dif', dif
|
christopher@45
|
66 return dif
|
christopher@45
|
67
|
christopher@45
|
68 # From the highest to the lowest metrical levels where the current note resides, calculate the difference between the note and its neighbours at that level
|
christopher@45
|
69 for l in range(level, max(H)+1):
|
christopher@45
|
70 ave = (parameterGarma*dif(index,find_pre(index,l))+dif(index,find_post(index,l)) )/(1+parameterGarma)
|
christopher@45
|
71 averages.append(ave)
|
christopher@45
|
72 #print 'averages', averages
|
christopher@45
|
73 return averages
|
christopher@45
|
74
|
christopher@45
|
75 # if the upsampling was successfully done
|
christopher@45
|
76 if velocitySequence != None:
|
christopher@45
|
77 syncopation = 0
|
christopher@45
|
78 # Calculate the syncopation value for each note
|
christopher@45
|
79 for index in range(len(velocitySequence)):
|
christopher@45
|
80 if velocitySequence[index] != 0: # Onset detected
|
christopher@45
|
81 h = H[index]
|
christopher@45
|
82 # Syncopation potential according to its metrical level, which is equal to the metrical weight
|
christopher@45
|
83 potential = 1 - pow(0.5,h)
|
christopher@45
|
84 level = h # Metrical weight is equal to its metrical level
|
christopher@45
|
85 syncopation += min(ave_dif_neighbours(index, level))*potential
|
christopher@45
|
86 else:
|
christopher@45
|
87 print 'Try giving a bigger Lmax so that the rhythm sequence can be measured by the matching metrical weights sequence (H).'
|
christopher@45
|
88 return syncopation
|