annotate layer/SpectrogramLayer.cpp @ 79:19bf27e4fb29

* Replace crash with warning when a transform could not be automatically re-run * More sensible default paths for Vamp plugin lookup (at least on Linux and OS/X) * A start to making the y coords for time value layers etc align * Set sensible y coords for text labels in time instant and value layers
author Chris Cannam
date Thu, 13 Apr 2006 18:29:10 +0000
parents fd348f36c0d3
children d99d67a5b93a
rev   line source
Chris@58 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
Chris@0 2
Chris@0 3 /*
Chris@59 4 Sonic Visualiser
Chris@59 5 An audio file viewer and annotation editor.
Chris@59 6 Centre for Digital Music, Queen Mary, University of London.
Chris@59 7 This file copyright 2006 Chris Cannam.
Chris@0 8
Chris@59 9 This program is free software; you can redistribute it and/or
Chris@59 10 modify it under the terms of the GNU General Public License as
Chris@59 11 published by the Free Software Foundation; either version 2 of the
Chris@59 12 License, or (at your option) any later version. See the file
Chris@59 13 COPYING included with this distribution for more information.
Chris@0 14 */
Chris@0 15
Chris@0 16 #include "SpectrogramLayer.h"
Chris@0 17
Chris@0 18 #include "base/View.h"
Chris@0 19 #include "base/Profiler.h"
Chris@0 20 #include "base/AudioLevel.h"
Chris@0 21 #include "base/Window.h"
Chris@24 22 #include "base/Pitch.h"
Chris@0 23
Chris@0 24 #include <QPainter>
Chris@0 25 #include <QImage>
Chris@0 26 #include <QPixmap>
Chris@0 27 #include <QRect>
Chris@0 28 #include <QTimer>
Chris@0 29
Chris@0 30 #include <iostream>
Chris@0 31
Chris@0 32 #include <cassert>
Chris@0 33 #include <cmath>
Chris@0 34
Chris@0 35 //#define DEBUG_SPECTROGRAM_REPAINT 1
Chris@0 36
Chris@75 37 static double mod(double x, double y)
Chris@75 38 {
Chris@75 39 double a = floor(x / y);
Chris@75 40 double b = x - (y * a);
Chris@75 41 return b;
Chris@75 42 }
Chris@75 43
Chris@75 44 static double princarg(double ang)
Chris@75 45 {
Chris@75 46 return mod(ang + M_PI, -2 * M_PI) + M_PI;
Chris@75 47 }
Chris@75 48
Chris@0 49
Chris@44 50 SpectrogramLayer::SpectrogramLayer(Configuration config) :
Chris@44 51 Layer(),
Chris@0 52 m_model(0),
Chris@0 53 m_channel(0),
Chris@0 54 m_windowSize(1024),
Chris@0 55 m_windowType(HanningWindow),
Chris@0 56 m_windowOverlap(50),
Chris@0 57 m_gain(1.0),
Chris@37 58 m_threshold(0.0),
Chris@9 59 m_colourRotation(0),
Chris@37 60 m_minFrequency(0),
Chris@0 61 m_maxFrequency(8000),
Chris@0 62 m_colourScale(dBColourScale),
Chris@0 63 m_colourScheme(DefaultColours),
Chris@0 64 m_frequencyScale(LinearFrequencyScale),
Chris@37 65 m_binDisplay(AllBins),
Chris@36 66 m_normalizeColumns(false),
Chris@0 67 m_cache(0),
Chris@0 68 m_cacheInvalid(true),
Chris@0 69 m_pixmapCache(0),
Chris@0 70 m_pixmapCacheInvalid(true),
Chris@0 71 m_fillThread(0),
Chris@0 72 m_updateTimer(0),
Chris@44 73 m_candidateFillStartFrame(0),
Chris@0 74 m_lastFillExtent(0),
Chris@0 75 m_exiting(false)
Chris@0 76 {
Chris@0 77 if (config == MelodicRange) {
Chris@0 78 setWindowSize(8192);
Chris@0 79 setWindowOverlap(90);
Chris@0 80 setWindowType(ParzenWindow);
Chris@0 81 setMaxFrequency(1000);
Chris@0 82 setColourScale(LinearColourScale);
Chris@37 83 } else if (config == MelodicPeaks) {
Chris@37 84 setWindowSize(4096);
Chris@37 85 setWindowOverlap(90);
Chris@37 86 setWindowType(BlackmanWindow);
Chris@40 87 setMaxFrequency(2000);
Chris@37 88 setMinFrequency(40);
Chris@37 89 setFrequencyScale(LogFrequencyScale);
Chris@41 90 setColourScale(MeterColourScale);
Chris@37 91 setBinDisplay(PeakFrequencies);
Chris@37 92 setNormalizeColumns(true);
Chris@0 93 }
Chris@0 94 }
Chris@0 95
Chris@0 96 SpectrogramLayer::~SpectrogramLayer()
Chris@0 97 {
Chris@0 98 delete m_updateTimer;
Chris@0 99 m_updateTimer = 0;
Chris@0 100
Chris@0 101 m_exiting = true;
Chris@0 102 m_condition.wakeAll();
Chris@0 103 if (m_fillThread) m_fillThread->wait();
Chris@0 104 delete m_fillThread;
Chris@0 105
Chris@0 106 delete m_cache;
Chris@0 107 }
Chris@0 108
Chris@0 109 void
Chris@0 110 SpectrogramLayer::setModel(const DenseTimeValueModel *model)
Chris@0 111 {
Chris@34 112 std::cerr << "SpectrogramLayer(" << this << "): setModel(" << model << ")" << std::endl;
Chris@34 113
Chris@0 114 m_mutex.lock();
Chris@35 115 m_cacheInvalid = true;
Chris@0 116 m_model = model;
Chris@34 117 delete m_cache; //!!! hang on, this isn't safe to do here is it?
Chris@34 118 // we need some sort of guard against the fill
Chris@34 119 // thread trying to read the defunct model too.
Chris@34 120 // should we use a scavenger?
Chris@31 121 m_cache = 0;
Chris@0 122 m_mutex.unlock();
Chris@0 123
Chris@0 124 if (!m_model || !m_model->isOK()) return;
Chris@0 125
Chris@0 126 connect(m_model, SIGNAL(modelChanged()), this, SIGNAL(modelChanged()));
Chris@0 127 connect(m_model, SIGNAL(modelChanged(size_t, size_t)),
Chris@0 128 this, SIGNAL(modelChanged(size_t, size_t)));
Chris@0 129
Chris@0 130 connect(m_model, SIGNAL(completionChanged()),
Chris@0 131 this, SIGNAL(modelCompletionChanged()));
Chris@0 132
Chris@0 133 connect(m_model, SIGNAL(modelChanged()), this, SLOT(cacheInvalid()));
Chris@0 134 connect(m_model, SIGNAL(modelChanged(size_t, size_t)),
Chris@0 135 this, SLOT(cacheInvalid(size_t, size_t)));
Chris@0 136
Chris@0 137 emit modelReplaced();
Chris@0 138 fillCache();
Chris@0 139 }
Chris@0 140
Chris@0 141 Layer::PropertyList
Chris@0 142 SpectrogramLayer::getProperties() const
Chris@0 143 {
Chris@0 144 PropertyList list;
Chris@0 145 list.push_back(tr("Colour"));
Chris@0 146 list.push_back(tr("Colour Scale"));
Chris@0 147 list.push_back(tr("Window Type"));
Chris@0 148 list.push_back(tr("Window Size"));
Chris@0 149 list.push_back(tr("Window Overlap"));
Chris@36 150 list.push_back(tr("Normalize"));
Chris@37 151 list.push_back(tr("Bin Display"));
Chris@37 152 list.push_back(tr("Threshold"));
Chris@0 153 list.push_back(tr("Gain"));
Chris@9 154 list.push_back(tr("Colour Rotation"));
Chris@37 155 list.push_back(tr("Min Frequency"));
Chris@0 156 list.push_back(tr("Max Frequency"));
Chris@0 157 list.push_back(tr("Frequency Scale"));
Chris@0 158 return list;
Chris@0 159 }
Chris@0 160
Chris@0 161 Layer::PropertyType
Chris@0 162 SpectrogramLayer::getPropertyType(const PropertyName &name) const
Chris@0 163 {
Chris@0 164 if (name == tr("Gain")) return RangeProperty;
Chris@9 165 if (name == tr("Colour Rotation")) return RangeProperty;
Chris@36 166 if (name == tr("Normalize")) return ToggleProperty;
Chris@37 167 if (name == tr("Threshold")) return RangeProperty;
Chris@0 168 return ValueProperty;
Chris@0 169 }
Chris@0 170
Chris@0 171 QString
Chris@0 172 SpectrogramLayer::getPropertyGroupName(const PropertyName &name) const
Chris@0 173 {
Chris@0 174 if (name == tr("Window Size") ||
Chris@35 175 name == tr("Window Type") ||
Chris@0 176 name == tr("Window Overlap")) return tr("Window");
Chris@35 177 if (name == tr("Colour") ||
Chris@38 178 name == tr("Gain") ||
Chris@38 179 name == tr("Threshold") ||
Chris@35 180 name == tr("Colour Rotation")) return tr("Colour");
Chris@38 181 if (name == tr("Normalize") ||
Chris@37 182 name == tr("Bin Display") ||
Chris@0 183 name == tr("Colour Scale")) return tr("Scale");
Chris@0 184 if (name == tr("Max Frequency") ||
Chris@37 185 name == tr("Min Frequency") ||
Chris@35 186 name == tr("Frequency Scale") ||
Chris@37 187 name == tr("Frequency Adjustment")) return tr("Range");
Chris@0 188 return QString();
Chris@0 189 }
Chris@0 190
Chris@0 191 int
Chris@0 192 SpectrogramLayer::getPropertyRangeAndValue(const PropertyName &name,
Chris@55 193 int *min, int *max) const
Chris@0 194 {
Chris@0 195 int deft = 0;
Chris@0 196
Chris@55 197 int garbage0, garbage1;
Chris@55 198 if (!min) min = &garbage0;
Chris@55 199 if (!max) max = &garbage1;
Chris@10 200
Chris@0 201 if (name == tr("Gain")) {
Chris@0 202
Chris@0 203 *min = -50;
Chris@0 204 *max = 50;
Chris@0 205
Chris@0 206 deft = lrint(log10(m_gain) * 20.0);
Chris@0 207 if (deft < *min) deft = *min;
Chris@0 208 if (deft > *max) deft = *max;
Chris@0 209
Chris@37 210 } else if (name == tr("Threshold")) {
Chris@37 211
Chris@37 212 *min = -50;
Chris@37 213 *max = 0;
Chris@37 214
Chris@37 215 deft = lrintf(AudioLevel::multiplier_to_dB(m_threshold));
Chris@37 216 if (deft < *min) deft = *min;
Chris@37 217 if (deft > *max) deft = *max;
Chris@37 218
Chris@9 219 } else if (name == tr("Colour Rotation")) {
Chris@9 220
Chris@9 221 *min = 0;
Chris@9 222 *max = 256;
Chris@9 223
Chris@9 224 deft = m_colourRotation;
Chris@9 225
Chris@0 226 } else if (name == tr("Colour Scale")) {
Chris@0 227
Chris@0 228 *min = 0;
Chris@0 229 *max = 3;
Chris@0 230
Chris@0 231 deft = (int)m_colourScale;
Chris@0 232
Chris@0 233 } else if (name == tr("Colour")) {
Chris@0 234
Chris@0 235 *min = 0;
Chris@71 236 *max = 6;
Chris@0 237
Chris@0 238 deft = (int)m_colourScheme;
Chris@0 239
Chris@0 240 } else if (name == tr("Window Type")) {
Chris@0 241
Chris@0 242 *min = 0;
Chris@0 243 *max = 6;
Chris@0 244
Chris@0 245 deft = (int)m_windowType;
Chris@0 246
Chris@0 247 } else if (name == tr("Window Size")) {
Chris@0 248
Chris@0 249 *min = 0;
Chris@0 250 *max = 10;
Chris@0 251
Chris@0 252 deft = 0;
Chris@0 253 int ws = m_windowSize;
Chris@0 254 while (ws > 32) { ws >>= 1; deft ++; }
Chris@0 255
Chris@0 256 } else if (name == tr("Window Overlap")) {
Chris@0 257
Chris@0 258 *min = 0;
Chris@0 259 *max = 4;
Chris@0 260
Chris@0 261 deft = m_windowOverlap / 25;
Chris@0 262 if (m_windowOverlap == 90) deft = 4;
Chris@0 263
Chris@37 264 } else if (name == tr("Min Frequency")) {
Chris@37 265
Chris@37 266 *min = 0;
Chris@37 267 *max = 9;
Chris@37 268
Chris@37 269 switch (m_minFrequency) {
Chris@37 270 case 0: default: deft = 0; break;
Chris@37 271 case 10: deft = 1; break;
Chris@37 272 case 20: deft = 2; break;
Chris@37 273 case 40: deft = 3; break;
Chris@37 274 case 100: deft = 4; break;
Chris@37 275 case 250: deft = 5; break;
Chris@37 276 case 500: deft = 6; break;
Chris@37 277 case 1000: deft = 7; break;
Chris@37 278 case 4000: deft = 8; break;
Chris@37 279 case 10000: deft = 9; break;
Chris@37 280 }
Chris@37 281
Chris@0 282 } else if (name == tr("Max Frequency")) {
Chris@0 283
Chris@0 284 *min = 0;
Chris@0 285 *max = 9;
Chris@0 286
Chris@0 287 switch (m_maxFrequency) {
Chris@0 288 case 500: deft = 0; break;
Chris@0 289 case 1000: deft = 1; break;
Chris@0 290 case 1500: deft = 2; break;
Chris@0 291 case 2000: deft = 3; break;
Chris@0 292 case 4000: deft = 4; break;
Chris@0 293 case 6000: deft = 5; break;
Chris@0 294 case 8000: deft = 6; break;
Chris@0 295 case 12000: deft = 7; break;
Chris@0 296 case 16000: deft = 8; break;
Chris@0 297 default: deft = 9; break;
Chris@0 298 }
Chris@0 299
Chris@0 300 } else if (name == tr("Frequency Scale")) {
Chris@0 301
Chris@0 302 *min = 0;
Chris@0 303 *max = 1;
Chris@0 304 deft = (int)m_frequencyScale;
Chris@0 305
Chris@37 306 } else if (name == tr("Bin Display")) {
Chris@35 307
Chris@35 308 *min = 0;
Chris@35 309 *max = 2;
Chris@37 310 deft = (int)m_binDisplay;
Chris@35 311
Chris@36 312 } else if (name == tr("Normalize")) {
Chris@36 313
Chris@36 314 deft = (m_normalizeColumns ? 1 : 0);
Chris@36 315
Chris@0 316 } else {
Chris@0 317 deft = Layer::getPropertyRangeAndValue(name, min, max);
Chris@0 318 }
Chris@0 319
Chris@0 320 return deft;
Chris@0 321 }
Chris@0 322
Chris@0 323 QString
Chris@0 324 SpectrogramLayer::getPropertyValueLabel(const PropertyName &name,
Chris@9 325 int value) const
Chris@0 326 {
Chris@0 327 if (name == tr("Colour")) {
Chris@0 328 switch (value) {
Chris@0 329 default:
Chris@0 330 case 0: return tr("Default");
Chris@0 331 case 1: return tr("White on Black");
Chris@0 332 case 2: return tr("Black on White");
Chris@0 333 case 3: return tr("Red on Blue");
Chris@0 334 case 4: return tr("Yellow on Black");
Chris@71 335 case 5: return tr("Blue on Black");
Chris@71 336 case 6: return tr("Fruit Salad");
Chris@0 337 }
Chris@0 338 }
Chris@0 339 if (name == tr("Colour Scale")) {
Chris@0 340 switch (value) {
Chris@0 341 default:
Chris@37 342 case 0: return tr("Linear");
Chris@37 343 case 1: return tr("Meter");
Chris@37 344 case 2: return tr("dB");
Chris@0 345 case 3: return tr("Phase");
Chris@0 346 }
Chris@0 347 }
Chris@0 348 if (name == tr("Window Type")) {
Chris@0 349 switch ((WindowType)value) {
Chris@0 350 default:
Chris@35 351 case RectangularWindow: return tr("Rectangle");
Chris@0 352 case BartlettWindow: return tr("Bartlett");
Chris@0 353 case HammingWindow: return tr("Hamming");
Chris@0 354 case HanningWindow: return tr("Hanning");
Chris@0 355 case BlackmanWindow: return tr("Blackman");
Chris@0 356 case GaussianWindow: return tr("Gaussian");
Chris@0 357 case ParzenWindow: return tr("Parzen");
Chris@0 358 }
Chris@0 359 }
Chris@0 360 if (name == tr("Window Size")) {
Chris@0 361 return QString("%1").arg(32 << value);
Chris@0 362 }
Chris@0 363 if (name == tr("Window Overlap")) {
Chris@0 364 switch (value) {
Chris@0 365 default:
Chris@35 366 case 0: return tr("0%");
Chris@35 367 case 1: return tr("25%");
Chris@35 368 case 2: return tr("50%");
Chris@35 369 case 3: return tr("75%");
Chris@35 370 case 4: return tr("90%");
Chris@0 371 }
Chris@0 372 }
Chris@37 373 if (name == tr("Min Frequency")) {
Chris@37 374 switch (value) {
Chris@37 375 default:
Chris@38 376 case 0: return tr("No min");
Chris@37 377 case 1: return tr("10 Hz");
Chris@37 378 case 2: return tr("20 Hz");
Chris@37 379 case 3: return tr("40 Hz");
Chris@37 380 case 4: return tr("100 Hz");
Chris@37 381 case 5: return tr("250 Hz");
Chris@37 382 case 6: return tr("500 Hz");
Chris@37 383 case 7: return tr("1 KHz");
Chris@37 384 case 8: return tr("4 KHz");
Chris@37 385 case 9: return tr("10 KHz");
Chris@37 386 }
Chris@37 387 }
Chris@0 388 if (name == tr("Max Frequency")) {
Chris@0 389 switch (value) {
Chris@0 390 default:
Chris@0 391 case 0: return tr("500 Hz");
Chris@0 392 case 1: return tr("1 KHz");
Chris@0 393 case 2: return tr("1.5 KHz");
Chris@0 394 case 3: return tr("2 KHz");
Chris@0 395 case 4: return tr("4 KHz");
Chris@0 396 case 5: return tr("6 KHz");
Chris@0 397 case 6: return tr("8 KHz");
Chris@0 398 case 7: return tr("12 KHz");
Chris@0 399 case 8: return tr("16 KHz");
Chris@38 400 case 9: return tr("No max");
Chris@0 401 }
Chris@0 402 }
Chris@0 403 if (name == tr("Frequency Scale")) {
Chris@0 404 switch (value) {
Chris@0 405 default:
Chris@0 406 case 0: return tr("Linear");
Chris@0 407 case 1: return tr("Log");
Chris@0 408 }
Chris@0 409 }
Chris@37 410 if (name == tr("Bin Display")) {
Chris@35 411 switch (value) {
Chris@35 412 default:
Chris@37 413 case 0: return tr("All Bins");
Chris@37 414 case 1: return tr("Peak Bins");
Chris@37 415 case 2: return tr("Frequencies");
Chris@35 416 }
Chris@35 417 }
Chris@0 418 return tr("<unknown>");
Chris@0 419 }
Chris@0 420
Chris@0 421 void
Chris@0 422 SpectrogramLayer::setProperty(const PropertyName &name, int value)
Chris@0 423 {
Chris@0 424 if (name == tr("Gain")) {
Chris@0 425 setGain(pow(10, float(value)/20.0));
Chris@37 426 } else if (name == tr("Threshold")) {
Chris@37 427 if (value == -50) setThreshold(0.0);
Chris@37 428 else setThreshold(AudioLevel::dB_to_multiplier(value));
Chris@9 429 } else if (name == tr("Colour Rotation")) {
Chris@9 430 setColourRotation(value);
Chris@0 431 } else if (name == tr("Colour")) {
Chris@0 432 switch (value) {
Chris@0 433 default:
Chris@0 434 case 0: setColourScheme(DefaultColours); break;
Chris@0 435 case 1: setColourScheme(WhiteOnBlack); break;
Chris@0 436 case 2: setColourScheme(BlackOnWhite); break;
Chris@0 437 case 3: setColourScheme(RedOnBlue); break;
Chris@0 438 case 4: setColourScheme(YellowOnBlack); break;
Chris@71 439 case 5: setColourScheme(BlueOnBlack); break;
Chris@71 440 case 6: setColourScheme(Rainbow); break;
Chris@0 441 }
Chris@0 442 } else if (name == tr("Window Type")) {
Chris@0 443 setWindowType(WindowType(value));
Chris@0 444 } else if (name == tr("Window Size")) {
Chris@0 445 setWindowSize(32 << value);
Chris@0 446 } else if (name == tr("Window Overlap")) {
Chris@0 447 if (value == 4) setWindowOverlap(90);
Chris@0 448 else setWindowOverlap(25 * value);
Chris@37 449 } else if (name == tr("Min Frequency")) {
Chris@37 450 switch (value) {
Chris@37 451 default:
Chris@37 452 case 0: setMinFrequency(0); break;
Chris@37 453 case 1: setMinFrequency(10); break;
Chris@37 454 case 2: setMinFrequency(20); break;
Chris@37 455 case 3: setMinFrequency(40); break;
Chris@37 456 case 4: setMinFrequency(100); break;
Chris@37 457 case 5: setMinFrequency(250); break;
Chris@37 458 case 6: setMinFrequency(500); break;
Chris@37 459 case 7: setMinFrequency(1000); break;
Chris@37 460 case 8: setMinFrequency(4000); break;
Chris@37 461 case 9: setMinFrequency(10000); break;
Chris@37 462 }
Chris@0 463 } else if (name == tr("Max Frequency")) {
Chris@0 464 switch (value) {
Chris@0 465 case 0: setMaxFrequency(500); break;
Chris@0 466 case 1: setMaxFrequency(1000); break;
Chris@0 467 case 2: setMaxFrequency(1500); break;
Chris@0 468 case 3: setMaxFrequency(2000); break;
Chris@0 469 case 4: setMaxFrequency(4000); break;
Chris@0 470 case 5: setMaxFrequency(6000); break;
Chris@0 471 case 6: setMaxFrequency(8000); break;
Chris@0 472 case 7: setMaxFrequency(12000); break;
Chris@0 473 case 8: setMaxFrequency(16000); break;
Chris@0 474 default:
Chris@0 475 case 9: setMaxFrequency(0); break;
Chris@0 476 }
Chris@0 477 } else if (name == tr("Colour Scale")) {
Chris@0 478 switch (value) {
Chris@0 479 default:
Chris@0 480 case 0: setColourScale(LinearColourScale); break;
Chris@0 481 case 1: setColourScale(MeterColourScale); break;
Chris@0 482 case 2: setColourScale(dBColourScale); break;
Chris@0 483 case 3: setColourScale(PhaseColourScale); break;
Chris@0 484 }
Chris@0 485 } else if (name == tr("Frequency Scale")) {
Chris@0 486 switch (value) {
Chris@0 487 default:
Chris@0 488 case 0: setFrequencyScale(LinearFrequencyScale); break;
Chris@0 489 case 1: setFrequencyScale(LogFrequencyScale); break;
Chris@0 490 }
Chris@37 491 } else if (name == tr("Bin Display")) {
Chris@35 492 switch (value) {
Chris@35 493 default:
Chris@37 494 case 0: setBinDisplay(AllBins); break;
Chris@37 495 case 1: setBinDisplay(PeakBins); break;
Chris@37 496 case 2: setBinDisplay(PeakFrequencies); break;
Chris@35 497 }
Chris@36 498 } else if (name == "Normalize") {
Chris@36 499 setNormalizeColumns(value ? true : false);
Chris@0 500 }
Chris@0 501 }
Chris@0 502
Chris@0 503 void
Chris@0 504 SpectrogramLayer::setChannel(int ch)
Chris@0 505 {
Chris@0 506 if (m_channel == ch) return;
Chris@0 507
Chris@0 508 m_mutex.lock();
Chris@0 509 m_cacheInvalid = true;
Chris@0 510 m_pixmapCacheInvalid = true;
Chris@0 511
Chris@0 512 m_channel = ch;
Chris@9 513
Chris@9 514 m_mutex.unlock();
Chris@9 515
Chris@0 516 emit layerParametersChanged();
Chris@9 517
Chris@0 518 fillCache();
Chris@0 519 }
Chris@0 520
Chris@0 521 int
Chris@0 522 SpectrogramLayer::getChannel() const
Chris@0 523 {
Chris@0 524 return m_channel;
Chris@0 525 }
Chris@0 526
Chris@0 527 void
Chris@0 528 SpectrogramLayer::setWindowSize(size_t ws)
Chris@0 529 {
Chris@0 530 if (m_windowSize == ws) return;
Chris@0 531
Chris@0 532 m_mutex.lock();
Chris@0 533 m_cacheInvalid = true;
Chris@0 534 m_pixmapCacheInvalid = true;
Chris@0 535
Chris@0 536 m_windowSize = ws;
Chris@0 537
Chris@0 538 m_mutex.unlock();
Chris@9 539
Chris@9 540 emit layerParametersChanged();
Chris@9 541
Chris@0 542 fillCache();
Chris@0 543 }
Chris@0 544
Chris@0 545 size_t
Chris@0 546 SpectrogramLayer::getWindowSize() const
Chris@0 547 {
Chris@0 548 return m_windowSize;
Chris@0 549 }
Chris@0 550
Chris@0 551 void
Chris@0 552 SpectrogramLayer::setWindowOverlap(size_t wi)
Chris@0 553 {
Chris@0 554 if (m_windowOverlap == wi) return;
Chris@0 555
Chris@0 556 m_mutex.lock();
Chris@0 557 m_cacheInvalid = true;
Chris@0 558 m_pixmapCacheInvalid = true;
Chris@0 559
Chris@0 560 m_windowOverlap = wi;
Chris@0 561
Chris@0 562 m_mutex.unlock();
Chris@9 563
Chris@9 564 emit layerParametersChanged();
Chris@9 565
Chris@0 566 fillCache();
Chris@0 567 }
Chris@0 568
Chris@0 569 size_t
Chris@0 570 SpectrogramLayer::getWindowOverlap() const
Chris@0 571 {
Chris@0 572 return m_windowOverlap;
Chris@0 573 }
Chris@0 574
Chris@0 575 void
Chris@0 576 SpectrogramLayer::setWindowType(WindowType w)
Chris@0 577 {
Chris@0 578 if (m_windowType == w) return;
Chris@0 579
Chris@0 580 m_mutex.lock();
Chris@0 581 m_cacheInvalid = true;
Chris@0 582 m_pixmapCacheInvalid = true;
Chris@0 583
Chris@0 584 m_windowType = w;
Chris@0 585
Chris@0 586 m_mutex.unlock();
Chris@9 587
Chris@9 588 emit layerParametersChanged();
Chris@9 589
Chris@0 590 fillCache();
Chris@0 591 }
Chris@0 592
Chris@0 593 WindowType
Chris@0 594 SpectrogramLayer::getWindowType() const
Chris@0 595 {
Chris@0 596 return m_windowType;
Chris@0 597 }
Chris@0 598
Chris@0 599 void
Chris@0 600 SpectrogramLayer::setGain(float gain)
Chris@0 601 {
Chris@55 602 std::cerr << "SpectrogramLayer::setGain(" << gain << ") (my gain is now "
Chris@55 603 << m_gain << ")" << std::endl;
Chris@55 604
Chris@40 605 if (m_gain == gain) return;
Chris@0 606
Chris@0 607 m_mutex.lock();
Chris@0 608 m_pixmapCacheInvalid = true;
Chris@0 609
Chris@0 610 m_gain = gain;
Chris@0 611
Chris@0 612 m_mutex.unlock();
Chris@9 613
Chris@9 614 emit layerParametersChanged();
Chris@9 615
Chris@0 616 fillCache();
Chris@0 617 }
Chris@0 618
Chris@0 619 float
Chris@0 620 SpectrogramLayer::getGain() const
Chris@0 621 {
Chris@0 622 return m_gain;
Chris@0 623 }
Chris@0 624
Chris@0 625 void
Chris@37 626 SpectrogramLayer::setThreshold(float threshold)
Chris@37 627 {
Chris@40 628 if (m_threshold == threshold) return;
Chris@37 629
Chris@37 630 m_mutex.lock();
Chris@37 631 m_pixmapCacheInvalid = true;
Chris@37 632
Chris@37 633 m_threshold = threshold;
Chris@37 634
Chris@37 635 m_mutex.unlock();
Chris@37 636
Chris@37 637 emit layerParametersChanged();
Chris@37 638
Chris@37 639 fillCache();
Chris@37 640 }
Chris@37 641
Chris@37 642 float
Chris@37 643 SpectrogramLayer::getThreshold() const
Chris@37 644 {
Chris@37 645 return m_threshold;
Chris@37 646 }
Chris@37 647
Chris@37 648 void
Chris@37 649 SpectrogramLayer::setMinFrequency(size_t mf)
Chris@37 650 {
Chris@37 651 if (m_minFrequency == mf) return;
Chris@37 652
Chris@37 653 m_mutex.lock();
Chris@37 654 m_pixmapCacheInvalid = true;
Chris@37 655
Chris@37 656 m_minFrequency = mf;
Chris@37 657
Chris@37 658 m_mutex.unlock();
Chris@37 659
Chris@37 660 emit layerParametersChanged();
Chris@37 661 }
Chris@37 662
Chris@37 663 size_t
Chris@37 664 SpectrogramLayer::getMinFrequency() const
Chris@37 665 {
Chris@37 666 return m_minFrequency;
Chris@37 667 }
Chris@37 668
Chris@37 669 void
Chris@0 670 SpectrogramLayer::setMaxFrequency(size_t mf)
Chris@0 671 {
Chris@0 672 if (m_maxFrequency == mf) return;
Chris@0 673
Chris@0 674 m_mutex.lock();
Chris@0 675 m_pixmapCacheInvalid = true;
Chris@0 676
Chris@0 677 m_maxFrequency = mf;
Chris@0 678
Chris@0 679 m_mutex.unlock();
Chris@9 680
Chris@9 681 emit layerParametersChanged();
Chris@0 682 }
Chris@0 683
Chris@0 684 size_t
Chris@0 685 SpectrogramLayer::getMaxFrequency() const
Chris@0 686 {
Chris@0 687 return m_maxFrequency;
Chris@0 688 }
Chris@0 689
Chris@0 690 void
Chris@9 691 SpectrogramLayer::setColourRotation(int r)
Chris@9 692 {
Chris@9 693 m_mutex.lock();
Chris@9 694 m_pixmapCacheInvalid = true;
Chris@9 695
Chris@9 696 if (r < 0) r = 0;
Chris@9 697 if (r > 256) r = 256;
Chris@9 698 int distance = r - m_colourRotation;
Chris@9 699
Chris@9 700 if (distance != 0) {
Chris@9 701 rotateCacheColourmap(-distance);
Chris@9 702 m_colourRotation = r;
Chris@9 703 }
Chris@9 704
Chris@9 705 m_mutex.unlock();
Chris@9 706
Chris@9 707 emit layerParametersChanged();
Chris@9 708 }
Chris@9 709
Chris@9 710 void
Chris@0 711 SpectrogramLayer::setColourScale(ColourScale colourScale)
Chris@0 712 {
Chris@0 713 if (m_colourScale == colourScale) return;
Chris@0 714
Chris@0 715 m_mutex.lock();
Chris@0 716 m_pixmapCacheInvalid = true;
Chris@0 717
Chris@0 718 m_colourScale = colourScale;
Chris@0 719
Chris@0 720 m_mutex.unlock();
Chris@0 721 fillCache();
Chris@9 722
Chris@9 723 emit layerParametersChanged();
Chris@0 724 }
Chris@0 725
Chris@0 726 SpectrogramLayer::ColourScale
Chris@0 727 SpectrogramLayer::getColourScale() const
Chris@0 728 {
Chris@0 729 return m_colourScale;
Chris@0 730 }
Chris@0 731
Chris@0 732 void
Chris@0 733 SpectrogramLayer::setColourScheme(ColourScheme scheme)
Chris@0 734 {
Chris@0 735 if (m_colourScheme == scheme) return;
Chris@0 736
Chris@0 737 m_mutex.lock();
Chris@0 738 m_pixmapCacheInvalid = true;
Chris@0 739
Chris@0 740 m_colourScheme = scheme;
Chris@0 741 setCacheColourmap();
Chris@9 742
Chris@9 743 m_mutex.unlock();
Chris@9 744
Chris@0 745 emit layerParametersChanged();
Chris@0 746 }
Chris@0 747
Chris@0 748 SpectrogramLayer::ColourScheme
Chris@0 749 SpectrogramLayer::getColourScheme() const
Chris@0 750 {
Chris@0 751 return m_colourScheme;
Chris@0 752 }
Chris@0 753
Chris@0 754 void
Chris@0 755 SpectrogramLayer::setFrequencyScale(FrequencyScale frequencyScale)
Chris@0 756 {
Chris@0 757 if (m_frequencyScale == frequencyScale) return;
Chris@0 758
Chris@0 759 m_mutex.lock();
Chris@35 760
Chris@0 761 m_pixmapCacheInvalid = true;
Chris@0 762
Chris@0 763 m_frequencyScale = frequencyScale;
Chris@0 764
Chris@0 765 m_mutex.unlock();
Chris@9 766
Chris@9 767 emit layerParametersChanged();
Chris@0 768 }
Chris@0 769
Chris@0 770 SpectrogramLayer::FrequencyScale
Chris@0 771 SpectrogramLayer::getFrequencyScale() const
Chris@0 772 {
Chris@0 773 return m_frequencyScale;
Chris@0 774 }
Chris@0 775
Chris@0 776 void
Chris@37 777 SpectrogramLayer::setBinDisplay(BinDisplay binDisplay)
Chris@35 778 {
Chris@37 779 if (m_binDisplay == binDisplay) return;
Chris@35 780
Chris@35 781 m_mutex.lock();
Chris@35 782
Chris@35 783 m_pixmapCacheInvalid = true;
Chris@35 784
Chris@37 785 m_binDisplay = binDisplay;
Chris@35 786
Chris@35 787 m_mutex.unlock();
Chris@35 788
Chris@35 789 fillCache();
Chris@35 790
Chris@35 791 emit layerParametersChanged();
Chris@35 792 }
Chris@35 793
Chris@37 794 SpectrogramLayer::BinDisplay
Chris@37 795 SpectrogramLayer::getBinDisplay() const
Chris@35 796 {
Chris@37 797 return m_binDisplay;
Chris@35 798 }
Chris@35 799
Chris@35 800 void
Chris@36 801 SpectrogramLayer::setNormalizeColumns(bool n)
Chris@36 802 {
Chris@36 803 if (m_normalizeColumns == n) return;
Chris@36 804 m_mutex.lock();
Chris@36 805
Chris@36 806 m_pixmapCacheInvalid = true;
Chris@36 807 m_normalizeColumns = n;
Chris@36 808 m_mutex.unlock();
Chris@36 809
Chris@36 810 fillCache();
Chris@36 811 emit layerParametersChanged();
Chris@36 812 }
Chris@36 813
Chris@36 814 bool
Chris@36 815 SpectrogramLayer::getNormalizeColumns() const
Chris@36 816 {
Chris@36 817 return m_normalizeColumns;
Chris@36 818 }
Chris@36 819
Chris@36 820 void
Chris@47 821 SpectrogramLayer::setLayerDormant(const View *v, bool dormant)
Chris@29 822 {
Chris@47 823 QMutexLocker locker(&m_mutex);
Chris@47 824
Chris@47 825 if (dormant == m_dormancy[v]) return;
Chris@33 826
Chris@33 827 if (dormant) {
Chris@33 828
Chris@47 829 m_dormancy[v] = true;
Chris@33 830
Chris@34 831 // delete m_cache;
Chris@34 832 // m_cache = 0;
Chris@33 833
Chris@34 834 m_cacheInvalid = true;
Chris@33 835 m_pixmapCacheInvalid = true;
Chris@33 836 delete m_pixmapCache;
Chris@33 837 m_pixmapCache = 0;
Chris@33 838
Chris@33 839 } else {
Chris@33 840
Chris@47 841 m_dormancy[v] = false;
Chris@33 842 }
Chris@29 843 }
Chris@29 844
Chris@29 845 void
Chris@0 846 SpectrogramLayer::cacheInvalid()
Chris@0 847 {
Chris@0 848 m_cacheInvalid = true;
Chris@0 849 m_pixmapCacheInvalid = true;
Chris@0 850 fillCache();
Chris@0 851 }
Chris@0 852
Chris@0 853 void
Chris@0 854 SpectrogramLayer::cacheInvalid(size_t, size_t)
Chris@0 855 {
Chris@0 856 // for now (or forever?)
Chris@0 857 cacheInvalid();
Chris@0 858 }
Chris@0 859
Chris@0 860 void
Chris@0 861 SpectrogramLayer::fillCache()
Chris@0 862 {
Chris@0 863 #ifdef DEBUG_SPECTROGRAM_REPAINT
Chris@0 864 std::cerr << "SpectrogramLayer::fillCache" << std::endl;
Chris@0 865 #endif
Chris@0 866 QMutexLocker locker(&m_mutex);
Chris@0 867
Chris@0 868 m_lastFillExtent = 0;
Chris@0 869
Chris@0 870 delete m_updateTimer;
Chris@0 871 m_updateTimer = new QTimer(this);
Chris@0 872 connect(m_updateTimer, SIGNAL(timeout()), this, SLOT(fillTimerTimedOut()));
Chris@0 873 m_updateTimer->start(200);
Chris@0 874
Chris@0 875 if (!m_fillThread) {
Chris@0 876 std::cerr << "SpectrogramLayer::fillCache creating thread" << std::endl;
Chris@0 877 m_fillThread = new CacheFillThread(*this);
Chris@0 878 m_fillThread->start();
Chris@0 879 }
Chris@0 880
Chris@0 881 m_condition.wakeAll();
Chris@0 882 }
Chris@0 883
Chris@0 884 void
Chris@0 885 SpectrogramLayer::fillTimerTimedOut()
Chris@0 886 {
Chris@0 887 if (m_fillThread && m_model) {
Chris@0 888 size_t fillExtent = m_fillThread->getFillExtent();
Chris@0 889 #ifdef DEBUG_SPECTROGRAM_REPAINT
Chris@0 890 std::cerr << "SpectrogramLayer::fillTimerTimedOut: extent " << fillExtent << ", last " << m_lastFillExtent << ", total " << m_model->getEndFrame() << std::endl;
Chris@0 891 #endif
Chris@0 892 if (fillExtent >= m_lastFillExtent) {
Chris@0 893 if (fillExtent >= m_model->getEndFrame() && m_lastFillExtent > 0) {
Chris@0 894 #ifdef DEBUG_SPECTROGRAM_REPAINT
Chris@0 895 std::cerr << "complete!" << std::endl;
Chris@0 896 #endif
Chris@55 897 m_pixmapCacheInvalid = true;
Chris@0 898 emit modelChanged();
Chris@0 899 delete m_updateTimer;
Chris@0 900 m_updateTimer = 0;
Chris@0 901 m_lastFillExtent = 0;
Chris@0 902 } else if (fillExtent > m_lastFillExtent) {
Chris@0 903 #ifdef DEBUG_SPECTROGRAM_REPAINT
Chris@0 904 std::cerr << "SpectrogramLayer: emitting modelChanged("
Chris@0 905 << m_lastFillExtent << "," << fillExtent << ")" << std::endl;
Chris@0 906 #endif
Chris@55 907 m_pixmapCacheInvalid = true;
Chris@0 908 emit modelChanged(m_lastFillExtent, fillExtent);
Chris@0 909 m_lastFillExtent = fillExtent;
Chris@0 910 }
Chris@0 911 } else {
Chris@44 912 // if (v) {
Chris@0 913 size_t sf = 0;
Chris@44 914 //!!! if (v->getStartFrame() > 0) sf = v->getStartFrame();
Chris@0 915 #ifdef DEBUG_SPECTROGRAM_REPAINT
Chris@0 916 std::cerr << "SpectrogramLayer: going backwards, emitting modelChanged("
Chris@44 917 << sf << "," << m_model->getEndFrame() << ")" << std::endl;
Chris@0 918 #endif
Chris@55 919 m_pixmapCacheInvalid = true;
Chris@44 920 emit modelChanged(sf, m_model->getEndFrame());
Chris@44 921 // }
Chris@0 922 m_lastFillExtent = fillExtent;
Chris@0 923 }
Chris@0 924 }
Chris@0 925 }
Chris@0 926
Chris@0 927 void
Chris@0 928 SpectrogramLayer::setCacheColourmap()
Chris@0 929 {
Chris@0 930 if (m_cacheInvalid || !m_cache) return;
Chris@0 931
Chris@10 932 int formerRotation = m_colourRotation;
Chris@10 933
Chris@38 934 if (m_colourScheme == BlackOnWhite) {
Chris@38 935 m_cache->setColour(NO_VALUE, Qt::white);
Chris@38 936 } else {
Chris@38 937 m_cache->setColour(NO_VALUE, Qt::black);
Chris@38 938 }
Chris@0 939
Chris@0 940 for (int pixel = 1; pixel < 256; ++pixel) {
Chris@0 941
Chris@0 942 QColor colour;
Chris@0 943 int hue, px;
Chris@0 944
Chris@0 945 switch (m_colourScheme) {
Chris@0 946
Chris@0 947 default:
Chris@0 948 case DefaultColours:
Chris@0 949 hue = 256 - pixel;
Chris@0 950 colour = QColor::fromHsv(hue, pixel/2 + 128, pixel);
Chris@77 951 m_crosshairColour = QColor(255, 150, 50);
Chris@77 952 // m_crosshairColour = QColor::fromHsv(240, 160, 255);
Chris@0 953 break;
Chris@0 954
Chris@0 955 case WhiteOnBlack:
Chris@0 956 colour = QColor(pixel, pixel, pixel);
Chris@77 957 m_crosshairColour = Qt::red;
Chris@0 958 break;
Chris@0 959
Chris@0 960 case BlackOnWhite:
Chris@0 961 colour = QColor(256-pixel, 256-pixel, 256-pixel);
Chris@77 962 m_crosshairColour = Qt::darkGreen;
Chris@0 963 break;
Chris@0 964
Chris@0 965 case RedOnBlue:
Chris@0 966 colour = QColor(pixel > 128 ? (pixel - 128) * 2 : 0, 0,
Chris@0 967 pixel < 128 ? pixel : (256 - pixel));
Chris@77 968 m_crosshairColour = Qt::green;
Chris@0 969 break;
Chris@0 970
Chris@0 971 case YellowOnBlack:
Chris@0 972 px = 256 - pixel;
Chris@0 973 colour = QColor(px < 64 ? 255 - px/2 :
Chris@0 974 px < 128 ? 224 - (px - 64) :
Chris@0 975 px < 192 ? 160 - (px - 128) * 3 / 2 :
Chris@0 976 256 - px,
Chris@0 977 pixel,
Chris@0 978 pixel / 4);
Chris@77 979 m_crosshairColour = QColor::fromHsv(240, 255, 255);
Chris@0 980 break;
Chris@0 981
Chris@71 982 case BlueOnBlack:
Chris@71 983 colour = QColor::fromHsv
Chris@71 984 (240, pixel > 226 ? 256 - (pixel - 226) * 8 : 255,
Chris@71 985 (pixel * pixel) / 255);
Chris@77 986 m_crosshairColour = Qt::red;
Chris@71 987 break;
Chris@71 988
Chris@40 989 case Rainbow:
Chris@40 990 hue = 250 - pixel;
Chris@40 991 if (hue < 0) hue += 256;
Chris@40 992 colour = QColor::fromHsv(pixel, 255, 255);
Chris@77 993 m_crosshairColour = Qt::white;
Chris@0 994 break;
Chris@0 995 }
Chris@0 996
Chris@31 997 m_cache->setColour(pixel, colour);
Chris@0 998 }
Chris@9 999
Chris@9 1000 m_colourRotation = 0;
Chris@10 1001 rotateCacheColourmap(m_colourRotation - formerRotation);
Chris@10 1002 m_colourRotation = formerRotation;
Chris@9 1003 }
Chris@9 1004
Chris@9 1005 void
Chris@9 1006 SpectrogramLayer::rotateCacheColourmap(int distance)
Chris@9 1007 {
Chris@10 1008 if (!m_cache) return;
Chris@10 1009
Chris@31 1010 QColor newPixels[256];
Chris@9 1011
Chris@37 1012 newPixels[NO_VALUE] = m_cache->getColour(NO_VALUE);
Chris@9 1013
Chris@9 1014 for (int pixel = 1; pixel < 256; ++pixel) {
Chris@9 1015 int target = pixel + distance;
Chris@9 1016 while (target < 1) target += 255;
Chris@9 1017 while (target > 255) target -= 255;
Chris@31 1018 newPixels[target] = m_cache->getColour(pixel);
Chris@9 1019 }
Chris@9 1020
Chris@9 1021 for (int pixel = 0; pixel < 256; ++pixel) {
Chris@31 1022 m_cache->setColour(pixel, newPixels[pixel]);
Chris@9 1023 }
Chris@0 1024 }
Chris@0 1025
Chris@38 1026 float
Chris@38 1027 SpectrogramLayer::calculateFrequency(size_t bin,
Chris@38 1028 size_t windowSize,
Chris@38 1029 size_t windowIncrement,
Chris@38 1030 size_t sampleRate,
Chris@38 1031 float oldPhase,
Chris@38 1032 float newPhase,
Chris@38 1033 bool &steadyState)
Chris@38 1034 {
Chris@38 1035 // At frequency f, phase shift of 2pi (one cycle) happens in 1/f sec.
Chris@38 1036 // At hopsize h and sample rate sr, one hop happens in h/sr sec.
Chris@38 1037 // At window size w, for bin b, f is b*sr/w.
Chris@38 1038 // thus 2pi phase shift happens in w/(b*sr) sec.
Chris@38 1039 // We need to know what phase shift we expect from h/sr sec.
Chris@38 1040 // -> 2pi * ((h/sr) / (w/(b*sr)))
Chris@38 1041 // = 2pi * ((h * b * sr) / (w * sr))
Chris@38 1042 // = 2pi * (h * b) / w.
Chris@38 1043
Chris@38 1044 float frequency = (float(bin) * sampleRate) / windowSize;
Chris@38 1045
Chris@38 1046 float expectedPhase =
Chris@38 1047 oldPhase + (2.0 * M_PI * bin * windowIncrement) / windowSize;
Chris@38 1048
Chris@75 1049 float phaseError = princarg(newPhase - expectedPhase);
Chris@38 1050
Chris@38 1051 if (fabs(phaseError) < (1.1 * (windowIncrement * M_PI) / windowSize)) {
Chris@38 1052
Chris@38 1053 // The new frequency estimate based on the phase error
Chris@38 1054 // resulting from assuming the "native" frequency of this bin
Chris@38 1055
Chris@38 1056 float newFrequency =
Chris@38 1057 (sampleRate * (expectedPhase + phaseError - oldPhase)) /
Chris@38 1058 (2 * M_PI * windowIncrement);
Chris@38 1059
Chris@38 1060 steadyState = true;
Chris@38 1061 return newFrequency;
Chris@38 1062 }
Chris@38 1063
Chris@38 1064 steadyState = false;
Chris@38 1065 return frequency;
Chris@38 1066 }
Chris@38 1067
Chris@38 1068 void
Chris@0 1069 SpectrogramLayer::fillCacheColumn(int column, double *input,
Chris@0 1070 fftw_complex *output,
Chris@0 1071 fftw_plan plan,
Chris@9 1072 size_t windowSize,
Chris@9 1073 size_t increment,
Chris@38 1074 const Window<double> &windower) const
Chris@0 1075 {
Chris@38 1076 //!!! we _do_ need a lock for these references to the model
Chris@38 1077 // though, don't we?
Chris@35 1078
Chris@0 1079 int startFrame = increment * column;
Chris@9 1080 int endFrame = startFrame + windowSize;
Chris@0 1081
Chris@9 1082 startFrame -= int(windowSize - increment) / 2;
Chris@9 1083 endFrame -= int(windowSize - increment) / 2;
Chris@0 1084 size_t pfx = 0;
Chris@0 1085
Chris@0 1086 if (startFrame < 0) {
Chris@0 1087 pfx = size_t(-startFrame);
Chris@0 1088 for (size_t i = 0; i < pfx; ++i) {
Chris@0 1089 input[i] = 0.0;
Chris@0 1090 }
Chris@0 1091 }
Chris@0 1092
Chris@0 1093 size_t got = m_model->getValues(m_channel, startFrame + pfx,
Chris@0 1094 endFrame, input + pfx);
Chris@9 1095 while (got + pfx < windowSize) {
Chris@0 1096 input[got + pfx] = 0.0;
Chris@0 1097 ++got;
Chris@0 1098 }
Chris@0 1099
Chris@37 1100 if (m_channel == -1) {
Chris@37 1101 int channels = m_model->getChannelCount();
Chris@37 1102 if (channels > 1) {
Chris@37 1103 for (size_t i = 0; i < windowSize; ++i) {
Chris@37 1104 input[i] /= channels;
Chris@37 1105 }
Chris@37 1106 }
Chris@37 1107 }
Chris@37 1108
Chris@0 1109 windower.cut(input);
Chris@0 1110
Chris@35 1111 for (size_t i = 0; i < windowSize/2; ++i) {
Chris@35 1112 double temp = input[i];
Chris@35 1113 input[i] = input[i + windowSize/2];
Chris@35 1114 input[i + windowSize/2] = temp;
Chris@35 1115 }
Chris@35 1116
Chris@0 1117 fftw_execute(plan);
Chris@0 1118
Chris@38 1119 double factor = 0.0;
Chris@0 1120
Chris@38 1121 // Calculate magnitude and phase from real and imaginary in
Chris@38 1122 // output[i][0] and output[i][1] respectively, and store the phase
Chris@38 1123 // straight into cache and the magnitude back into output[i][0]
Chris@38 1124 // (because we'll need to know the normalization factor,
Chris@38 1125 // i.e. maximum magnitude in this column, before we can store it)
Chris@37 1126
Chris@38 1127 for (size_t i = 0; i < windowSize/2; ++i) {
Chris@35 1128
Chris@36 1129 double mag = sqrt(output[i][0] * output[i][0] +
Chris@36 1130 output[i][1] * output[i][1]);
Chris@38 1131 mag /= windowSize / 2;
Chris@37 1132
Chris@38 1133 if (mag > factor) factor = mag;
Chris@37 1134
Chris@38 1135 double phase = atan2(output[i][1], output[i][0]);
Chris@75 1136 phase = princarg(phase);
Chris@37 1137
Chris@38 1138 output[i][0] = mag;
Chris@38 1139 m_cache->setPhaseAt(column, i, phase);
Chris@38 1140 }
Chris@35 1141
Chris@38 1142 m_cache->setNormalizationFactor(column, factor);
Chris@37 1143
Chris@38 1144 for (size_t i = 0; i < windowSize/2; ++i) {
Chris@38 1145 m_cache->setMagnitudeAt(column, i, output[i][0]);
Chris@38 1146 }
Chris@38 1147 }
Chris@35 1148
Chris@38 1149 unsigned char
Chris@38 1150 SpectrogramLayer::getDisplayValue(float input) const
Chris@38 1151 {
Chris@38 1152 int value;
Chris@37 1153
Chris@40 1154 switch (m_colourScale) {
Chris@40 1155
Chris@40 1156 default:
Chris@40 1157 case LinearColourScale:
Chris@40 1158 value = int
Chris@40 1159 (input * (m_normalizeColumns ? 1.0 : 50.0) * 255.0) + 1;
Chris@40 1160 break;
Chris@40 1161
Chris@40 1162 case MeterColourScale:
Chris@40 1163 value = AudioLevel::multiplier_to_preview
Chris@40 1164 (input * (m_normalizeColumns ? 1.0 : 50.0), 255) + 1;
Chris@40 1165 break;
Chris@40 1166
Chris@40 1167 case dBColourScale:
Chris@40 1168 input = 20.0 * log10(input);
Chris@40 1169 input = (input + 80.0) / 80.0;
Chris@40 1170 if (input < 0.0) input = 0.0;
Chris@40 1171 if (input > 1.0) input = 1.0;
Chris@40 1172 value = int(input * 255.0) + 1;
Chris@40 1173 break;
Chris@40 1174
Chris@40 1175 case PhaseColourScale:
Chris@40 1176 value = int((input * 127.0 / M_PI) + 128);
Chris@40 1177 break;
Chris@0 1178 }
Chris@38 1179
Chris@38 1180 if (value > UCHAR_MAX) value = UCHAR_MAX;
Chris@38 1181 if (value < 0) value = 0;
Chris@38 1182 return value;
Chris@0 1183 }
Chris@0 1184
Chris@40 1185 float
Chris@40 1186 SpectrogramLayer::getInputForDisplayValue(unsigned char uc) const
Chris@40 1187 {
Chris@40 1188 int value = uc;
Chris@40 1189 float input;
Chris@40 1190
Chris@40 1191 switch (m_colourScale) {
Chris@40 1192
Chris@40 1193 default:
Chris@40 1194 case LinearColourScale:
Chris@40 1195 input = float(value - 1) / 255.0 / (m_normalizeColumns ? 1 : 50);
Chris@40 1196 break;
Chris@40 1197
Chris@40 1198 case MeterColourScale:
Chris@40 1199 input = AudioLevel::preview_to_multiplier(value - 1, 255)
Chris@40 1200 / (m_normalizeColumns ? 1.0 : 50.0);
Chris@40 1201 break;
Chris@40 1202
Chris@40 1203 case dBColourScale:
Chris@40 1204 input = float(value - 1) / 255.0;
Chris@40 1205 input = (input * 80.0) - 80.0;
Chris@40 1206 input = powf(10.0, input) / 20.0;
Chris@40 1207 value = int(input);
Chris@40 1208 break;
Chris@40 1209
Chris@40 1210 case PhaseColourScale:
Chris@40 1211 input = float(value - 128) * M_PI / 127.0;
Chris@40 1212 break;
Chris@40 1213 }
Chris@40 1214
Chris@40 1215 return input;
Chris@40 1216 }
Chris@40 1217
Chris@38 1218
Chris@38 1219 SpectrogramLayer::Cache::Cache() :
Chris@38 1220 m_width(0),
Chris@38 1221 m_height(0),
Chris@38 1222 m_magnitude(0),
Chris@38 1223 m_phase(0),
Chris@38 1224 m_factor(0)
Chris@31 1225 {
Chris@31 1226 }
Chris@31 1227
Chris@31 1228 SpectrogramLayer::Cache::~Cache()
Chris@31 1229 {
Chris@71 1230 std::cerr << "SpectrogramLayer::Cache[" << this << "]::~Cache" << std::endl;
Chris@71 1231
Chris@44 1232 for (size_t i = 0; i < m_width; ++i) {
Chris@38 1233 if (m_magnitude && m_magnitude[i]) free(m_magnitude[i]);
Chris@38 1234 if (m_phase && m_phase[i]) free(m_phase[i]);
Chris@38 1235 }
Chris@38 1236
Chris@38 1237 if (m_magnitude) free(m_magnitude);
Chris@38 1238 if (m_phase) free(m_phase);
Chris@38 1239 if (m_factor) free(m_factor);
Chris@31 1240 }
Chris@31 1241
Chris@35 1242 void
Chris@35 1243 SpectrogramLayer::Cache::resize(size_t width, size_t height)
Chris@35 1244 {
Chris@55 1245 std::cerr << "SpectrogramLayer::Cache[" << this << "]::resize(" << width << "x" << height << " = " << width*height << ")" << std::endl;
Chris@38 1246
Chris@38 1247 if (m_width == width && m_height == height) return;
Chris@35 1248
Chris@38 1249 resize(m_magnitude, width, height);
Chris@38 1250 resize(m_phase, width, height);
Chris@31 1251
Chris@38 1252 m_factor = (float *)realloc(m_factor, width * sizeof(float));
Chris@31 1253
Chris@38 1254 m_width = width;
Chris@38 1255 m_height = height;
Chris@41 1256
Chris@41 1257 std::cerr << "done, width = " << m_width << " height = " << m_height << std::endl;
Chris@31 1258 }
Chris@31 1259
Chris@31 1260 void
Chris@38 1261 SpectrogramLayer::Cache::resize(uint16_t **&array, size_t width, size_t height)
Chris@31 1262 {
Chris@44 1263 for (size_t i = width; i < m_width; ++i) {
Chris@38 1264 free(array[i]);
Chris@38 1265 }
Chris@31 1266
Chris@44 1267 if (width != m_width) {
Chris@44 1268 array = (uint16_t **)realloc(array, width * sizeof(uint16_t *));
Chris@38 1269 if (!array) throw std::bad_alloc();
Chris@44 1270 MUNLOCK(array, width * sizeof(uint16_t *));
Chris@38 1271 }
Chris@38 1272
Chris@44 1273 for (size_t i = m_width; i < width; ++i) {
Chris@38 1274 array[i] = 0;
Chris@38 1275 }
Chris@38 1276
Chris@44 1277 for (size_t i = 0; i < width; ++i) {
Chris@44 1278 array[i] = (uint16_t *)realloc(array[i], height * sizeof(uint16_t));
Chris@38 1279 if (!array[i]) throw std::bad_alloc();
Chris@44 1280 MUNLOCK(array[i], height * sizeof(uint16_t));
Chris@38 1281 }
Chris@31 1282 }
Chris@31 1283
Chris@31 1284 void
Chris@38 1285 SpectrogramLayer::Cache::reset()
Chris@31 1286 {
Chris@38 1287 for (size_t x = 0; x < m_width; ++x) {
Chris@38 1288 for (size_t y = 0; y < m_height; ++y) {
Chris@44 1289 m_magnitude[x][y] = 0;
Chris@44 1290 m_phase[x][y] = 0;
Chris@38 1291 }
Chris@40 1292 m_factor[x] = 1.0;
Chris@31 1293 }
Chris@38 1294 }
Chris@31 1295
Chris@0 1296 void
Chris@0 1297 SpectrogramLayer::CacheFillThread::run()
Chris@0 1298 {
Chris@0 1299 // std::cerr << "SpectrogramLayer::CacheFillThread::run" << std::endl;
Chris@0 1300
Chris@0 1301 m_layer.m_mutex.lock();
Chris@0 1302
Chris@0 1303 while (!m_layer.m_exiting) {
Chris@0 1304
Chris@0 1305 bool interrupted = false;
Chris@0 1306
Chris@0 1307 // std::cerr << "SpectrogramLayer::CacheFillThread::run in loop" << std::endl;
Chris@0 1308
Chris@48 1309 bool haveUndormantViews = false;
Chris@48 1310
Chris@48 1311 for (std::map<const void *, bool>::iterator i =
Chris@48 1312 m_layer.m_dormancy.begin();
Chris@48 1313 i != m_layer.m_dormancy.end(); ++i) {
Chris@48 1314
Chris@48 1315 if (!i->second) {
Chris@48 1316 haveUndormantViews = true;
Chris@48 1317 break;
Chris@48 1318 }
Chris@48 1319 }
Chris@48 1320
Chris@48 1321 if (!haveUndormantViews) {
Chris@48 1322
Chris@48 1323 if (m_layer.m_cacheInvalid && m_layer.m_cache) {
Chris@48 1324 std::cerr << "All views dormant, freeing spectrogram cache"
Chris@48 1325 << std::endl;
Chris@47 1326
Chris@34 1327 delete m_layer.m_cache;
Chris@34 1328 m_layer.m_cache = 0;
Chris@34 1329 }
Chris@34 1330
Chris@34 1331 } else if (m_layer.m_model && m_layer.m_cacheInvalid) {
Chris@0 1332
Chris@0 1333 // std::cerr << "SpectrogramLayer::CacheFillThread::run: something to do" << std::endl;
Chris@0 1334
Chris@0 1335 while (!m_layer.m_model->isReady()) {
Chris@0 1336 m_layer.m_condition.wait(&m_layer.m_mutex, 100);
Chris@48 1337 if (m_layer.m_exiting) break;
Chris@0 1338 }
Chris@0 1339
Chris@48 1340 if (m_layer.m_exiting) break;
Chris@48 1341
Chris@0 1342 m_layer.m_cacheInvalid = false;
Chris@0 1343 m_fillExtent = 0;
Chris@0 1344 m_fillCompletion = 0;
Chris@0 1345
Chris@0 1346 std::cerr << "SpectrogramLayer::CacheFillThread::run: model is ready" << std::endl;
Chris@0 1347
Chris@0 1348 size_t start = m_layer.m_model->getStartFrame();
Chris@0 1349 size_t end = m_layer.m_model->getEndFrame();
Chris@9 1350
Chris@41 1351 std::cerr << "start = " << start << ", end = " << end << std::endl;
Chris@41 1352
Chris@9 1353 WindowType windowType = m_layer.m_windowType;
Chris@0 1354 size_t windowSize = m_layer.m_windowSize;
Chris@0 1355 size_t windowIncrement = m_layer.getWindowIncrement();
Chris@0 1356
Chris@44 1357 size_t visibleStart = m_layer.m_candidateFillStartFrame;
Chris@44 1358 visibleStart = (visibleStart / windowIncrement) * windowIncrement;
Chris@0 1359
Chris@9 1360 size_t width = (end - start) / windowIncrement + 1;
Chris@9 1361 size_t height = windowSize / 2;
Chris@35 1362
Chris@35 1363 if (!m_layer.m_cache) {
Chris@38 1364 m_layer.m_cache = new Cache;
Chris@35 1365 }
Chris@9 1366
Chris@38 1367 m_layer.m_cache->resize(width, height);
Chris@0 1368 m_layer.setCacheColourmap();
Chris@43 1369 //!!! m_layer.m_cache->reset();
Chris@35 1370
Chris@33 1371 // We don't need a lock when writing to or reading from
Chris@38 1372 // the pixels in the cache. We do need to ensure we have
Chris@38 1373 // the width and height of the cache and the FFT
Chris@38 1374 // parameters known before we unlock, in case they change
Chris@38 1375 // in the model while we aren't holding a lock. It's safe
Chris@38 1376 // for us to continue to use the "old" values if that
Chris@38 1377 // happens, because they will continue to match the
Chris@38 1378 // dimensions of the actual cache (which we manage, not
Chris@38 1379 // the model).
Chris@0 1380 m_layer.m_mutex.unlock();
Chris@0 1381
Chris@0 1382 double *input = (double *)
Chris@0 1383 fftw_malloc(windowSize * sizeof(double));
Chris@0 1384
Chris@0 1385 fftw_complex *output = (fftw_complex *)
Chris@0 1386 fftw_malloc(windowSize * sizeof(fftw_complex));
Chris@0 1387
Chris@0 1388 fftw_plan plan = fftw_plan_dft_r2c_1d(windowSize, input,
Chris@1 1389 output, FFTW_ESTIMATE);
Chris@0 1390
Chris@9 1391 Window<double> windower(windowType, windowSize);
Chris@0 1392
Chris@0 1393 if (!plan) {
Chris@1 1394 std::cerr << "WARNING: fftw_plan_dft_r2c_1d(" << windowSize << ") failed!" << std::endl;
Chris@0 1395 fftw_free(input);
Chris@0 1396 fftw_free(output);
Chris@37 1397 m_layer.m_mutex.lock();
Chris@0 1398 continue;
Chris@0 1399 }
Chris@0 1400
Chris@0 1401 int counter = 0;
Chris@0 1402 int updateAt = (end / windowIncrement) / 20;
Chris@0 1403 if (updateAt < 100) updateAt = 100;
Chris@0 1404
Chris@44 1405 bool doVisibleFirst = (visibleStart != start);
Chris@0 1406
Chris@0 1407 if (doVisibleFirst) {
Chris@0 1408
Chris@44 1409 for (size_t f = visibleStart; f < end; f += windowIncrement) {
Chris@0 1410
Chris@38 1411 m_layer.fillCacheColumn(int((f - start) / windowIncrement),
Chris@38 1412 input, output, plan,
Chris@38 1413 windowSize, windowIncrement,
Chris@38 1414 windower);
Chris@38 1415
Chris@38 1416 if (m_layer.m_cacheInvalid || m_layer.m_exiting) {
Chris@0 1417 interrupted = true;
Chris@0 1418 m_fillExtent = 0;
Chris@0 1419 break;
Chris@0 1420 }
Chris@0 1421
Chris@38 1422 if (++counter == updateAt) {
Chris@37 1423 m_fillExtent = f;
Chris@0 1424 m_fillCompletion = size_t(100 * fabsf(float(f - visibleStart) /
Chris@0 1425 float(end - start)));
Chris@0 1426 counter = 0;
Chris@0 1427 }
Chris@0 1428 }
Chris@0 1429 }
Chris@0 1430
Chris@0 1431 if (!interrupted) {
Chris@0 1432
Chris@0 1433 size_t remainingEnd = end;
Chris@0 1434 if (doVisibleFirst) {
Chris@0 1435 remainingEnd = visibleStart;
Chris@0 1436 if (remainingEnd > start) --remainingEnd;
Chris@0 1437 else remainingEnd = start;
Chris@0 1438 }
Chris@0 1439 size_t baseCompletion = m_fillCompletion;
Chris@0 1440
Chris@0 1441 for (size_t f = start; f < remainingEnd; f += windowIncrement) {
Chris@0 1442
Chris@38 1443 m_layer.fillCacheColumn(int((f - start) / windowIncrement),
Chris@38 1444 input, output, plan,
Chris@38 1445 windowSize, windowIncrement,
Chris@38 1446 windower);
Chris@38 1447
Chris@38 1448 if (m_layer.m_cacheInvalid || m_layer.m_exiting) {
Chris@0 1449 interrupted = true;
Chris@0 1450 m_fillExtent = 0;
Chris@0 1451 break;
Chris@0 1452 }
Chris@0 1453
Chris@44 1454 if (++counter == updateAt) {
Chris@0 1455 m_fillExtent = f;
Chris@0 1456 m_fillCompletion = baseCompletion +
Chris@0 1457 size_t(100 * fabsf(float(f - start) /
Chris@0 1458 float(end - start)));
Chris@0 1459 counter = 0;
Chris@0 1460 }
Chris@0 1461 }
Chris@0 1462 }
Chris@0 1463
Chris@0 1464 fftw_destroy_plan(plan);
Chris@0 1465 fftw_free(output);
Chris@0 1466 fftw_free(input);
Chris@0 1467
Chris@0 1468 if (!interrupted) {
Chris@0 1469 m_fillExtent = end;
Chris@0 1470 m_fillCompletion = 100;
Chris@0 1471 }
Chris@0 1472
Chris@0 1473 m_layer.m_mutex.lock();
Chris@0 1474 }
Chris@0 1475
Chris@0 1476 if (!interrupted) m_layer.m_condition.wait(&m_layer.m_mutex, 2000);
Chris@0 1477 }
Chris@0 1478 }
Chris@0 1479
Chris@40 1480 float
Chris@40 1481 SpectrogramLayer::getEffectiveMinFrequency() const
Chris@40 1482 {
Chris@40 1483 int sr = m_model->getSampleRate();
Chris@40 1484 float minf = float(sr) / m_windowSize;
Chris@40 1485
Chris@40 1486 if (m_minFrequency > 0.0) {
Chris@40 1487 size_t minbin = size_t((double(m_minFrequency) * m_windowSize) / sr + 0.01);
Chris@40 1488 if (minbin < 1) minbin = 1;
Chris@40 1489 minf = minbin * sr / m_windowSize;
Chris@40 1490 }
Chris@40 1491
Chris@40 1492 return minf;
Chris@40 1493 }
Chris@40 1494
Chris@40 1495 float
Chris@40 1496 SpectrogramLayer::getEffectiveMaxFrequency() const
Chris@40 1497 {
Chris@40 1498 int sr = m_model->getSampleRate();
Chris@40 1499 float maxf = float(sr) / 2;
Chris@40 1500
Chris@40 1501 if (m_maxFrequency > 0.0) {
Chris@40 1502 size_t maxbin = size_t((double(m_maxFrequency) * m_windowSize) / sr + 0.1);
Chris@40 1503 if (maxbin > m_windowSize / 2) maxbin = m_windowSize / 2;
Chris@40 1504 maxf = maxbin * sr / m_windowSize;
Chris@40 1505 }
Chris@40 1506
Chris@40 1507 return maxf;
Chris@40 1508 }
Chris@40 1509
Chris@0 1510 bool
Chris@44 1511 SpectrogramLayer::getYBinRange(View *v, int y, float &q0, float &q1) const
Chris@0 1512 {
Chris@44 1513 int h = v->height();
Chris@0 1514 if (y < 0 || y >= h) return false;
Chris@0 1515
Chris@38 1516 int sr = m_model->getSampleRate();
Chris@40 1517 float minf = getEffectiveMinFrequency();
Chris@40 1518 float maxf = getEffectiveMaxFrequency();
Chris@0 1519
Chris@38 1520 bool logarithmic = (m_frequencyScale == LogFrequencyScale);
Chris@38 1521
Chris@44 1522 q0 = v->getFrequencyForY(y, minf, maxf, logarithmic);
Chris@44 1523 q1 = v->getFrequencyForY(y - 1, minf, maxf, logarithmic);
Chris@38 1524
Chris@38 1525 // Now map these on to actual bins
Chris@38 1526
Chris@40 1527 int b0 = int((q0 * m_windowSize) / sr);
Chris@40 1528 int b1 = int((q1 * m_windowSize) / sr);
Chris@0 1529
Chris@40 1530 //!!! this is supposed to return fractions-of-bins, as it were, hence the floats
Chris@38 1531 q0 = b0;
Chris@38 1532 q1 = b1;
Chris@38 1533
Chris@38 1534 // q0 = (b0 * sr) / m_windowSize;
Chris@38 1535 // q1 = (b1 * sr) / m_windowSize;
Chris@0 1536
Chris@0 1537 return true;
Chris@0 1538 }
Chris@38 1539
Chris@0 1540 bool
Chris@44 1541 SpectrogramLayer::getXBinRange(View *v, int x, float &s0, float &s1) const
Chris@0 1542 {
Chris@21 1543 size_t modelStart = m_model->getStartFrame();
Chris@21 1544 size_t modelEnd = m_model->getEndFrame();
Chris@0 1545
Chris@0 1546 // Each pixel column covers an exact range of sample frames:
Chris@44 1547 int f0 = v->getFrameForX(x) - modelStart;
Chris@44 1548 int f1 = v->getFrameForX(x + 1) - modelStart - 1;
Chris@20 1549
Chris@41 1550 if (f1 < int(modelStart) || f0 > int(modelEnd)) {
Chris@41 1551 return false;
Chris@41 1552 }
Chris@20 1553
Chris@0 1554 // And that range may be drawn from a possibly non-integral
Chris@0 1555 // range of spectrogram windows:
Chris@0 1556
Chris@0 1557 size_t windowIncrement = getWindowIncrement();
Chris@0 1558 s0 = float(f0) / windowIncrement;
Chris@0 1559 s1 = float(f1) / windowIncrement;
Chris@0 1560
Chris@0 1561 return true;
Chris@0 1562 }
Chris@0 1563
Chris@0 1564 bool
Chris@44 1565 SpectrogramLayer::getXBinSourceRange(View *v, int x, RealTime &min, RealTime &max) const
Chris@0 1566 {
Chris@0 1567 float s0 = 0, s1 = 0;
Chris@44 1568 if (!getXBinRange(v, x, s0, s1)) return false;
Chris@0 1569
Chris@0 1570 int s0i = int(s0 + 0.001);
Chris@0 1571 int s1i = int(s1);
Chris@0 1572
Chris@0 1573 int windowIncrement = getWindowIncrement();
Chris@0 1574 int w0 = s0i * windowIncrement - (m_windowSize - windowIncrement)/2;
Chris@0 1575 int w1 = s1i * windowIncrement + windowIncrement +
Chris@0 1576 (m_windowSize - windowIncrement)/2 - 1;
Chris@0 1577
Chris@0 1578 min = RealTime::frame2RealTime(w0, m_model->getSampleRate());
Chris@0 1579 max = RealTime::frame2RealTime(w1, m_model->getSampleRate());
Chris@0 1580 return true;
Chris@0 1581 }
Chris@0 1582
Chris@0 1583 bool
Chris@44 1584 SpectrogramLayer::getYBinSourceRange(View *v, int y, float &freqMin, float &freqMax)
Chris@0 1585 const
Chris@0 1586 {
Chris@0 1587 float q0 = 0, q1 = 0;
Chris@44 1588 if (!getYBinRange(v, y, q0, q1)) return false;
Chris@0 1589
Chris@0 1590 int q0i = int(q0 + 0.001);
Chris@0 1591 int q1i = int(q1);
Chris@0 1592
Chris@0 1593 int sr = m_model->getSampleRate();
Chris@0 1594
Chris@0 1595 for (int q = q0i; q <= q1i; ++q) {
Chris@35 1596 int binfreq = (sr * q) / m_windowSize;
Chris@0 1597 if (q == q0i) freqMin = binfreq;
Chris@0 1598 if (q == q1i) freqMax = binfreq;
Chris@0 1599 }
Chris@0 1600 return true;
Chris@0 1601 }
Chris@35 1602
Chris@35 1603 bool
Chris@44 1604 SpectrogramLayer::getAdjustedYBinSourceRange(View *v, int x, int y,
Chris@35 1605 float &freqMin, float &freqMax,
Chris@35 1606 float &adjFreqMin, float &adjFreqMax)
Chris@35 1607 const
Chris@35 1608 {
Chris@35 1609 float s0 = 0, s1 = 0;
Chris@44 1610 if (!getXBinRange(v, x, s0, s1)) return false;
Chris@35 1611
Chris@35 1612 float q0 = 0, q1 = 0;
Chris@44 1613 if (!getYBinRange(v, y, q0, q1)) return false;
Chris@35 1614
Chris@35 1615 int s0i = int(s0 + 0.001);
Chris@35 1616 int s1i = int(s1);
Chris@35 1617
Chris@35 1618 int q0i = int(q0 + 0.001);
Chris@35 1619 int q1i = int(q1);
Chris@35 1620
Chris@35 1621 int sr = m_model->getSampleRate();
Chris@35 1622
Chris@38 1623 size_t windowSize = m_windowSize;
Chris@38 1624 size_t windowIncrement = getWindowIncrement();
Chris@38 1625
Chris@35 1626 bool haveAdj = false;
Chris@35 1627
Chris@37 1628 bool peaksOnly = (m_binDisplay == PeakBins ||
Chris@37 1629 m_binDisplay == PeakFrequencies);
Chris@37 1630
Chris@35 1631 for (int q = q0i; q <= q1i; ++q) {
Chris@35 1632
Chris@35 1633 for (int s = s0i; s <= s1i; ++s) {
Chris@35 1634
Chris@35 1635 float binfreq = (sr * q) / m_windowSize;
Chris@35 1636 if (q == q0i) freqMin = binfreq;
Chris@35 1637 if (q == q1i) freqMax = binfreq;
Chris@37 1638
Chris@38 1639 if (!m_cache || m_cacheInvalid) break; //!!! lock?
Chris@38 1640
Chris@38 1641 if (peaksOnly && !m_cache->isLocalPeak(s, q)) continue;
Chris@38 1642
Chris@38 1643 if (!m_cache->isOverThreshold(s, q, m_threshold)) continue;
Chris@38 1644
Chris@38 1645 float freq = binfreq;
Chris@38 1646 bool steady = false;
Chris@40 1647
Chris@40 1648 if (s < int(m_cache->getWidth()) - 1) {
Chris@38 1649
Chris@38 1650 freq = calculateFrequency(q,
Chris@38 1651 windowSize,
Chris@38 1652 windowIncrement,
Chris@38 1653 sr,
Chris@38 1654 m_cache->getPhaseAt(s, q),
Chris@38 1655 m_cache->getPhaseAt(s+1, q),
Chris@38 1656 steady);
Chris@35 1657
Chris@38 1658 if (!haveAdj || freq < adjFreqMin) adjFreqMin = freq;
Chris@38 1659 if (!haveAdj || freq > adjFreqMax) adjFreqMax = freq;
Chris@35 1660
Chris@35 1661 haveAdj = true;
Chris@35 1662 }
Chris@35 1663 }
Chris@35 1664 }
Chris@35 1665
Chris@35 1666 if (!haveAdj) {
Chris@40 1667 adjFreqMin = adjFreqMax = 0.0;
Chris@35 1668 }
Chris@35 1669
Chris@35 1670 return haveAdj;
Chris@35 1671 }
Chris@0 1672
Chris@0 1673 bool
Chris@44 1674 SpectrogramLayer::getXYBinSourceRange(View *v, int x, int y,
Chris@38 1675 float &min, float &max,
Chris@38 1676 float &phaseMin, float &phaseMax) const
Chris@0 1677 {
Chris@0 1678 float q0 = 0, q1 = 0;
Chris@44 1679 if (!getYBinRange(v, y, q0, q1)) return false;
Chris@0 1680
Chris@0 1681 float s0 = 0, s1 = 0;
Chris@44 1682 if (!getXBinRange(v, x, s0, s1)) return false;
Chris@0 1683
Chris@0 1684 int q0i = int(q0 + 0.001);
Chris@0 1685 int q1i = int(q1);
Chris@0 1686
Chris@0 1687 int s0i = int(s0 + 0.001);
Chris@0 1688 int s1i = int(s1);
Chris@0 1689
Chris@37 1690 bool rv = false;
Chris@37 1691
Chris@0 1692 if (m_mutex.tryLock()) {
Chris@0 1693 if (m_cache && !m_cacheInvalid) {
Chris@0 1694
Chris@31 1695 int cw = m_cache->getWidth();
Chris@31 1696 int ch = m_cache->getHeight();
Chris@0 1697
Chris@38 1698 min = 0.0;
Chris@38 1699 max = 0.0;
Chris@38 1700 phaseMin = 0.0;
Chris@38 1701 phaseMax = 0.0;
Chris@38 1702 bool have = false;
Chris@0 1703
Chris@0 1704 for (int q = q0i; q <= q1i; ++q) {
Chris@0 1705 for (int s = s0i; s <= s1i; ++s) {
Chris@0 1706 if (s >= 0 && q >= 0 && s < cw && q < ch) {
Chris@38 1707
Chris@38 1708 float value;
Chris@38 1709
Chris@38 1710 value = m_cache->getPhaseAt(s, q);
Chris@38 1711 if (!have || value < phaseMin) { phaseMin = value; }
Chris@38 1712 if (!have || value > phaseMax) { phaseMax = value; }
Chris@38 1713
Chris@38 1714 value = m_cache->getMagnitudeAt(s, q);
Chris@38 1715 if (!have || value < min) { min = value; }
Chris@38 1716 if (!have || value > max) { max = value; }
Chris@38 1717
Chris@38 1718 have = true;
Chris@0 1719 }
Chris@0 1720 }
Chris@0 1721 }
Chris@0 1722
Chris@38 1723 if (have) {
Chris@37 1724 rv = true;
Chris@37 1725 }
Chris@0 1726 }
Chris@0 1727
Chris@0 1728 m_mutex.unlock();
Chris@0 1729 }
Chris@0 1730
Chris@37 1731 return rv;
Chris@0 1732 }
Chris@0 1733
Chris@0 1734 void
Chris@44 1735 SpectrogramLayer::paint(View *v, QPainter &paint, QRect rect) const
Chris@0 1736 {
Chris@55 1737 if (m_colourScheme == BlackOnWhite) {
Chris@55 1738 v->setLightBackground(true);
Chris@55 1739 } else {
Chris@55 1740 v->setLightBackground(false);
Chris@55 1741 }
Chris@55 1742
Chris@0 1743 // Profiler profiler("SpectrogramLayer::paint", true);
Chris@0 1744 #ifdef DEBUG_SPECTROGRAM_REPAINT
Chris@44 1745 std::cerr << "SpectrogramLayer::paint(): m_model is " << m_model << ", zoom level is " << v->getZoomLevel() << ", m_updateTimer " << m_updateTimer << ", pixmap cache invalid " << m_pixmapCacheInvalid << std::endl;
Chris@0 1746 #endif
Chris@45 1747
Chris@45 1748 long sf = v->getStartFrame();
Chris@45 1749 if (sf < 0) m_candidateFillStartFrame = 0;
Chris@45 1750 else m_candidateFillStartFrame = sf;
Chris@44 1751
Chris@0 1752 if (!m_model || !m_model->isOK() || !m_model->isReady()) {
Chris@0 1753 return;
Chris@0 1754 }
Chris@0 1755
Chris@47 1756 if (isLayerDormant(v)) {
Chris@48 1757 std::cerr << "SpectrogramLayer::paint(): Layer is dormant, making it undormant again" << std::endl;
Chris@29 1758 }
Chris@29 1759
Chris@48 1760 // Need to do this even if !isLayerDormant, as that could mean v
Chris@48 1761 // is not in the dormancy map at all -- we need it to be present
Chris@48 1762 // and accountable for when determining whether we need the cache
Chris@48 1763 // in the cache-fill thread above.
Chris@48 1764 m_dormancy[v] = false;
Chris@48 1765
Chris@0 1766 #ifdef DEBUG_SPECTROGRAM_REPAINT
Chris@0 1767 std::cerr << "SpectrogramLayer::paint(): About to lock" << std::endl;
Chris@0 1768 #endif
Chris@0 1769
Chris@37 1770 m_mutex.lock();
Chris@0 1771
Chris@0 1772 #ifdef DEBUG_SPECTROGRAM_REPAINT
Chris@0 1773 std::cerr << "SpectrogramLayer::paint(): locked" << std::endl;
Chris@0 1774 #endif
Chris@0 1775
Chris@0 1776 if (m_cacheInvalid) { // lock the mutex before checking this
Chris@0 1777 m_mutex.unlock();
Chris@0 1778 #ifdef DEBUG_SPECTROGRAM_REPAINT
Chris@0 1779 std::cerr << "SpectrogramLayer::paint(): Cache invalid, returning" << std::endl;
Chris@0 1780 #endif
Chris@0 1781 return;
Chris@0 1782 }
Chris@0 1783
Chris@0 1784 bool stillCacheing = (m_updateTimer != 0);
Chris@0 1785
Chris@0 1786 #ifdef DEBUG_SPECTROGRAM_REPAINT
Chris@0 1787 std::cerr << "SpectrogramLayer::paint(): Still cacheing = " << stillCacheing << std::endl;
Chris@0 1788 #endif
Chris@0 1789
Chris@44 1790 long startFrame = v->getStartFrame();
Chris@44 1791 int zoomLevel = v->getZoomLevel();
Chris@0 1792
Chris@0 1793 int x0 = 0;
Chris@44 1794 int x1 = v->width();
Chris@0 1795 int y0 = 0;
Chris@44 1796 int y1 = v->height();
Chris@0 1797
Chris@0 1798 bool recreateWholePixmapCache = true;
Chris@0 1799
Chris@0 1800 if (!m_pixmapCacheInvalid) {
Chris@0 1801
Chris@0 1802 //!!! This cache may have been obsoleted entirely by the
Chris@0 1803 //scrolling cache in View. Perhaps experiment with
Chris@0 1804 //removing it and see if it makes things even quicker (or else
Chris@0 1805 //make it optional)
Chris@0 1806
Chris@0 1807 if (int(m_pixmapCacheZoomLevel) == zoomLevel &&
Chris@44 1808 m_pixmapCache->width() == v->width() &&
Chris@44 1809 m_pixmapCache->height() == v->height()) {
Chris@44 1810
Chris@44 1811 if (v->getXForFrame(m_pixmapCacheStartFrame) ==
Chris@44 1812 v->getXForFrame(startFrame)) {
Chris@0 1813
Chris@0 1814 #ifdef DEBUG_SPECTROGRAM_REPAINT
Chris@0 1815 std::cerr << "SpectrogramLayer: pixmap cache good" << std::endl;
Chris@0 1816 #endif
Chris@0 1817
Chris@0 1818 m_mutex.unlock();
Chris@0 1819 paint.drawPixmap(rect, *m_pixmapCache, rect);
Chris@0 1820 return;
Chris@0 1821
Chris@0 1822 } else {
Chris@0 1823
Chris@0 1824 #ifdef DEBUG_SPECTROGRAM_REPAINT
Chris@0 1825 std::cerr << "SpectrogramLayer: pixmap cache partially OK" << std::endl;
Chris@0 1826 #endif
Chris@0 1827
Chris@0 1828 recreateWholePixmapCache = false;
Chris@0 1829
Chris@44 1830 int dx = v->getXForFrame(m_pixmapCacheStartFrame) -
Chris@44 1831 v->getXForFrame(startFrame);
Chris@0 1832
Chris@0 1833 #ifdef DEBUG_SPECTROGRAM_REPAINT
Chris@0 1834 std::cerr << "SpectrogramLayer: dx = " << dx << " (pixmap cache " << m_pixmapCache->width() << "x" << m_pixmapCache->height() << ")" << std::endl;
Chris@0 1835 #endif
Chris@0 1836
Chris@0 1837 if (dx > -m_pixmapCache->width() && dx < m_pixmapCache->width()) {
Chris@0 1838
Chris@0 1839 #if defined(Q_WS_WIN32) || defined(Q_WS_MAC)
Chris@0 1840 // Copying a pixmap to itself doesn't work
Chris@0 1841 // properly on Windows or Mac (it only works when
Chris@0 1842 // moving in one direction).
Chris@0 1843
Chris@0 1844 //!!! Need a utility function for this
Chris@0 1845
Chris@0 1846 static QPixmap *tmpPixmap = 0;
Chris@0 1847 if (!tmpPixmap ||
Chris@0 1848 tmpPixmap->width() != m_pixmapCache->width() ||
Chris@0 1849 tmpPixmap->height() != m_pixmapCache->height()) {
Chris@0 1850 delete tmpPixmap;
Chris@0 1851 tmpPixmap = new QPixmap(m_pixmapCache->width(),
Chris@0 1852 m_pixmapCache->height());
Chris@0 1853 }
Chris@0 1854 QPainter cachePainter;
Chris@0 1855 cachePainter.begin(tmpPixmap);
Chris@0 1856 cachePainter.drawPixmap(0, 0, *m_pixmapCache);
Chris@0 1857 cachePainter.end();
Chris@0 1858 cachePainter.begin(m_pixmapCache);
Chris@0 1859 cachePainter.drawPixmap(dx, 0, *tmpPixmap);
Chris@0 1860 cachePainter.end();
Chris@0 1861 #else
Chris@0 1862 QPainter cachePainter(m_pixmapCache);
Chris@0 1863 cachePainter.drawPixmap(dx, 0, *m_pixmapCache);
Chris@0 1864 cachePainter.end();
Chris@0 1865 #endif
Chris@0 1866
Chris@0 1867 paint.drawPixmap(rect, *m_pixmapCache, rect);
Chris@0 1868
Chris@0 1869 if (dx < 0) {
Chris@0 1870 x0 = m_pixmapCache->width() + dx;
Chris@0 1871 x1 = m_pixmapCache->width();
Chris@0 1872 } else {
Chris@0 1873 x0 = 0;
Chris@0 1874 x1 = dx;
Chris@0 1875 }
Chris@0 1876 }
Chris@0 1877 }
Chris@0 1878 } else {
Chris@0 1879 #ifdef DEBUG_SPECTROGRAM_REPAINT
Chris@0 1880 std::cerr << "SpectrogramLayer: pixmap cache useless" << std::endl;
Chris@0 1881 #endif
Chris@0 1882 }
Chris@0 1883 }
Chris@0 1884
Chris@0 1885 if (stillCacheing) {
Chris@0 1886 x0 = rect.left();
Chris@0 1887 x1 = rect.right() + 1;
Chris@0 1888 y0 = rect.top();
Chris@0 1889 y1 = rect.bottom() + 1;
Chris@0 1890 }
Chris@0 1891
Chris@0 1892 int w = x1 - x0;
Chris@0 1893 int h = y1 - y0;
Chris@0 1894
Chris@0 1895 // std::cerr << "x0 " << x0 << ", x1 " << x1 << ", w " << w << ", h " << h << std::endl;
Chris@0 1896
Chris@0 1897 QImage scaled(w, h, QImage::Format_RGB32);
Chris@41 1898 scaled.fill(m_cache->getColour(0).rgb());
Chris@35 1899
Chris@35 1900 float ymag[h];
Chris@35 1901 float ydiv[h];
Chris@37 1902
Chris@37 1903 int sr = m_model->getSampleRate();
Chris@35 1904
Chris@35 1905 size_t bins = m_windowSize / 2;
Chris@35 1906 if (m_maxFrequency > 0) {
Chris@35 1907 bins = int((double(m_maxFrequency) * m_windowSize) / sr + 0.1);
Chris@35 1908 if (bins > m_windowSize / 2) bins = m_windowSize / 2;
Chris@35 1909 }
Chris@35 1910
Chris@40 1911 size_t minbin = 1;
Chris@37 1912 if (m_minFrequency > 0) {
Chris@37 1913 minbin = int((double(m_minFrequency) * m_windowSize) / sr + 0.1);
Chris@40 1914 if (minbin < 1) minbin = 1;
Chris@37 1915 if (minbin >= bins) minbin = bins - 1;
Chris@37 1916 }
Chris@37 1917
Chris@37 1918 float minFreq = (float(minbin) * sr) / m_windowSize;
Chris@35 1919 float maxFreq = (float(bins) * sr) / m_windowSize;
Chris@0 1920
Chris@38 1921 size_t increment = getWindowIncrement();
Chris@40 1922
Chris@40 1923 bool logarithmic = (m_frequencyScale == LogFrequencyScale);
Chris@38 1924
Chris@0 1925 m_mutex.unlock();
Chris@0 1926
Chris@35 1927 for (int x = 0; x < w; ++x) {
Chris@35 1928
Chris@35 1929 m_mutex.lock();
Chris@35 1930 if (m_cacheInvalid) {
Chris@35 1931 m_mutex.unlock();
Chris@35 1932 break;
Chris@35 1933 }
Chris@35 1934
Chris@35 1935 for (int y = 0; y < h; ++y) {
Chris@40 1936 ymag[y] = 0.0;
Chris@40 1937 ydiv[y] = 0.0;
Chris@35 1938 }
Chris@35 1939
Chris@35 1940 float s0 = 0, s1 = 0;
Chris@35 1941
Chris@44 1942 if (!getXBinRange(v, x0 + x, s0, s1)) {
Chris@35 1943 assert(x <= scaled.width());
Chris@35 1944 m_mutex.unlock();
Chris@35 1945 continue;
Chris@35 1946 }
Chris@35 1947
Chris@35 1948 int s0i = int(s0 + 0.001);
Chris@35 1949 int s1i = int(s1);
Chris@35 1950
Chris@45 1951 if (s1i >= m_cache->getWidth()) {
Chris@45 1952 if (s0i >= m_cache->getWidth()) {
Chris@45 1953 m_mutex.unlock();
Chris@45 1954 continue;
Chris@45 1955 } else {
Chris@45 1956 s1i = s0i;
Chris@45 1957 }
Chris@45 1958 }
Chris@45 1959
Chris@38 1960 for (size_t q = minbin; q < bins; ++q) {
Chris@35 1961
Chris@40 1962 float f0 = (float(q) * sr) / m_windowSize;
Chris@40 1963 float f1 = (float(q + 1) * sr) / m_windowSize;
Chris@40 1964
Chris@40 1965 float y0 = 0, y1 = 0;
Chris@40 1966
Chris@45 1967 if (m_binDisplay != PeakFrequencies) {
Chris@44 1968 y0 = v->getYForFrequency(f1, minFreq, maxFreq, logarithmic);
Chris@44 1969 y1 = v->getYForFrequency(f0, minFreq, maxFreq, logarithmic);
Chris@40 1970 }
Chris@40 1971
Chris@35 1972 for (int s = s0i; s <= s1i; ++s) {
Chris@35 1973
Chris@40 1974 if (m_binDisplay == PeakBins ||
Chris@40 1975 m_binDisplay == PeakFrequencies) {
Chris@40 1976 if (!m_cache->isLocalPeak(s, q)) continue;
Chris@40 1977 }
Chris@40 1978
Chris@40 1979 if (!m_cache->isOverThreshold(s, q, m_threshold)) continue;
Chris@40 1980
Chris@35 1981 float sprop = 1.0;
Chris@35 1982 if (s == s0i) sprop *= (s + 1) - s0;
Chris@35 1983 if (s == s1i) sprop *= s1 - s;
Chris@35 1984
Chris@38 1985 if (m_binDisplay == PeakFrequencies &&
Chris@40 1986 s < int(m_cache->getWidth()) - 1) {
Chris@35 1987
Chris@38 1988 bool steady = false;
Chris@38 1989 f0 = f1 = calculateFrequency(q,
Chris@38 1990 m_windowSize,
Chris@38 1991 increment,
Chris@38 1992 sr,
Chris@38 1993 m_cache->getPhaseAt(s, q),
Chris@38 1994 m_cache->getPhaseAt(s+1, q),
Chris@38 1995 steady);
Chris@40 1996
Chris@44 1997 y0 = y1 = v->getYForFrequency
Chris@40 1998 (f0, minFreq, maxFreq, logarithmic);
Chris@35 1999 }
Chris@38 2000
Chris@35 2001 int y0i = int(y0 + 0.001);
Chris@35 2002 int y1i = int(y1);
Chris@35 2003
Chris@35 2004 for (int y = y0i; y <= y1i; ++y) {
Chris@35 2005
Chris@35 2006 if (y < 0 || y >= h) continue;
Chris@35 2007
Chris@35 2008 float yprop = sprop;
Chris@35 2009 if (y == y0i) yprop *= (y + 1) - y0;
Chris@35 2010 if (y == y1i) yprop *= y1 - y;
Chris@37 2011
Chris@38 2012 float value;
Chris@38 2013
Chris@38 2014 if (m_colourScale == PhaseColourScale) {
Chris@38 2015 value = m_cache->getPhaseAt(s, q);
Chris@38 2016 } else if (m_normalizeColumns) {
Chris@38 2017 value = m_cache->getNormalizedMagnitudeAt(s, q) * m_gain;
Chris@38 2018 } else {
Chris@38 2019 value = m_cache->getMagnitudeAt(s, q) * m_gain;
Chris@38 2020 }
Chris@37 2021
Chris@37 2022 ymag[y] += yprop * value;
Chris@35 2023 ydiv[y] += yprop;
Chris@35 2024 }
Chris@35 2025 }
Chris@35 2026 }
Chris@35 2027
Chris@35 2028 for (int y = 0; y < h; ++y) {
Chris@35 2029
Chris@35 2030 if (ydiv[y] > 0.0) {
Chris@40 2031
Chris@40 2032 unsigned char pixel = 0;
Chris@40 2033
Chris@38 2034 float avg = ymag[y] / ydiv[y];
Chris@38 2035 pixel = getDisplayValue(avg);
Chris@40 2036
Chris@40 2037 assert(x <= scaled.width());
Chris@40 2038 QColor c = m_cache->getColour(pixel);
Chris@40 2039 scaled.setPixel(x, y,
Chris@40 2040 qRgb(c.red(), c.green(), c.blue()));
Chris@35 2041 }
Chris@35 2042 }
Chris@35 2043
Chris@35 2044 m_mutex.unlock();
Chris@35 2045 }
Chris@35 2046
Chris@0 2047 paint.drawImage(x0, y0, scaled);
Chris@0 2048
Chris@0 2049 if (recreateWholePixmapCache) {
Chris@0 2050 delete m_pixmapCache;
Chris@0 2051 m_pixmapCache = new QPixmap(w, h);
Chris@0 2052 }
Chris@0 2053
Chris@0 2054 QPainter cachePainter(m_pixmapCache);
Chris@0 2055 cachePainter.drawImage(x0, y0, scaled);
Chris@0 2056 cachePainter.end();
Chris@0 2057
Chris@0 2058 m_pixmapCacheInvalid = false;
Chris@0 2059 m_pixmapCacheStartFrame = startFrame;
Chris@0 2060 m_pixmapCacheZoomLevel = zoomLevel;
Chris@0 2061
Chris@0 2062 #ifdef DEBUG_SPECTROGRAM_REPAINT
Chris@0 2063 std::cerr << "SpectrogramLayer::paint() returning" << std::endl;
Chris@0 2064 #endif
Chris@0 2065 }
Chris@0 2066
Chris@42 2067 float
Chris@44 2068 SpectrogramLayer::getYForFrequency(View *v, float frequency) const
Chris@42 2069 {
Chris@44 2070 return v->getYForFrequency(frequency,
Chris@44 2071 getEffectiveMinFrequency(),
Chris@44 2072 getEffectiveMaxFrequency(),
Chris@44 2073 m_frequencyScale == LogFrequencyScale);
Chris@42 2074 }
Chris@42 2075
Chris@42 2076 float
Chris@44 2077 SpectrogramLayer::getFrequencyForY(View *v, int y) const
Chris@42 2078 {
Chris@44 2079 return v->getFrequencyForY(y,
Chris@44 2080 getEffectiveMinFrequency(),
Chris@44 2081 getEffectiveMaxFrequency(),
Chris@44 2082 m_frequencyScale == LogFrequencyScale);
Chris@42 2083 }
Chris@42 2084
Chris@0 2085 int
Chris@0 2086 SpectrogramLayer::getCompletion() const
Chris@0 2087 {
Chris@0 2088 if (m_updateTimer == 0) return 100;
Chris@0 2089 size_t completion = m_fillThread->getFillCompletion();
Chris@0 2090 // std::cerr << "SpectrogramLayer::getCompletion: completion = " << completion << std::endl;
Chris@0 2091 return completion;
Chris@0 2092 }
Chris@0 2093
Chris@28 2094 bool
Chris@79 2095 SpectrogramLayer::getValueExtents(float &min, float &max, QString &unit) const
Chris@79 2096 {
Chris@79 2097 min = getEffectiveMinFrequency();
Chris@79 2098 max = getEffectiveMaxFrequency();
Chris@79 2099 unit = "Hz";
Chris@79 2100 return true;
Chris@79 2101 }
Chris@79 2102
Chris@79 2103 bool
Chris@44 2104 SpectrogramLayer::snapToFeatureFrame(View *v, int &frame,
Chris@28 2105 size_t &resolution,
Chris@28 2106 SnapType snap) const
Chris@13 2107 {
Chris@13 2108 resolution = getWindowIncrement();
Chris@28 2109 int left = (frame / resolution) * resolution;
Chris@28 2110 int right = left + resolution;
Chris@28 2111
Chris@28 2112 switch (snap) {
Chris@28 2113 case SnapLeft: frame = left; break;
Chris@28 2114 case SnapRight: frame = right; break;
Chris@28 2115 case SnapNearest:
Chris@28 2116 case SnapNeighbouring:
Chris@28 2117 if (frame - left > right - frame) frame = right;
Chris@28 2118 else frame = left;
Chris@28 2119 break;
Chris@28 2120 }
Chris@28 2121
Chris@28 2122 return true;
Chris@28 2123 }
Chris@13 2124
Chris@77 2125 bool
Chris@77 2126 SpectrogramLayer::getCrosshairExtents(View *v, QPainter &paint,
Chris@77 2127 QPoint cursorPos,
Chris@77 2128 std::vector<QRect> &extents) const
Chris@77 2129 {
Chris@77 2130 QRect vertical(cursorPos.x() - 12, 0, 12, v->height());
Chris@77 2131 extents.push_back(vertical);
Chris@77 2132
Chris@77 2133 QRect horizontal(0, cursorPos.y(), cursorPos.x(), 1);
Chris@77 2134 extents.push_back(horizontal);
Chris@77 2135
Chris@77 2136 return true;
Chris@77 2137 }
Chris@77 2138
Chris@77 2139 void
Chris@77 2140 SpectrogramLayer::paintCrosshairs(View *v, QPainter &paint,
Chris@77 2141 QPoint cursorPos) const
Chris@77 2142 {
Chris@77 2143 paint.save();
Chris@77 2144 paint.setPen(m_crosshairColour);
Chris@77 2145
Chris@77 2146 paint.drawLine(0, cursorPos.y(), cursorPos.x() - 1, cursorPos.y());
Chris@77 2147 paint.drawLine(cursorPos.x(), 0, cursorPos.x(), v->height());
Chris@77 2148
Chris@77 2149 float fundamental = getFrequencyForY(v, cursorPos.y());
Chris@77 2150
Chris@77 2151 int harmonic = 2;
Chris@77 2152
Chris@77 2153 while (harmonic < 100) {
Chris@77 2154
Chris@77 2155 float hy = lrintf(getYForFrequency(v, fundamental * harmonic));
Chris@77 2156 if (hy < 0 || hy > v->height()) break;
Chris@77 2157
Chris@77 2158 int len = 7;
Chris@77 2159
Chris@77 2160 if (harmonic % 2 == 0) {
Chris@77 2161 if (harmonic % 4 == 0) {
Chris@77 2162 len = 12;
Chris@77 2163 } else {
Chris@77 2164 len = 10;
Chris@77 2165 }
Chris@77 2166 }
Chris@77 2167
Chris@77 2168 paint.drawLine(cursorPos.x() - len,
Chris@77 2169 hy,
Chris@77 2170 cursorPos.x(),
Chris@77 2171 hy);
Chris@77 2172
Chris@77 2173 ++harmonic;
Chris@77 2174 }
Chris@77 2175
Chris@77 2176 paint.restore();
Chris@77 2177 }
Chris@77 2178
Chris@25 2179 QString
Chris@44 2180 SpectrogramLayer::getFeatureDescription(View *v, QPoint &pos) const
Chris@25 2181 {
Chris@25 2182 int x = pos.x();
Chris@25 2183 int y = pos.y();
Chris@0 2184
Chris@25 2185 if (!m_model || !m_model->isOK()) return "";
Chris@0 2186
Chris@38 2187 float magMin = 0, magMax = 0;
Chris@38 2188 float phaseMin = 0, phaseMax = 0;
Chris@0 2189 float freqMin = 0, freqMax = 0;
Chris@35 2190 float adjFreqMin = 0, adjFreqMax = 0;
Chris@25 2191 QString pitchMin, pitchMax;
Chris@0 2192 RealTime rtMin, rtMax;
Chris@0 2193
Chris@38 2194 bool haveValues = false;
Chris@0 2195
Chris@44 2196 if (!getXBinSourceRange(v, x, rtMin, rtMax)) {
Chris@38 2197 return "";
Chris@38 2198 }
Chris@44 2199 if (getXYBinSourceRange(v, x, y, magMin, magMax, phaseMin, phaseMax)) {
Chris@38 2200 haveValues = true;
Chris@38 2201 }
Chris@0 2202
Chris@35 2203 QString adjFreqText = "", adjPitchText = "";
Chris@35 2204
Chris@38 2205 if (m_binDisplay == PeakFrequencies) {
Chris@35 2206
Chris@44 2207 if (!getAdjustedYBinSourceRange(v, x, y, freqMin, freqMax,
Chris@38 2208 adjFreqMin, adjFreqMax)) {
Chris@38 2209 return "";
Chris@38 2210 }
Chris@35 2211
Chris@35 2212 if (adjFreqMin != adjFreqMax) {
Chris@65 2213 adjFreqText = tr("Peak Frequency:\t%1 - %2 Hz\n")
Chris@35 2214 .arg(adjFreqMin).arg(adjFreqMax);
Chris@35 2215 } else {
Chris@65 2216 adjFreqText = tr("Peak Frequency:\t%1 Hz\n")
Chris@35 2217 .arg(adjFreqMin);
Chris@38 2218 }
Chris@38 2219
Chris@38 2220 QString pmin = Pitch::getPitchLabelForFrequency(adjFreqMin);
Chris@38 2221 QString pmax = Pitch::getPitchLabelForFrequency(adjFreqMax);
Chris@38 2222
Chris@38 2223 if (pmin != pmax) {
Chris@65 2224 adjPitchText = tr("Peak Pitch:\t%3 - %4\n").arg(pmin).arg(pmax);
Chris@38 2225 } else {
Chris@65 2226 adjPitchText = tr("Peak Pitch:\t%2\n").arg(pmin);
Chris@35 2227 }
Chris@35 2228
Chris@35 2229 } else {
Chris@35 2230
Chris@44 2231 if (!getYBinSourceRange(v, y, freqMin, freqMax)) return "";
Chris@35 2232 }
Chris@35 2233
Chris@25 2234 QString text;
Chris@25 2235
Chris@25 2236 if (rtMin != rtMax) {
Chris@25 2237 text += tr("Time:\t%1 - %2\n")
Chris@25 2238 .arg(rtMin.toText(true).c_str())
Chris@25 2239 .arg(rtMax.toText(true).c_str());
Chris@25 2240 } else {
Chris@25 2241 text += tr("Time:\t%1\n")
Chris@25 2242 .arg(rtMin.toText(true).c_str());
Chris@0 2243 }
Chris@0 2244
Chris@25 2245 if (freqMin != freqMax) {
Chris@65 2246 text += tr("%1Bin Frequency:\t%2 - %3 Hz\n%4Bin Pitch:\t%5 - %6\n")
Chris@65 2247 .arg(adjFreqText)
Chris@25 2248 .arg(freqMin)
Chris@25 2249 .arg(freqMax)
Chris@65 2250 .arg(adjPitchText)
Chris@65 2251 .arg(Pitch::getPitchLabelForFrequency(freqMin))
Chris@65 2252 .arg(Pitch::getPitchLabelForFrequency(freqMax));
Chris@65 2253 } else {
Chris@65 2254 text += tr("%1Bin Frequency:\t%2 Hz\n%3Bin Pitch:\t%4\n")
Chris@35 2255 .arg(adjFreqText)
Chris@25 2256 .arg(freqMin)
Chris@65 2257 .arg(adjPitchText)
Chris@65 2258 .arg(Pitch::getPitchLabelForFrequency(freqMin));
Chris@25 2259 }
Chris@25 2260
Chris@38 2261 if (haveValues) {
Chris@38 2262 float dbMin = AudioLevel::multiplier_to_dB(magMin);
Chris@38 2263 float dbMax = AudioLevel::multiplier_to_dB(magMax);
Chris@43 2264 QString dbMinString;
Chris@43 2265 QString dbMaxString;
Chris@43 2266 if (dbMin == AudioLevel::DB_FLOOR) {
Chris@43 2267 dbMinString = tr("-Inf");
Chris@43 2268 } else {
Chris@43 2269 dbMinString = QString("%1").arg(lrintf(dbMin));
Chris@43 2270 }
Chris@43 2271 if (dbMax == AudioLevel::DB_FLOOR) {
Chris@43 2272 dbMaxString = tr("-Inf");
Chris@43 2273 } else {
Chris@43 2274 dbMaxString = QString("%1").arg(lrintf(dbMax));
Chris@43 2275 }
Chris@25 2276 if (lrintf(dbMin) != lrintf(dbMax)) {
Chris@25 2277 text += tr("dB:\t%1 - %2").arg(lrintf(dbMin)).arg(lrintf(dbMax));
Chris@25 2278 } else {
Chris@25 2279 text += tr("dB:\t%1").arg(lrintf(dbMin));
Chris@25 2280 }
Chris@38 2281 if (phaseMin != phaseMax) {
Chris@38 2282 text += tr("\nPhase:\t%1 - %2").arg(phaseMin).arg(phaseMax);
Chris@38 2283 } else {
Chris@38 2284 text += tr("\nPhase:\t%1").arg(phaseMin);
Chris@38 2285 }
Chris@25 2286 }
Chris@25 2287
Chris@25 2288 return text;
Chris@0 2289 }
Chris@25 2290
Chris@0 2291 int
Chris@40 2292 SpectrogramLayer::getColourScaleWidth(QPainter &paint) const
Chris@40 2293 {
Chris@40 2294 int cw;
Chris@40 2295
Chris@40 2296 switch (m_colourScale) {
Chris@40 2297 default:
Chris@40 2298 case LinearColourScale:
Chris@40 2299 cw = paint.fontMetrics().width(QString("0.00"));
Chris@40 2300 break;
Chris@40 2301
Chris@40 2302 case MeterColourScale:
Chris@40 2303 case dBColourScale:
Chris@40 2304 cw = std::max(paint.fontMetrics().width(tr("-Inf")),
Chris@40 2305 paint.fontMetrics().width(tr("-90")));
Chris@40 2306 break;
Chris@40 2307
Chris@40 2308 case PhaseColourScale:
Chris@40 2309 cw = paint.fontMetrics().width(QString("-") + QChar(0x3c0));
Chris@40 2310 break;
Chris@40 2311 }
Chris@40 2312
Chris@40 2313 return cw;
Chris@40 2314 }
Chris@40 2315
Chris@40 2316 int
Chris@44 2317 SpectrogramLayer::getVerticalScaleWidth(View *v, QPainter &paint) const
Chris@0 2318 {
Chris@0 2319 if (!m_model || !m_model->isOK()) return 0;
Chris@0 2320
Chris@40 2321 int cw = getColourScaleWidth(paint);
Chris@40 2322
Chris@0 2323 int tw = paint.fontMetrics().width(QString("%1")
Chris@0 2324 .arg(m_maxFrequency > 0 ?
Chris@0 2325 m_maxFrequency - 1 :
Chris@0 2326 m_model->getSampleRate() / 2));
Chris@0 2327
Chris@0 2328 int fw = paint.fontMetrics().width(QString("43Hz"));
Chris@0 2329 if (tw < fw) tw = fw;
Chris@40 2330
Chris@40 2331 int tickw = (m_frequencyScale == LogFrequencyScale ? 10 : 4);
Chris@0 2332
Chris@40 2333 return cw + tickw + tw + 13;
Chris@0 2334 }
Chris@0 2335
Chris@0 2336 void
Chris@44 2337 SpectrogramLayer::paintVerticalScale(View *v, QPainter &paint, QRect rect) const
Chris@0 2338 {
Chris@0 2339 if (!m_model || !m_model->isOK()) {
Chris@0 2340 return;
Chris@0 2341 }
Chris@0 2342
Chris@0 2343 int h = rect.height(), w = rect.width();
Chris@0 2344
Chris@40 2345 int tickw = (m_frequencyScale == LogFrequencyScale ? 10 : 4);
Chris@40 2346 int pkw = (m_frequencyScale == LogFrequencyScale ? 10 : 0);
Chris@40 2347
Chris@0 2348 size_t bins = m_windowSize / 2;
Chris@0 2349 int sr = m_model->getSampleRate();
Chris@0 2350
Chris@0 2351 if (m_maxFrequency > 0) {
Chris@0 2352 bins = int((double(m_maxFrequency) * m_windowSize) / sr + 0.1);
Chris@0 2353 if (bins > m_windowSize / 2) bins = m_windowSize / 2;
Chris@0 2354 }
Chris@0 2355
Chris@40 2356 int cw = getColourScaleWidth(paint);
Chris@40 2357
Chris@0 2358 int py = -1;
Chris@0 2359 int textHeight = paint.fontMetrics().height();
Chris@0 2360 int toff = -textHeight + paint.fontMetrics().ascent() + 2;
Chris@0 2361
Chris@40 2362 if (m_cache && !m_cacheInvalid && h > textHeight * 2 + 10) { //!!! lock?
Chris@40 2363
Chris@40 2364 int ch = h - textHeight * 2 - 8;
Chris@40 2365 paint.drawRect(4, textHeight + 4, cw - 1, ch + 1);
Chris@40 2366
Chris@40 2367 QString top, bottom;
Chris@40 2368
Chris@40 2369 switch (m_colourScale) {
Chris@40 2370 default:
Chris@40 2371 case LinearColourScale:
Chris@40 2372 top = (m_normalizeColumns ? "1.0" : "0.02");
Chris@40 2373 bottom = (m_normalizeColumns ? "0.0" : "0.00");
Chris@40 2374 break;
Chris@40 2375
Chris@40 2376 case MeterColourScale:
Chris@40 2377 top = (m_normalizeColumns ? QString("0") :
Chris@40 2378 QString("%1").arg(int(AudioLevel::multiplier_to_dB(0.02))));
Chris@40 2379 bottom = QString("%1").
Chris@40 2380 arg(int(AudioLevel::multiplier_to_dB
Chris@40 2381 (AudioLevel::preview_to_multiplier(0, 255))));
Chris@40 2382 break;
Chris@40 2383
Chris@40 2384 case dBColourScale:
Chris@40 2385 top = "0";
Chris@40 2386 bottom = "-80";
Chris@40 2387 break;
Chris@40 2388
Chris@40 2389 case PhaseColourScale:
Chris@40 2390 top = QChar(0x3c0);
Chris@40 2391 bottom = "-" + top;
Chris@40 2392 break;
Chris@40 2393 }
Chris@40 2394
Chris@40 2395 paint.drawText((cw + 6 - paint.fontMetrics().width(top)) / 2,
Chris@40 2396 2 + textHeight + toff, top);
Chris@40 2397
Chris@40 2398 paint.drawText((cw + 6 - paint.fontMetrics().width(bottom)) / 2,
Chris@40 2399 h + toff - 3, bottom);
Chris@40 2400
Chris@40 2401 paint.save();
Chris@40 2402 paint.setBrush(Qt::NoBrush);
Chris@40 2403 for (int i = 0; i < ch; ++i) {
Chris@40 2404 int v = (i * 255) / ch + 1;
Chris@40 2405 paint.setPen(m_cache->getColour(v));
Chris@40 2406 paint.drawLine(5, 4 + textHeight + ch - i,
Chris@40 2407 cw + 2, 4 + textHeight + ch - i);
Chris@40 2408 }
Chris@40 2409 paint.restore();
Chris@40 2410 }
Chris@40 2411
Chris@40 2412 paint.drawLine(cw + 7, 0, cw + 7, h);
Chris@40 2413
Chris@0 2414 int bin = -1;
Chris@0 2415
Chris@44 2416 for (int y = 0; y < v->height(); ++y) {
Chris@0 2417
Chris@0 2418 float q0, q1;
Chris@44 2419 if (!getYBinRange(v, v->height() - y, q0, q1)) continue;
Chris@0 2420
Chris@0 2421 int vy;
Chris@0 2422
Chris@0 2423 if (int(q0) > bin) {
Chris@0 2424 vy = y;
Chris@0 2425 bin = int(q0);
Chris@0 2426 } else {
Chris@0 2427 continue;
Chris@0 2428 }
Chris@0 2429
Chris@40 2430 int freq = (sr * bin) / m_windowSize;
Chris@0 2431
Chris@0 2432 if (py >= 0 && (vy - py) < textHeight - 1) {
Chris@40 2433 if (m_frequencyScale == LinearFrequencyScale) {
Chris@40 2434 paint.drawLine(w - tickw, h - vy, w, h - vy);
Chris@40 2435 }
Chris@0 2436 continue;
Chris@0 2437 }
Chris@0 2438
Chris@0 2439 QString text = QString("%1").arg(freq);
Chris@40 2440 if (bin == 1) text = QString("%1Hz").arg(freq); // bin 0 is DC
Chris@40 2441 paint.drawLine(cw + 7, h - vy, w - pkw - 1, h - vy);
Chris@0 2442
Chris@0 2443 if (h - vy - textHeight >= -2) {
Chris@40 2444 int tx = w - 3 - paint.fontMetrics().width(text) - std::max(tickw, pkw);
Chris@0 2445 paint.drawText(tx, h - vy + toff, text);
Chris@0 2446 }
Chris@0 2447
Chris@0 2448 py = vy;
Chris@0 2449 }
Chris@40 2450
Chris@40 2451 if (m_frequencyScale == LogFrequencyScale) {
Chris@40 2452
Chris@40 2453 paint.drawLine(w - pkw - 1, 0, w - pkw - 1, h);
Chris@40 2454
Chris@40 2455 int sr = m_model->getSampleRate();//!!! lock?
Chris@40 2456 float minf = getEffectiveMinFrequency();
Chris@40 2457 float maxf = getEffectiveMaxFrequency();
Chris@40 2458
Chris@40 2459 int py = h;
Chris@40 2460 paint.setBrush(paint.pen().color());
Chris@40 2461
Chris@40 2462 for (int i = 0; i < 128; ++i) {
Chris@40 2463
Chris@40 2464 float f = Pitch::getFrequencyForPitch(i);
Chris@44 2465 int y = lrintf(v->getYForFrequency(f, minf, maxf, true));
Chris@40 2466 int n = (i % 12);
Chris@40 2467 if (n == 1 || n == 3 || n == 6 || n == 8 || n == 10) {
Chris@40 2468 // black notes
Chris@40 2469 paint.drawLine(w - pkw, y, w, y);
Chris@41 2470 int rh = ((py - y) / 4) * 2;
Chris@41 2471 if (rh < 2) rh = 2;
Chris@41 2472 paint.drawRect(w - pkw, y - (py-y)/4, pkw/2, rh);
Chris@40 2473 } else if (n == 0 || n == 5) {
Chris@40 2474 // C, A
Chris@40 2475 if (py < h) {
Chris@40 2476 paint.drawLine(w - pkw, (y + py) / 2, w, (y + py) / 2);
Chris@40 2477 }
Chris@40 2478 }
Chris@40 2479
Chris@40 2480 py = y;
Chris@40 2481 }
Chris@40 2482 }
Chris@0 2483 }
Chris@0 2484
Chris@6 2485 QString
Chris@6 2486 SpectrogramLayer::toXmlString(QString indent, QString extraAttributes) const
Chris@6 2487 {
Chris@6 2488 QString s;
Chris@6 2489
Chris@6 2490 s += QString("channel=\"%1\" "
Chris@6 2491 "windowSize=\"%2\" "
Chris@6 2492 "windowType=\"%3\" "
Chris@6 2493 "windowOverlap=\"%4\" "
Chris@37 2494 "gain=\"%5\" "
Chris@37 2495 "threshold=\"%6\" ")
Chris@6 2496 .arg(m_channel)
Chris@6 2497 .arg(m_windowSize)
Chris@6 2498 .arg(m_windowType)
Chris@6 2499 .arg(m_windowOverlap)
Chris@37 2500 .arg(m_gain)
Chris@37 2501 .arg(m_threshold);
Chris@37 2502
Chris@37 2503 s += QString("minFrequency=\"%1\" "
Chris@37 2504 "maxFrequency=\"%2\" "
Chris@37 2505 "colourScale=\"%3\" "
Chris@37 2506 "colourScheme=\"%4\" "
Chris@37 2507 "colourRotation=\"%5\" "
Chris@37 2508 "frequencyScale=\"%6\" "
Chris@37 2509 "binDisplay=\"%7\" "
Chris@37 2510 "normalizeColumns=\"%8\"")
Chris@37 2511 .arg(m_minFrequency)
Chris@6 2512 .arg(m_maxFrequency)
Chris@6 2513 .arg(m_colourScale)
Chris@6 2514 .arg(m_colourScheme)
Chris@37 2515 .arg(m_colourRotation)
Chris@35 2516 .arg(m_frequencyScale)
Chris@37 2517 .arg(m_binDisplay)
Chris@36 2518 .arg(m_normalizeColumns ? "true" : "false");
Chris@6 2519
Chris@6 2520 return Layer::toXmlString(indent, extraAttributes + " " + s);
Chris@6 2521 }
Chris@6 2522
Chris@11 2523 void
Chris@11 2524 SpectrogramLayer::setProperties(const QXmlAttributes &attributes)
Chris@11 2525 {
Chris@11 2526 bool ok = false;
Chris@11 2527
Chris@11 2528 int channel = attributes.value("channel").toInt(&ok);
Chris@11 2529 if (ok) setChannel(channel);
Chris@11 2530
Chris@11 2531 size_t windowSize = attributes.value("windowSize").toUInt(&ok);
Chris@11 2532 if (ok) setWindowSize(windowSize);
Chris@11 2533
Chris@11 2534 WindowType windowType = (WindowType)
Chris@11 2535 attributes.value("windowType").toInt(&ok);
Chris@11 2536 if (ok) setWindowType(windowType);
Chris@11 2537
Chris@11 2538 size_t windowOverlap = attributes.value("windowOverlap").toUInt(&ok);
Chris@11 2539 if (ok) setWindowOverlap(windowOverlap);
Chris@11 2540
Chris@11 2541 float gain = attributes.value("gain").toFloat(&ok);
Chris@11 2542 if (ok) setGain(gain);
Chris@11 2543
Chris@37 2544 float threshold = attributes.value("threshold").toFloat(&ok);
Chris@37 2545 if (ok) setThreshold(threshold);
Chris@37 2546
Chris@37 2547 size_t minFrequency = attributes.value("minFrequency").toUInt(&ok);
Chris@37 2548 if (ok) setMinFrequency(minFrequency);
Chris@37 2549
Chris@11 2550 size_t maxFrequency = attributes.value("maxFrequency").toUInt(&ok);
Chris@11 2551 if (ok) setMaxFrequency(maxFrequency);
Chris@11 2552
Chris@11 2553 ColourScale colourScale = (ColourScale)
Chris@11 2554 attributes.value("colourScale").toInt(&ok);
Chris@11 2555 if (ok) setColourScale(colourScale);
Chris@11 2556
Chris@11 2557 ColourScheme colourScheme = (ColourScheme)
Chris@11 2558 attributes.value("colourScheme").toInt(&ok);
Chris@11 2559 if (ok) setColourScheme(colourScheme);
Chris@11 2560
Chris@37 2561 int colourRotation = attributes.value("colourRotation").toInt(&ok);
Chris@37 2562 if (ok) setColourRotation(colourRotation);
Chris@37 2563
Chris@11 2564 FrequencyScale frequencyScale = (FrequencyScale)
Chris@11 2565 attributes.value("frequencyScale").toInt(&ok);
Chris@11 2566 if (ok) setFrequencyScale(frequencyScale);
Chris@35 2567
Chris@37 2568 BinDisplay binDisplay = (BinDisplay)
Chris@37 2569 attributes.value("binDisplay").toInt(&ok);
Chris@37 2570 if (ok) setBinDisplay(binDisplay);
Chris@36 2571
Chris@36 2572 bool normalizeColumns =
Chris@36 2573 (attributes.value("normalizeColumns").trimmed() == "true");
Chris@36 2574 setNormalizeColumns(normalizeColumns);
Chris@11 2575 }
Chris@11 2576
Chris@11 2577
Chris@0 2578 #ifdef INCLUDE_MOCFILES
Chris@0 2579 #include "SpectrogramLayer.moc.cpp"
Chris@0 2580 #endif
Chris@0 2581