comparison Syncopation models/synpy/SG.py @ 45:6e9154fc58df

moving the code files to the synpy package directory
author christopherh <christopher.harte@eecs.qmul.ac.uk>
date Thu, 23 Apr 2015 23:52:04 +0100
parents
children 9a60ca4ae0fb
comparison
equal deleted inserted replaced
44:144460f34b5e 45:6e9154fc58df
1 '''
2 Author: Chunyang Song
3 Institution: Centre for Digital Music, Queen Mary University of London
4
5 '''
6
7 from basic_functions import get_H, velocity_sequence_to_min_timespan, get_rhythm_category, upsample_velocity_sequence
8 from parameter_setter import are_parameters_valid
9
10 def get_syncopation(bar, parameters = None):
11 syncopation = None
12 velocitySequence = bar.get_velocity_sequence()
13 subdivisionSequence = bar.get_subdivision_sequence()
14
15 if get_rhythm_category(velocitySequence, subdivisionSequence) == 'poly':
16 print 'Warning: SG model detects polyrhythms so returning None.'
17 else:
18 #velocitySequence = velocity_sequence_to_min_timespan(velocitySequence) # converting to the minimum time-span format
19
20 # set the defaults
21 Lmax = 5
22 weightSequence = range(Lmax+1) # i.e. [0,1,2,3,4,5]
23 if parameters!= None:
24 if 'Lmax' in parameters:
25 Lmax = parameters['Lmax']
26 if 'W' in parameters:
27 weightSequence = parameters['W']
28
29 if not are_parameters_valid(Lmax, weightSequence, subdivisionSequence):
30 print 'Error: the given parameters are not valid.'
31 else:
32 # generate the metrical weights of level Lmax, and upsample(stretch) the velocity sequence to match the length of H
33 H = get_H(weightSequence,subdivisionSequence, Lmax)
34
35 velocitySequence = upsample_velocity_sequence(velocitySequence, len(H))
36
37 # The ave_dif_neighbours function calculates the (weighted) average of the difference between the note at a certain index and its neighbours in a certain metrical level
38 def ave_dif_neighbours(index, level):
39
40 averages = []
41 parameterGarma = 0.8
42
43 # The findPre function is to calculate the index of the previous neighbour at a certain metrical level.
44 def find_pre(index, level):
45 preIndex = (index - 1)%len(H) # using % is to restrict the index varies within range(0, len(H))
46 while(H[preIndex] > level):
47 preIndex = (preIndex - 1)%len(H)
48 #print 'preIndex', preIndex
49 return preIndex
50
51 # The findPost function is to calculate the index of the next neighbour at a certain metrical level.
52 def find_post(index, level):
53 postIndex = (index + 1)%len(H)
54 while(H[postIndex] > level):
55 postIndex = (postIndex + 1)%len(H)
56 #print 'postIndex', postIndex
57 return postIndex
58
59 # The dif function is to calculate a difference level factor between two notes (at note position index1 and index 2) in velocity sequence
60 def dif(index1,index2):
61 parameterBeta = 0.5
62 dif_v = velocitySequence[index1]-velocitySequence[index2]
63 dif_h = abs(H[index1]-H[index2])
64 dif = dif_v*(parameterBeta*dif_h/4+1-parameterBeta)
65 #print 'dif', dif
66 return dif
67
68 # From the highest to the lowest metrical levels where the current note resides, calculate the difference between the note and its neighbours at that level
69 for l in range(level, max(H)+1):
70 ave = (parameterGarma*dif(index,find_pre(index,l))+dif(index,find_post(index,l)) )/(1+parameterGarma)
71 averages.append(ave)
72 #print 'averages', averages
73 return averages
74
75 # if the upsampling was successfully done
76 if velocitySequence != None:
77 syncopation = 0
78 # Calculate the syncopation value for each note
79 for index in range(len(velocitySequence)):
80 if velocitySequence[index] != 0: # Onset detected
81 h = H[index]
82 # Syncopation potential according to its metrical level, which is equal to the metrical weight
83 potential = 1 - pow(0.5,h)
84 level = h # Metrical weight is equal to its metrical level
85 syncopation += min(ave_dif_neighbours(index, level))*potential
86 else:
87 print 'Try giving a bigger Lmax so that the rhythm sequence can be measured by the matching metrical weights sequence (H).'
88 return syncopation