annotate layer/SpectrogramLayer.cpp @ 75:dfdbf336bb37

* Remove dsp directory. This is now the qm-dsp library used by qm-vamp-plugins instead of being used in Sonic Visualiser directly. * Remove plugins that have now become part of qm-vamp-plugins. * Move time stretcher from dsp to audioio (this is the one DSP thing we do need in SV)
author Chris Cannam
date Thu, 06 Apr 2006 12:12:41 +0000
parents 72fa239a4880
children fd348f36c0d3
rev   line source
Chris@58 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
Chris@0 2
Chris@0 3 /*
Chris@59 4 Sonic Visualiser
Chris@59 5 An audio file viewer and annotation editor.
Chris@59 6 Centre for Digital Music, Queen Mary, University of London.
Chris@59 7 This file copyright 2006 Chris Cannam.
Chris@0 8
Chris@59 9 This program is free software; you can redistribute it and/or
Chris@59 10 modify it under the terms of the GNU General Public License as
Chris@59 11 published by the Free Software Foundation; either version 2 of the
Chris@59 12 License, or (at your option) any later version. See the file
Chris@59 13 COPYING included with this distribution for more information.
Chris@0 14 */
Chris@0 15
Chris@0 16 #include "SpectrogramLayer.h"
Chris@0 17
Chris@0 18 #include "base/View.h"
Chris@0 19 #include "base/Profiler.h"
Chris@0 20 #include "base/AudioLevel.h"
Chris@0 21 #include "base/Window.h"
Chris@24 22 #include "base/Pitch.h"
Chris@0 23
Chris@0 24 #include <QPainter>
Chris@0 25 #include <QImage>
Chris@0 26 #include <QPixmap>
Chris@0 27 #include <QRect>
Chris@0 28 #include <QTimer>
Chris@0 29
Chris@0 30 #include <iostream>
Chris@0 31
Chris@0 32 #include <cassert>
Chris@0 33 #include <cmath>
Chris@0 34
Chris@0 35 //#define DEBUG_SPECTROGRAM_REPAINT 1
Chris@0 36
Chris@75 37 static double mod(double x, double y)
Chris@75 38 {
Chris@75 39 double a = floor(x / y);
Chris@75 40 double b = x - (y * a);
Chris@75 41 return b;
Chris@75 42 }
Chris@75 43
Chris@75 44 static double princarg(double ang)
Chris@75 45 {
Chris@75 46 return mod(ang + M_PI, -2 * M_PI) + M_PI;
Chris@75 47 }
Chris@75 48
Chris@0 49
Chris@44 50 SpectrogramLayer::SpectrogramLayer(Configuration config) :
Chris@44 51 Layer(),
Chris@0 52 m_model(0),
Chris@0 53 m_channel(0),
Chris@0 54 m_windowSize(1024),
Chris@0 55 m_windowType(HanningWindow),
Chris@0 56 m_windowOverlap(50),
Chris@0 57 m_gain(1.0),
Chris@37 58 m_threshold(0.0),
Chris@9 59 m_colourRotation(0),
Chris@37 60 m_minFrequency(0),
Chris@0 61 m_maxFrequency(8000),
Chris@0 62 m_colourScale(dBColourScale),
Chris@0 63 m_colourScheme(DefaultColours),
Chris@0 64 m_frequencyScale(LinearFrequencyScale),
Chris@37 65 m_binDisplay(AllBins),
Chris@36 66 m_normalizeColumns(false),
Chris@0 67 m_cache(0),
Chris@0 68 m_cacheInvalid(true),
Chris@0 69 m_pixmapCache(0),
Chris@0 70 m_pixmapCacheInvalid(true),
Chris@0 71 m_fillThread(0),
Chris@0 72 m_updateTimer(0),
Chris@44 73 m_candidateFillStartFrame(0),
Chris@0 74 m_lastFillExtent(0),
Chris@0 75 m_exiting(false)
Chris@0 76 {
Chris@0 77 if (config == MelodicRange) {
Chris@0 78 setWindowSize(8192);
Chris@0 79 setWindowOverlap(90);
Chris@0 80 setWindowType(ParzenWindow);
Chris@0 81 setMaxFrequency(1000);
Chris@0 82 setColourScale(LinearColourScale);
Chris@37 83 } else if (config == MelodicPeaks) {
Chris@37 84 setWindowSize(4096);
Chris@37 85 setWindowOverlap(90);
Chris@37 86 setWindowType(BlackmanWindow);
Chris@40 87 setMaxFrequency(2000);
Chris@37 88 setMinFrequency(40);
Chris@37 89 setFrequencyScale(LogFrequencyScale);
Chris@41 90 setColourScale(MeterColourScale);
Chris@37 91 setBinDisplay(PeakFrequencies);
Chris@37 92 setNormalizeColumns(true);
Chris@0 93 }
Chris@0 94 }
Chris@0 95
Chris@0 96 SpectrogramLayer::~SpectrogramLayer()
Chris@0 97 {
Chris@0 98 delete m_updateTimer;
Chris@0 99 m_updateTimer = 0;
Chris@0 100
Chris@0 101 m_exiting = true;
Chris@0 102 m_condition.wakeAll();
Chris@0 103 if (m_fillThread) m_fillThread->wait();
Chris@0 104 delete m_fillThread;
Chris@0 105
Chris@0 106 delete m_cache;
Chris@0 107 }
Chris@0 108
Chris@0 109 void
Chris@0 110 SpectrogramLayer::setModel(const DenseTimeValueModel *model)
Chris@0 111 {
Chris@34 112 std::cerr << "SpectrogramLayer(" << this << "): setModel(" << model << ")" << std::endl;
Chris@34 113
Chris@0 114 m_mutex.lock();
Chris@35 115 m_cacheInvalid = true;
Chris@0 116 m_model = model;
Chris@34 117 delete m_cache; //!!! hang on, this isn't safe to do here is it?
Chris@34 118 // we need some sort of guard against the fill
Chris@34 119 // thread trying to read the defunct model too.
Chris@34 120 // should we use a scavenger?
Chris@31 121 m_cache = 0;
Chris@0 122 m_mutex.unlock();
Chris@0 123
Chris@0 124 if (!m_model || !m_model->isOK()) return;
Chris@0 125
Chris@0 126 connect(m_model, SIGNAL(modelChanged()), this, SIGNAL(modelChanged()));
Chris@0 127 connect(m_model, SIGNAL(modelChanged(size_t, size_t)),
Chris@0 128 this, SIGNAL(modelChanged(size_t, size_t)));
Chris@0 129
Chris@0 130 connect(m_model, SIGNAL(completionChanged()),
Chris@0 131 this, SIGNAL(modelCompletionChanged()));
Chris@0 132
Chris@0 133 connect(m_model, SIGNAL(modelChanged()), this, SLOT(cacheInvalid()));
Chris@0 134 connect(m_model, SIGNAL(modelChanged(size_t, size_t)),
Chris@0 135 this, SLOT(cacheInvalid(size_t, size_t)));
Chris@0 136
Chris@0 137 emit modelReplaced();
Chris@0 138 fillCache();
Chris@0 139 }
Chris@0 140
Chris@0 141 Layer::PropertyList
Chris@0 142 SpectrogramLayer::getProperties() const
Chris@0 143 {
Chris@0 144 PropertyList list;
Chris@0 145 list.push_back(tr("Colour"));
Chris@0 146 list.push_back(tr("Colour Scale"));
Chris@0 147 list.push_back(tr("Window Type"));
Chris@0 148 list.push_back(tr("Window Size"));
Chris@0 149 list.push_back(tr("Window Overlap"));
Chris@36 150 list.push_back(tr("Normalize"));
Chris@37 151 list.push_back(tr("Bin Display"));
Chris@37 152 list.push_back(tr("Threshold"));
Chris@0 153 list.push_back(tr("Gain"));
Chris@9 154 list.push_back(tr("Colour Rotation"));
Chris@37 155 list.push_back(tr("Min Frequency"));
Chris@0 156 list.push_back(tr("Max Frequency"));
Chris@0 157 list.push_back(tr("Frequency Scale"));
Chris@0 158 return list;
Chris@0 159 }
Chris@0 160
Chris@0 161 Layer::PropertyType
Chris@0 162 SpectrogramLayer::getPropertyType(const PropertyName &name) const
Chris@0 163 {
Chris@0 164 if (name == tr("Gain")) return RangeProperty;
Chris@9 165 if (name == tr("Colour Rotation")) return RangeProperty;
Chris@36 166 if (name == tr("Normalize")) return ToggleProperty;
Chris@37 167 if (name == tr("Threshold")) return RangeProperty;
Chris@0 168 return ValueProperty;
Chris@0 169 }
Chris@0 170
Chris@0 171 QString
Chris@0 172 SpectrogramLayer::getPropertyGroupName(const PropertyName &name) const
Chris@0 173 {
Chris@0 174 if (name == tr("Window Size") ||
Chris@35 175 name == tr("Window Type") ||
Chris@0 176 name == tr("Window Overlap")) return tr("Window");
Chris@35 177 if (name == tr("Colour") ||
Chris@38 178 name == tr("Gain") ||
Chris@38 179 name == tr("Threshold") ||
Chris@35 180 name == tr("Colour Rotation")) return tr("Colour");
Chris@38 181 if (name == tr("Normalize") ||
Chris@37 182 name == tr("Bin Display") ||
Chris@0 183 name == tr("Colour Scale")) return tr("Scale");
Chris@0 184 if (name == tr("Max Frequency") ||
Chris@37 185 name == tr("Min Frequency") ||
Chris@35 186 name == tr("Frequency Scale") ||
Chris@37 187 name == tr("Frequency Adjustment")) return tr("Range");
Chris@0 188 return QString();
Chris@0 189 }
Chris@0 190
Chris@0 191 int
Chris@0 192 SpectrogramLayer::getPropertyRangeAndValue(const PropertyName &name,
Chris@55 193 int *min, int *max) const
Chris@0 194 {
Chris@0 195 int deft = 0;
Chris@0 196
Chris@55 197 int garbage0, garbage1;
Chris@55 198 if (!min) min = &garbage0;
Chris@55 199 if (!max) max = &garbage1;
Chris@10 200
Chris@0 201 if (name == tr("Gain")) {
Chris@0 202
Chris@0 203 *min = -50;
Chris@0 204 *max = 50;
Chris@0 205
Chris@0 206 deft = lrint(log10(m_gain) * 20.0);
Chris@0 207 if (deft < *min) deft = *min;
Chris@0 208 if (deft > *max) deft = *max;
Chris@0 209
Chris@37 210 } else if (name == tr("Threshold")) {
Chris@37 211
Chris@37 212 *min = -50;
Chris@37 213 *max = 0;
Chris@37 214
Chris@37 215 deft = lrintf(AudioLevel::multiplier_to_dB(m_threshold));
Chris@37 216 if (deft < *min) deft = *min;
Chris@37 217 if (deft > *max) deft = *max;
Chris@37 218
Chris@9 219 } else if (name == tr("Colour Rotation")) {
Chris@9 220
Chris@9 221 *min = 0;
Chris@9 222 *max = 256;
Chris@9 223
Chris@9 224 deft = m_colourRotation;
Chris@9 225
Chris@0 226 } else if (name == tr("Colour Scale")) {
Chris@0 227
Chris@0 228 *min = 0;
Chris@0 229 *max = 3;
Chris@0 230
Chris@0 231 deft = (int)m_colourScale;
Chris@0 232
Chris@0 233 } else if (name == tr("Colour")) {
Chris@0 234
Chris@0 235 *min = 0;
Chris@71 236 *max = 6;
Chris@0 237
Chris@0 238 deft = (int)m_colourScheme;
Chris@0 239
Chris@0 240 } else if (name == tr("Window Type")) {
Chris@0 241
Chris@0 242 *min = 0;
Chris@0 243 *max = 6;
Chris@0 244
Chris@0 245 deft = (int)m_windowType;
Chris@0 246
Chris@0 247 } else if (name == tr("Window Size")) {
Chris@0 248
Chris@0 249 *min = 0;
Chris@0 250 *max = 10;
Chris@0 251
Chris@0 252 deft = 0;
Chris@0 253 int ws = m_windowSize;
Chris@0 254 while (ws > 32) { ws >>= 1; deft ++; }
Chris@0 255
Chris@0 256 } else if (name == tr("Window Overlap")) {
Chris@0 257
Chris@0 258 *min = 0;
Chris@0 259 *max = 4;
Chris@0 260
Chris@0 261 deft = m_windowOverlap / 25;
Chris@0 262 if (m_windowOverlap == 90) deft = 4;
Chris@0 263
Chris@37 264 } else if (name == tr("Min Frequency")) {
Chris@37 265
Chris@37 266 *min = 0;
Chris@37 267 *max = 9;
Chris@37 268
Chris@37 269 switch (m_minFrequency) {
Chris@37 270 case 0: default: deft = 0; break;
Chris@37 271 case 10: deft = 1; break;
Chris@37 272 case 20: deft = 2; break;
Chris@37 273 case 40: deft = 3; break;
Chris@37 274 case 100: deft = 4; break;
Chris@37 275 case 250: deft = 5; break;
Chris@37 276 case 500: deft = 6; break;
Chris@37 277 case 1000: deft = 7; break;
Chris@37 278 case 4000: deft = 8; break;
Chris@37 279 case 10000: deft = 9; break;
Chris@37 280 }
Chris@37 281
Chris@0 282 } else if (name == tr("Max Frequency")) {
Chris@0 283
Chris@0 284 *min = 0;
Chris@0 285 *max = 9;
Chris@0 286
Chris@0 287 switch (m_maxFrequency) {
Chris@0 288 case 500: deft = 0; break;
Chris@0 289 case 1000: deft = 1; break;
Chris@0 290 case 1500: deft = 2; break;
Chris@0 291 case 2000: deft = 3; break;
Chris@0 292 case 4000: deft = 4; break;
Chris@0 293 case 6000: deft = 5; break;
Chris@0 294 case 8000: deft = 6; break;
Chris@0 295 case 12000: deft = 7; break;
Chris@0 296 case 16000: deft = 8; break;
Chris@0 297 default: deft = 9; break;
Chris@0 298 }
Chris@0 299
Chris@0 300 } else if (name == tr("Frequency Scale")) {
Chris@0 301
Chris@0 302 *min = 0;
Chris@0 303 *max = 1;
Chris@0 304 deft = (int)m_frequencyScale;
Chris@0 305
Chris@37 306 } else if (name == tr("Bin Display")) {
Chris@35 307
Chris@35 308 *min = 0;
Chris@35 309 *max = 2;
Chris@37 310 deft = (int)m_binDisplay;
Chris@35 311
Chris@36 312 } else if (name == tr("Normalize")) {
Chris@36 313
Chris@36 314 deft = (m_normalizeColumns ? 1 : 0);
Chris@36 315
Chris@0 316 } else {
Chris@0 317 deft = Layer::getPropertyRangeAndValue(name, min, max);
Chris@0 318 }
Chris@0 319
Chris@0 320 return deft;
Chris@0 321 }
Chris@0 322
Chris@0 323 QString
Chris@0 324 SpectrogramLayer::getPropertyValueLabel(const PropertyName &name,
Chris@9 325 int value) const
Chris@0 326 {
Chris@0 327 if (name == tr("Colour")) {
Chris@0 328 switch (value) {
Chris@0 329 default:
Chris@0 330 case 0: return tr("Default");
Chris@0 331 case 1: return tr("White on Black");
Chris@0 332 case 2: return tr("Black on White");
Chris@0 333 case 3: return tr("Red on Blue");
Chris@0 334 case 4: return tr("Yellow on Black");
Chris@71 335 case 5: return tr("Blue on Black");
Chris@71 336 case 6: return tr("Fruit Salad");
Chris@0 337 }
Chris@0 338 }
Chris@0 339 if (name == tr("Colour Scale")) {
Chris@0 340 switch (value) {
Chris@0 341 default:
Chris@37 342 case 0: return tr("Linear");
Chris@37 343 case 1: return tr("Meter");
Chris@37 344 case 2: return tr("dB");
Chris@0 345 case 3: return tr("Phase");
Chris@0 346 }
Chris@0 347 }
Chris@0 348 if (name == tr("Window Type")) {
Chris@0 349 switch ((WindowType)value) {
Chris@0 350 default:
Chris@35 351 case RectangularWindow: return tr("Rectangle");
Chris@0 352 case BartlettWindow: return tr("Bartlett");
Chris@0 353 case HammingWindow: return tr("Hamming");
Chris@0 354 case HanningWindow: return tr("Hanning");
Chris@0 355 case BlackmanWindow: return tr("Blackman");
Chris@0 356 case GaussianWindow: return tr("Gaussian");
Chris@0 357 case ParzenWindow: return tr("Parzen");
Chris@0 358 }
Chris@0 359 }
Chris@0 360 if (name == tr("Window Size")) {
Chris@0 361 return QString("%1").arg(32 << value);
Chris@0 362 }
Chris@0 363 if (name == tr("Window Overlap")) {
Chris@0 364 switch (value) {
Chris@0 365 default:
Chris@35 366 case 0: return tr("0%");
Chris@35 367 case 1: return tr("25%");
Chris@35 368 case 2: return tr("50%");
Chris@35 369 case 3: return tr("75%");
Chris@35 370 case 4: return tr("90%");
Chris@0 371 }
Chris@0 372 }
Chris@37 373 if (name == tr("Min Frequency")) {
Chris@37 374 switch (value) {
Chris@37 375 default:
Chris@38 376 case 0: return tr("No min");
Chris@37 377 case 1: return tr("10 Hz");
Chris@37 378 case 2: return tr("20 Hz");
Chris@37 379 case 3: return tr("40 Hz");
Chris@37 380 case 4: return tr("100 Hz");
Chris@37 381 case 5: return tr("250 Hz");
Chris@37 382 case 6: return tr("500 Hz");
Chris@37 383 case 7: return tr("1 KHz");
Chris@37 384 case 8: return tr("4 KHz");
Chris@37 385 case 9: return tr("10 KHz");
Chris@37 386 }
Chris@37 387 }
Chris@0 388 if (name == tr("Max Frequency")) {
Chris@0 389 switch (value) {
Chris@0 390 default:
Chris@0 391 case 0: return tr("500 Hz");
Chris@0 392 case 1: return tr("1 KHz");
Chris@0 393 case 2: return tr("1.5 KHz");
Chris@0 394 case 3: return tr("2 KHz");
Chris@0 395 case 4: return tr("4 KHz");
Chris@0 396 case 5: return tr("6 KHz");
Chris@0 397 case 6: return tr("8 KHz");
Chris@0 398 case 7: return tr("12 KHz");
Chris@0 399 case 8: return tr("16 KHz");
Chris@38 400 case 9: return tr("No max");
Chris@0 401 }
Chris@0 402 }
Chris@0 403 if (name == tr("Frequency Scale")) {
Chris@0 404 switch (value) {
Chris@0 405 default:
Chris@0 406 case 0: return tr("Linear");
Chris@0 407 case 1: return tr("Log");
Chris@0 408 }
Chris@0 409 }
Chris@37 410 if (name == tr("Bin Display")) {
Chris@35 411 switch (value) {
Chris@35 412 default:
Chris@37 413 case 0: return tr("All Bins");
Chris@37 414 case 1: return tr("Peak Bins");
Chris@37 415 case 2: return tr("Frequencies");
Chris@35 416 }
Chris@35 417 }
Chris@0 418 return tr("<unknown>");
Chris@0 419 }
Chris@0 420
Chris@0 421 void
Chris@0 422 SpectrogramLayer::setProperty(const PropertyName &name, int value)
Chris@0 423 {
Chris@0 424 if (name == tr("Gain")) {
Chris@0 425 setGain(pow(10, float(value)/20.0));
Chris@37 426 } else if (name == tr("Threshold")) {
Chris@37 427 if (value == -50) setThreshold(0.0);
Chris@37 428 else setThreshold(AudioLevel::dB_to_multiplier(value));
Chris@9 429 } else if (name == tr("Colour Rotation")) {
Chris@9 430 setColourRotation(value);
Chris@0 431 } else if (name == tr("Colour")) {
Chris@0 432 switch (value) {
Chris@0 433 default:
Chris@0 434 case 0: setColourScheme(DefaultColours); break;
Chris@0 435 case 1: setColourScheme(WhiteOnBlack); break;
Chris@0 436 case 2: setColourScheme(BlackOnWhite); break;
Chris@0 437 case 3: setColourScheme(RedOnBlue); break;
Chris@0 438 case 4: setColourScheme(YellowOnBlack); break;
Chris@71 439 case 5: setColourScheme(BlueOnBlack); break;
Chris@71 440 case 6: setColourScheme(Rainbow); break;
Chris@0 441 }
Chris@0 442 } else if (name == tr("Window Type")) {
Chris@0 443 setWindowType(WindowType(value));
Chris@0 444 } else if (name == tr("Window Size")) {
Chris@0 445 setWindowSize(32 << value);
Chris@0 446 } else if (name == tr("Window Overlap")) {
Chris@0 447 if (value == 4) setWindowOverlap(90);
Chris@0 448 else setWindowOverlap(25 * value);
Chris@37 449 } else if (name == tr("Min Frequency")) {
Chris@37 450 switch (value) {
Chris@37 451 default:
Chris@37 452 case 0: setMinFrequency(0); break;
Chris@37 453 case 1: setMinFrequency(10); break;
Chris@37 454 case 2: setMinFrequency(20); break;
Chris@37 455 case 3: setMinFrequency(40); break;
Chris@37 456 case 4: setMinFrequency(100); break;
Chris@37 457 case 5: setMinFrequency(250); break;
Chris@37 458 case 6: setMinFrequency(500); break;
Chris@37 459 case 7: setMinFrequency(1000); break;
Chris@37 460 case 8: setMinFrequency(4000); break;
Chris@37 461 case 9: setMinFrequency(10000); break;
Chris@37 462 }
Chris@0 463 } else if (name == tr("Max Frequency")) {
Chris@0 464 switch (value) {
Chris@0 465 case 0: setMaxFrequency(500); break;
Chris@0 466 case 1: setMaxFrequency(1000); break;
Chris@0 467 case 2: setMaxFrequency(1500); break;
Chris@0 468 case 3: setMaxFrequency(2000); break;
Chris@0 469 case 4: setMaxFrequency(4000); break;
Chris@0 470 case 5: setMaxFrequency(6000); break;
Chris@0 471 case 6: setMaxFrequency(8000); break;
Chris@0 472 case 7: setMaxFrequency(12000); break;
Chris@0 473 case 8: setMaxFrequency(16000); break;
Chris@0 474 default:
Chris@0 475 case 9: setMaxFrequency(0); break;
Chris@0 476 }
Chris@0 477 } else if (name == tr("Colour Scale")) {
Chris@0 478 switch (value) {
Chris@0 479 default:
Chris@0 480 case 0: setColourScale(LinearColourScale); break;
Chris@0 481 case 1: setColourScale(MeterColourScale); break;
Chris@0 482 case 2: setColourScale(dBColourScale); break;
Chris@0 483 case 3: setColourScale(PhaseColourScale); break;
Chris@0 484 }
Chris@0 485 } else if (name == tr("Frequency Scale")) {
Chris@0 486 switch (value) {
Chris@0 487 default:
Chris@0 488 case 0: setFrequencyScale(LinearFrequencyScale); break;
Chris@0 489 case 1: setFrequencyScale(LogFrequencyScale); break;
Chris@0 490 }
Chris@37 491 } else if (name == tr("Bin Display")) {
Chris@35 492 switch (value) {
Chris@35 493 default:
Chris@37 494 case 0: setBinDisplay(AllBins); break;
Chris@37 495 case 1: setBinDisplay(PeakBins); break;
Chris@37 496 case 2: setBinDisplay(PeakFrequencies); break;
Chris@35 497 }
Chris@36 498 } else if (name == "Normalize") {
Chris@36 499 setNormalizeColumns(value ? true : false);
Chris@0 500 }
Chris@0 501 }
Chris@0 502
Chris@0 503 void
Chris@0 504 SpectrogramLayer::setChannel(int ch)
Chris@0 505 {
Chris@0 506 if (m_channel == ch) return;
Chris@0 507
Chris@0 508 m_mutex.lock();
Chris@0 509 m_cacheInvalid = true;
Chris@0 510 m_pixmapCacheInvalid = true;
Chris@0 511
Chris@0 512 m_channel = ch;
Chris@9 513
Chris@9 514 m_mutex.unlock();
Chris@9 515
Chris@0 516 emit layerParametersChanged();
Chris@9 517
Chris@0 518 fillCache();
Chris@0 519 }
Chris@0 520
Chris@0 521 int
Chris@0 522 SpectrogramLayer::getChannel() const
Chris@0 523 {
Chris@0 524 return m_channel;
Chris@0 525 }
Chris@0 526
Chris@0 527 void
Chris@0 528 SpectrogramLayer::setWindowSize(size_t ws)
Chris@0 529 {
Chris@0 530 if (m_windowSize == ws) return;
Chris@0 531
Chris@0 532 m_mutex.lock();
Chris@0 533 m_cacheInvalid = true;
Chris@0 534 m_pixmapCacheInvalid = true;
Chris@0 535
Chris@0 536 m_windowSize = ws;
Chris@0 537
Chris@0 538 m_mutex.unlock();
Chris@9 539
Chris@9 540 emit layerParametersChanged();
Chris@9 541
Chris@0 542 fillCache();
Chris@0 543 }
Chris@0 544
Chris@0 545 size_t
Chris@0 546 SpectrogramLayer::getWindowSize() const
Chris@0 547 {
Chris@0 548 return m_windowSize;
Chris@0 549 }
Chris@0 550
Chris@0 551 void
Chris@0 552 SpectrogramLayer::setWindowOverlap(size_t wi)
Chris@0 553 {
Chris@0 554 if (m_windowOverlap == wi) return;
Chris@0 555
Chris@0 556 m_mutex.lock();
Chris@0 557 m_cacheInvalid = true;
Chris@0 558 m_pixmapCacheInvalid = true;
Chris@0 559
Chris@0 560 m_windowOverlap = wi;
Chris@0 561
Chris@0 562 m_mutex.unlock();
Chris@9 563
Chris@9 564 emit layerParametersChanged();
Chris@9 565
Chris@0 566 fillCache();
Chris@0 567 }
Chris@0 568
Chris@0 569 size_t
Chris@0 570 SpectrogramLayer::getWindowOverlap() const
Chris@0 571 {
Chris@0 572 return m_windowOverlap;
Chris@0 573 }
Chris@0 574
Chris@0 575 void
Chris@0 576 SpectrogramLayer::setWindowType(WindowType w)
Chris@0 577 {
Chris@0 578 if (m_windowType == w) return;
Chris@0 579
Chris@0 580 m_mutex.lock();
Chris@0 581 m_cacheInvalid = true;
Chris@0 582 m_pixmapCacheInvalid = true;
Chris@0 583
Chris@0 584 m_windowType = w;
Chris@0 585
Chris@0 586 m_mutex.unlock();
Chris@9 587
Chris@9 588 emit layerParametersChanged();
Chris@9 589
Chris@0 590 fillCache();
Chris@0 591 }
Chris@0 592
Chris@0 593 WindowType
Chris@0 594 SpectrogramLayer::getWindowType() const
Chris@0 595 {
Chris@0 596 return m_windowType;
Chris@0 597 }
Chris@0 598
Chris@0 599 void
Chris@0 600 SpectrogramLayer::setGain(float gain)
Chris@0 601 {
Chris@55 602 std::cerr << "SpectrogramLayer::setGain(" << gain << ") (my gain is now "
Chris@55 603 << m_gain << ")" << std::endl;
Chris@55 604
Chris@40 605 if (m_gain == gain) return;
Chris@0 606
Chris@0 607 m_mutex.lock();
Chris@0 608 m_pixmapCacheInvalid = true;
Chris@0 609
Chris@0 610 m_gain = gain;
Chris@0 611
Chris@0 612 m_mutex.unlock();
Chris@9 613
Chris@9 614 emit layerParametersChanged();
Chris@9 615
Chris@0 616 fillCache();
Chris@0 617 }
Chris@0 618
Chris@0 619 float
Chris@0 620 SpectrogramLayer::getGain() const
Chris@0 621 {
Chris@0 622 return m_gain;
Chris@0 623 }
Chris@0 624
Chris@0 625 void
Chris@37 626 SpectrogramLayer::setThreshold(float threshold)
Chris@37 627 {
Chris@40 628 if (m_threshold == threshold) return;
Chris@37 629
Chris@37 630 m_mutex.lock();
Chris@37 631 m_pixmapCacheInvalid = true;
Chris@37 632
Chris@37 633 m_threshold = threshold;
Chris@37 634
Chris@37 635 m_mutex.unlock();
Chris@37 636
Chris@37 637 emit layerParametersChanged();
Chris@37 638
Chris@37 639 fillCache();
Chris@37 640 }
Chris@37 641
Chris@37 642 float
Chris@37 643 SpectrogramLayer::getThreshold() const
Chris@37 644 {
Chris@37 645 return m_threshold;
Chris@37 646 }
Chris@37 647
Chris@37 648 void
Chris@37 649 SpectrogramLayer::setMinFrequency(size_t mf)
Chris@37 650 {
Chris@37 651 if (m_minFrequency == mf) return;
Chris@37 652
Chris@37 653 m_mutex.lock();
Chris@37 654 m_pixmapCacheInvalid = true;
Chris@37 655
Chris@37 656 m_minFrequency = mf;
Chris@37 657
Chris@37 658 m_mutex.unlock();
Chris@37 659
Chris@37 660 emit layerParametersChanged();
Chris@37 661 }
Chris@37 662
Chris@37 663 size_t
Chris@37 664 SpectrogramLayer::getMinFrequency() const
Chris@37 665 {
Chris@37 666 return m_minFrequency;
Chris@37 667 }
Chris@37 668
Chris@37 669 void
Chris@0 670 SpectrogramLayer::setMaxFrequency(size_t mf)
Chris@0 671 {
Chris@0 672 if (m_maxFrequency == mf) return;
Chris@0 673
Chris@0 674 m_mutex.lock();
Chris@0 675 m_pixmapCacheInvalid = true;
Chris@0 676
Chris@0 677 m_maxFrequency = mf;
Chris@0 678
Chris@0 679 m_mutex.unlock();
Chris@9 680
Chris@9 681 emit layerParametersChanged();
Chris@0 682 }
Chris@0 683
Chris@0 684 size_t
Chris@0 685 SpectrogramLayer::getMaxFrequency() const
Chris@0 686 {
Chris@0 687 return m_maxFrequency;
Chris@0 688 }
Chris@0 689
Chris@0 690 void
Chris@9 691 SpectrogramLayer::setColourRotation(int r)
Chris@9 692 {
Chris@9 693 m_mutex.lock();
Chris@9 694 m_pixmapCacheInvalid = true;
Chris@9 695
Chris@9 696 if (r < 0) r = 0;
Chris@9 697 if (r > 256) r = 256;
Chris@9 698 int distance = r - m_colourRotation;
Chris@9 699
Chris@9 700 if (distance != 0) {
Chris@9 701 rotateCacheColourmap(-distance);
Chris@9 702 m_colourRotation = r;
Chris@9 703 }
Chris@9 704
Chris@9 705 m_mutex.unlock();
Chris@9 706
Chris@9 707 emit layerParametersChanged();
Chris@9 708 }
Chris@9 709
Chris@9 710 void
Chris@0 711 SpectrogramLayer::setColourScale(ColourScale colourScale)
Chris@0 712 {
Chris@0 713 if (m_colourScale == colourScale) return;
Chris@0 714
Chris@0 715 m_mutex.lock();
Chris@0 716 m_pixmapCacheInvalid = true;
Chris@0 717
Chris@0 718 m_colourScale = colourScale;
Chris@0 719
Chris@0 720 m_mutex.unlock();
Chris@0 721 fillCache();
Chris@9 722
Chris@9 723 emit layerParametersChanged();
Chris@0 724 }
Chris@0 725
Chris@0 726 SpectrogramLayer::ColourScale
Chris@0 727 SpectrogramLayer::getColourScale() const
Chris@0 728 {
Chris@0 729 return m_colourScale;
Chris@0 730 }
Chris@0 731
Chris@0 732 void
Chris@0 733 SpectrogramLayer::setColourScheme(ColourScheme scheme)
Chris@0 734 {
Chris@0 735 if (m_colourScheme == scheme) return;
Chris@0 736
Chris@0 737 m_mutex.lock();
Chris@0 738 m_pixmapCacheInvalid = true;
Chris@0 739
Chris@0 740 m_colourScheme = scheme;
Chris@0 741 setCacheColourmap();
Chris@9 742
Chris@9 743 m_mutex.unlock();
Chris@9 744
Chris@0 745 emit layerParametersChanged();
Chris@0 746 }
Chris@0 747
Chris@0 748 SpectrogramLayer::ColourScheme
Chris@0 749 SpectrogramLayer::getColourScheme() const
Chris@0 750 {
Chris@0 751 return m_colourScheme;
Chris@0 752 }
Chris@0 753
Chris@0 754 void
Chris@0 755 SpectrogramLayer::setFrequencyScale(FrequencyScale frequencyScale)
Chris@0 756 {
Chris@0 757 if (m_frequencyScale == frequencyScale) return;
Chris@0 758
Chris@0 759 m_mutex.lock();
Chris@35 760
Chris@0 761 m_pixmapCacheInvalid = true;
Chris@0 762
Chris@0 763 m_frequencyScale = frequencyScale;
Chris@0 764
Chris@0 765 m_mutex.unlock();
Chris@9 766
Chris@9 767 emit layerParametersChanged();
Chris@0 768 }
Chris@0 769
Chris@0 770 SpectrogramLayer::FrequencyScale
Chris@0 771 SpectrogramLayer::getFrequencyScale() const
Chris@0 772 {
Chris@0 773 return m_frequencyScale;
Chris@0 774 }
Chris@0 775
Chris@0 776 void
Chris@37 777 SpectrogramLayer::setBinDisplay(BinDisplay binDisplay)
Chris@35 778 {
Chris@37 779 if (m_binDisplay == binDisplay) return;
Chris@35 780
Chris@35 781 m_mutex.lock();
Chris@35 782
Chris@35 783 m_pixmapCacheInvalid = true;
Chris@35 784
Chris@37 785 m_binDisplay = binDisplay;
Chris@35 786
Chris@35 787 m_mutex.unlock();
Chris@35 788
Chris@35 789 fillCache();
Chris@35 790
Chris@35 791 emit layerParametersChanged();
Chris@35 792 }
Chris@35 793
Chris@37 794 SpectrogramLayer::BinDisplay
Chris@37 795 SpectrogramLayer::getBinDisplay() const
Chris@35 796 {
Chris@37 797 return m_binDisplay;
Chris@35 798 }
Chris@35 799
Chris@35 800 void
Chris@36 801 SpectrogramLayer::setNormalizeColumns(bool n)
Chris@36 802 {
Chris@36 803 if (m_normalizeColumns == n) return;
Chris@36 804 m_mutex.lock();
Chris@36 805
Chris@36 806 m_pixmapCacheInvalid = true;
Chris@36 807 m_normalizeColumns = n;
Chris@36 808 m_mutex.unlock();
Chris@36 809
Chris@36 810 fillCache();
Chris@36 811 emit layerParametersChanged();
Chris@36 812 }
Chris@36 813
Chris@36 814 bool
Chris@36 815 SpectrogramLayer::getNormalizeColumns() const
Chris@36 816 {
Chris@36 817 return m_normalizeColumns;
Chris@36 818 }
Chris@36 819
Chris@36 820 void
Chris@47 821 SpectrogramLayer::setLayerDormant(const View *v, bool dormant)
Chris@29 822 {
Chris@47 823 QMutexLocker locker(&m_mutex);
Chris@47 824
Chris@47 825 if (dormant == m_dormancy[v]) return;
Chris@33 826
Chris@33 827 if (dormant) {
Chris@33 828
Chris@47 829 m_dormancy[v] = true;
Chris@33 830
Chris@34 831 // delete m_cache;
Chris@34 832 // m_cache = 0;
Chris@33 833
Chris@34 834 m_cacheInvalid = true;
Chris@33 835 m_pixmapCacheInvalid = true;
Chris@33 836 delete m_pixmapCache;
Chris@33 837 m_pixmapCache = 0;
Chris@33 838
Chris@33 839 } else {
Chris@33 840
Chris@47 841 m_dormancy[v] = false;
Chris@33 842 }
Chris@29 843 }
Chris@29 844
Chris@29 845 void
Chris@0 846 SpectrogramLayer::cacheInvalid()
Chris@0 847 {
Chris@0 848 m_cacheInvalid = true;
Chris@0 849 m_pixmapCacheInvalid = true;
Chris@0 850 fillCache();
Chris@0 851 }
Chris@0 852
Chris@0 853 void
Chris@0 854 SpectrogramLayer::cacheInvalid(size_t, size_t)
Chris@0 855 {
Chris@0 856 // for now (or forever?)
Chris@0 857 cacheInvalid();
Chris@0 858 }
Chris@0 859
Chris@0 860 void
Chris@0 861 SpectrogramLayer::fillCache()
Chris@0 862 {
Chris@0 863 #ifdef DEBUG_SPECTROGRAM_REPAINT
Chris@0 864 std::cerr << "SpectrogramLayer::fillCache" << std::endl;
Chris@0 865 #endif
Chris@0 866 QMutexLocker locker(&m_mutex);
Chris@0 867
Chris@0 868 m_lastFillExtent = 0;
Chris@0 869
Chris@0 870 delete m_updateTimer;
Chris@0 871 m_updateTimer = new QTimer(this);
Chris@0 872 connect(m_updateTimer, SIGNAL(timeout()), this, SLOT(fillTimerTimedOut()));
Chris@0 873 m_updateTimer->start(200);
Chris@0 874
Chris@0 875 if (!m_fillThread) {
Chris@0 876 std::cerr << "SpectrogramLayer::fillCache creating thread" << std::endl;
Chris@0 877 m_fillThread = new CacheFillThread(*this);
Chris@0 878 m_fillThread->start();
Chris@0 879 }
Chris@0 880
Chris@0 881 m_condition.wakeAll();
Chris@0 882 }
Chris@0 883
Chris@0 884 void
Chris@0 885 SpectrogramLayer::fillTimerTimedOut()
Chris@0 886 {
Chris@0 887 if (m_fillThread && m_model) {
Chris@0 888 size_t fillExtent = m_fillThread->getFillExtent();
Chris@0 889 #ifdef DEBUG_SPECTROGRAM_REPAINT
Chris@0 890 std::cerr << "SpectrogramLayer::fillTimerTimedOut: extent " << fillExtent << ", last " << m_lastFillExtent << ", total " << m_model->getEndFrame() << std::endl;
Chris@0 891 #endif
Chris@0 892 if (fillExtent >= m_lastFillExtent) {
Chris@0 893 if (fillExtent >= m_model->getEndFrame() && m_lastFillExtent > 0) {
Chris@0 894 #ifdef DEBUG_SPECTROGRAM_REPAINT
Chris@0 895 std::cerr << "complete!" << std::endl;
Chris@0 896 #endif
Chris@55 897 m_pixmapCacheInvalid = true;
Chris@0 898 emit modelChanged();
Chris@0 899 delete m_updateTimer;
Chris@0 900 m_updateTimer = 0;
Chris@0 901 m_lastFillExtent = 0;
Chris@0 902 } else if (fillExtent > m_lastFillExtent) {
Chris@0 903 #ifdef DEBUG_SPECTROGRAM_REPAINT
Chris@0 904 std::cerr << "SpectrogramLayer: emitting modelChanged("
Chris@0 905 << m_lastFillExtent << "," << fillExtent << ")" << std::endl;
Chris@0 906 #endif
Chris@55 907 m_pixmapCacheInvalid = true;
Chris@0 908 emit modelChanged(m_lastFillExtent, fillExtent);
Chris@0 909 m_lastFillExtent = fillExtent;
Chris@0 910 }
Chris@0 911 } else {
Chris@44 912 // if (v) {
Chris@0 913 size_t sf = 0;
Chris@44 914 //!!! if (v->getStartFrame() > 0) sf = v->getStartFrame();
Chris@0 915 #ifdef DEBUG_SPECTROGRAM_REPAINT
Chris@0 916 std::cerr << "SpectrogramLayer: going backwards, emitting modelChanged("
Chris@44 917 << sf << "," << m_model->getEndFrame() << ")" << std::endl;
Chris@0 918 #endif
Chris@55 919 m_pixmapCacheInvalid = true;
Chris@44 920 emit modelChanged(sf, m_model->getEndFrame());
Chris@44 921 // }
Chris@0 922 m_lastFillExtent = fillExtent;
Chris@0 923 }
Chris@0 924 }
Chris@0 925 }
Chris@0 926
Chris@0 927 void
Chris@0 928 SpectrogramLayer::setCacheColourmap()
Chris@0 929 {
Chris@0 930 if (m_cacheInvalid || !m_cache) return;
Chris@0 931
Chris@10 932 int formerRotation = m_colourRotation;
Chris@10 933
Chris@38 934 if (m_colourScheme == BlackOnWhite) {
Chris@38 935 m_cache->setColour(NO_VALUE, Qt::white);
Chris@38 936 } else {
Chris@38 937 m_cache->setColour(NO_VALUE, Qt::black);
Chris@38 938 }
Chris@0 939
Chris@0 940 for (int pixel = 1; pixel < 256; ++pixel) {
Chris@0 941
Chris@0 942 QColor colour;
Chris@0 943 int hue, px;
Chris@0 944
Chris@0 945 switch (m_colourScheme) {
Chris@0 946
Chris@0 947 default:
Chris@0 948 case DefaultColours:
Chris@0 949 hue = 256 - pixel;
Chris@0 950 colour = QColor::fromHsv(hue, pixel/2 + 128, pixel);
Chris@0 951 break;
Chris@0 952
Chris@0 953 case WhiteOnBlack:
Chris@0 954 colour = QColor(pixel, pixel, pixel);
Chris@0 955 break;
Chris@0 956
Chris@0 957 case BlackOnWhite:
Chris@0 958 colour = QColor(256-pixel, 256-pixel, 256-pixel);
Chris@0 959 break;
Chris@0 960
Chris@0 961 case RedOnBlue:
Chris@0 962 colour = QColor(pixel > 128 ? (pixel - 128) * 2 : 0, 0,
Chris@0 963 pixel < 128 ? pixel : (256 - pixel));
Chris@0 964 break;
Chris@0 965
Chris@0 966 case YellowOnBlack:
Chris@0 967 px = 256 - pixel;
Chris@0 968 colour = QColor(px < 64 ? 255 - px/2 :
Chris@0 969 px < 128 ? 224 - (px - 64) :
Chris@0 970 px < 192 ? 160 - (px - 128) * 3 / 2 :
Chris@0 971 256 - px,
Chris@0 972 pixel,
Chris@0 973 pixel / 4);
Chris@0 974 break;
Chris@0 975
Chris@71 976 case BlueOnBlack:
Chris@71 977 colour = QColor::fromHsv
Chris@71 978 (240, pixel > 226 ? 256 - (pixel - 226) * 8 : 255,
Chris@71 979 (pixel * pixel) / 255);
Chris@71 980 break;
Chris@71 981
Chris@40 982 case Rainbow:
Chris@40 983 hue = 250 - pixel;
Chris@40 984 if (hue < 0) hue += 256;
Chris@40 985 colour = QColor::fromHsv(pixel, 255, 255);
Chris@0 986 break;
Chris@0 987 }
Chris@0 988
Chris@31 989 m_cache->setColour(pixel, colour);
Chris@0 990 }
Chris@9 991
Chris@9 992 m_colourRotation = 0;
Chris@10 993 rotateCacheColourmap(m_colourRotation - formerRotation);
Chris@10 994 m_colourRotation = formerRotation;
Chris@9 995 }
Chris@9 996
Chris@9 997 void
Chris@9 998 SpectrogramLayer::rotateCacheColourmap(int distance)
Chris@9 999 {
Chris@10 1000 if (!m_cache) return;
Chris@10 1001
Chris@31 1002 QColor newPixels[256];
Chris@9 1003
Chris@37 1004 newPixels[NO_VALUE] = m_cache->getColour(NO_VALUE);
Chris@9 1005
Chris@9 1006 for (int pixel = 1; pixel < 256; ++pixel) {
Chris@9 1007 int target = pixel + distance;
Chris@9 1008 while (target < 1) target += 255;
Chris@9 1009 while (target > 255) target -= 255;
Chris@31 1010 newPixels[target] = m_cache->getColour(pixel);
Chris@9 1011 }
Chris@9 1012
Chris@9 1013 for (int pixel = 0; pixel < 256; ++pixel) {
Chris@31 1014 m_cache->setColour(pixel, newPixels[pixel]);
Chris@9 1015 }
Chris@0 1016 }
Chris@0 1017
Chris@38 1018 float
Chris@38 1019 SpectrogramLayer::calculateFrequency(size_t bin,
Chris@38 1020 size_t windowSize,
Chris@38 1021 size_t windowIncrement,
Chris@38 1022 size_t sampleRate,
Chris@38 1023 float oldPhase,
Chris@38 1024 float newPhase,
Chris@38 1025 bool &steadyState)
Chris@38 1026 {
Chris@38 1027 // At frequency f, phase shift of 2pi (one cycle) happens in 1/f sec.
Chris@38 1028 // At hopsize h and sample rate sr, one hop happens in h/sr sec.
Chris@38 1029 // At window size w, for bin b, f is b*sr/w.
Chris@38 1030 // thus 2pi phase shift happens in w/(b*sr) sec.
Chris@38 1031 // We need to know what phase shift we expect from h/sr sec.
Chris@38 1032 // -> 2pi * ((h/sr) / (w/(b*sr)))
Chris@38 1033 // = 2pi * ((h * b * sr) / (w * sr))
Chris@38 1034 // = 2pi * (h * b) / w.
Chris@38 1035
Chris@38 1036 float frequency = (float(bin) * sampleRate) / windowSize;
Chris@38 1037
Chris@38 1038 float expectedPhase =
Chris@38 1039 oldPhase + (2.0 * M_PI * bin * windowIncrement) / windowSize;
Chris@38 1040
Chris@75 1041 float phaseError = princarg(newPhase - expectedPhase);
Chris@38 1042
Chris@38 1043 if (fabs(phaseError) < (1.1 * (windowIncrement * M_PI) / windowSize)) {
Chris@38 1044
Chris@38 1045 // The new frequency estimate based on the phase error
Chris@38 1046 // resulting from assuming the "native" frequency of this bin
Chris@38 1047
Chris@38 1048 float newFrequency =
Chris@38 1049 (sampleRate * (expectedPhase + phaseError - oldPhase)) /
Chris@38 1050 (2 * M_PI * windowIncrement);
Chris@38 1051
Chris@38 1052 steadyState = true;
Chris@38 1053 return newFrequency;
Chris@38 1054 }
Chris@38 1055
Chris@38 1056 steadyState = false;
Chris@38 1057 return frequency;
Chris@38 1058 }
Chris@38 1059
Chris@38 1060 void
Chris@0 1061 SpectrogramLayer::fillCacheColumn(int column, double *input,
Chris@0 1062 fftw_complex *output,
Chris@0 1063 fftw_plan plan,
Chris@9 1064 size_t windowSize,
Chris@9 1065 size_t increment,
Chris@38 1066 const Window<double> &windower) const
Chris@0 1067 {
Chris@38 1068 //!!! we _do_ need a lock for these references to the model
Chris@38 1069 // though, don't we?
Chris@35 1070
Chris@0 1071 int startFrame = increment * column;
Chris@9 1072 int endFrame = startFrame + windowSize;
Chris@0 1073
Chris@9 1074 startFrame -= int(windowSize - increment) / 2;
Chris@9 1075 endFrame -= int(windowSize - increment) / 2;
Chris@0 1076 size_t pfx = 0;
Chris@0 1077
Chris@0 1078 if (startFrame < 0) {
Chris@0 1079 pfx = size_t(-startFrame);
Chris@0 1080 for (size_t i = 0; i < pfx; ++i) {
Chris@0 1081 input[i] = 0.0;
Chris@0 1082 }
Chris@0 1083 }
Chris@0 1084
Chris@0 1085 size_t got = m_model->getValues(m_channel, startFrame + pfx,
Chris@0 1086 endFrame, input + pfx);
Chris@9 1087 while (got + pfx < windowSize) {
Chris@0 1088 input[got + pfx] = 0.0;
Chris@0 1089 ++got;
Chris@0 1090 }
Chris@0 1091
Chris@37 1092 if (m_channel == -1) {
Chris@37 1093 int channels = m_model->getChannelCount();
Chris@37 1094 if (channels > 1) {
Chris@37 1095 for (size_t i = 0; i < windowSize; ++i) {
Chris@37 1096 input[i] /= channels;
Chris@37 1097 }
Chris@37 1098 }
Chris@37 1099 }
Chris@37 1100
Chris@0 1101 windower.cut(input);
Chris@0 1102
Chris@35 1103 for (size_t i = 0; i < windowSize/2; ++i) {
Chris@35 1104 double temp = input[i];
Chris@35 1105 input[i] = input[i + windowSize/2];
Chris@35 1106 input[i + windowSize/2] = temp;
Chris@35 1107 }
Chris@35 1108
Chris@0 1109 fftw_execute(plan);
Chris@0 1110
Chris@38 1111 double factor = 0.0;
Chris@0 1112
Chris@38 1113 // Calculate magnitude and phase from real and imaginary in
Chris@38 1114 // output[i][0] and output[i][1] respectively, and store the phase
Chris@38 1115 // straight into cache and the magnitude back into output[i][0]
Chris@38 1116 // (because we'll need to know the normalization factor,
Chris@38 1117 // i.e. maximum magnitude in this column, before we can store it)
Chris@37 1118
Chris@38 1119 for (size_t i = 0; i < windowSize/2; ++i) {
Chris@35 1120
Chris@36 1121 double mag = sqrt(output[i][0] * output[i][0] +
Chris@36 1122 output[i][1] * output[i][1]);
Chris@38 1123 mag /= windowSize / 2;
Chris@37 1124
Chris@38 1125 if (mag > factor) factor = mag;
Chris@37 1126
Chris@38 1127 double phase = atan2(output[i][1], output[i][0]);
Chris@75 1128 phase = princarg(phase);
Chris@37 1129
Chris@38 1130 output[i][0] = mag;
Chris@38 1131 m_cache->setPhaseAt(column, i, phase);
Chris@38 1132 }
Chris@35 1133
Chris@38 1134 m_cache->setNormalizationFactor(column, factor);
Chris@37 1135
Chris@38 1136 for (size_t i = 0; i < windowSize/2; ++i) {
Chris@38 1137 m_cache->setMagnitudeAt(column, i, output[i][0]);
Chris@38 1138 }
Chris@38 1139 }
Chris@35 1140
Chris@38 1141 unsigned char
Chris@38 1142 SpectrogramLayer::getDisplayValue(float input) const
Chris@38 1143 {
Chris@38 1144 int value;
Chris@37 1145
Chris@40 1146 switch (m_colourScale) {
Chris@40 1147
Chris@40 1148 default:
Chris@40 1149 case LinearColourScale:
Chris@40 1150 value = int
Chris@40 1151 (input * (m_normalizeColumns ? 1.0 : 50.0) * 255.0) + 1;
Chris@40 1152 break;
Chris@40 1153
Chris@40 1154 case MeterColourScale:
Chris@40 1155 value = AudioLevel::multiplier_to_preview
Chris@40 1156 (input * (m_normalizeColumns ? 1.0 : 50.0), 255) + 1;
Chris@40 1157 break;
Chris@40 1158
Chris@40 1159 case dBColourScale:
Chris@40 1160 input = 20.0 * log10(input);
Chris@40 1161 input = (input + 80.0) / 80.0;
Chris@40 1162 if (input < 0.0) input = 0.0;
Chris@40 1163 if (input > 1.0) input = 1.0;
Chris@40 1164 value = int(input * 255.0) + 1;
Chris@40 1165 break;
Chris@40 1166
Chris@40 1167 case PhaseColourScale:
Chris@40 1168 value = int((input * 127.0 / M_PI) + 128);
Chris@40 1169 break;
Chris@0 1170 }
Chris@38 1171
Chris@38 1172 if (value > UCHAR_MAX) value = UCHAR_MAX;
Chris@38 1173 if (value < 0) value = 0;
Chris@38 1174 return value;
Chris@0 1175 }
Chris@0 1176
Chris@40 1177 float
Chris@40 1178 SpectrogramLayer::getInputForDisplayValue(unsigned char uc) const
Chris@40 1179 {
Chris@40 1180 int value = uc;
Chris@40 1181 float input;
Chris@40 1182
Chris@40 1183 switch (m_colourScale) {
Chris@40 1184
Chris@40 1185 default:
Chris@40 1186 case LinearColourScale:
Chris@40 1187 input = float(value - 1) / 255.0 / (m_normalizeColumns ? 1 : 50);
Chris@40 1188 break;
Chris@40 1189
Chris@40 1190 case MeterColourScale:
Chris@40 1191 input = AudioLevel::preview_to_multiplier(value - 1, 255)
Chris@40 1192 / (m_normalizeColumns ? 1.0 : 50.0);
Chris@40 1193 break;
Chris@40 1194
Chris@40 1195 case dBColourScale:
Chris@40 1196 input = float(value - 1) / 255.0;
Chris@40 1197 input = (input * 80.0) - 80.0;
Chris@40 1198 input = powf(10.0, input) / 20.0;
Chris@40 1199 value = int(input);
Chris@40 1200 break;
Chris@40 1201
Chris@40 1202 case PhaseColourScale:
Chris@40 1203 input = float(value - 128) * M_PI / 127.0;
Chris@40 1204 break;
Chris@40 1205 }
Chris@40 1206
Chris@40 1207 return input;
Chris@40 1208 }
Chris@40 1209
Chris@38 1210
Chris@38 1211 SpectrogramLayer::Cache::Cache() :
Chris@38 1212 m_width(0),
Chris@38 1213 m_height(0),
Chris@38 1214 m_magnitude(0),
Chris@38 1215 m_phase(0),
Chris@38 1216 m_factor(0)
Chris@31 1217 {
Chris@31 1218 }
Chris@31 1219
Chris@31 1220 SpectrogramLayer::Cache::~Cache()
Chris@31 1221 {
Chris@71 1222 std::cerr << "SpectrogramLayer::Cache[" << this << "]::~Cache" << std::endl;
Chris@71 1223
Chris@44 1224 for (size_t i = 0; i < m_width; ++i) {
Chris@38 1225 if (m_magnitude && m_magnitude[i]) free(m_magnitude[i]);
Chris@38 1226 if (m_phase && m_phase[i]) free(m_phase[i]);
Chris@38 1227 }
Chris@38 1228
Chris@38 1229 if (m_magnitude) free(m_magnitude);
Chris@38 1230 if (m_phase) free(m_phase);
Chris@38 1231 if (m_factor) free(m_factor);
Chris@31 1232 }
Chris@31 1233
Chris@35 1234 void
Chris@35 1235 SpectrogramLayer::Cache::resize(size_t width, size_t height)
Chris@35 1236 {
Chris@55 1237 std::cerr << "SpectrogramLayer::Cache[" << this << "]::resize(" << width << "x" << height << " = " << width*height << ")" << std::endl;
Chris@38 1238
Chris@38 1239 if (m_width == width && m_height == height) return;
Chris@35 1240
Chris@38 1241 resize(m_magnitude, width, height);
Chris@38 1242 resize(m_phase, width, height);
Chris@31 1243
Chris@38 1244 m_factor = (float *)realloc(m_factor, width * sizeof(float));
Chris@31 1245
Chris@38 1246 m_width = width;
Chris@38 1247 m_height = height;
Chris@41 1248
Chris@41 1249 std::cerr << "done, width = " << m_width << " height = " << m_height << std::endl;
Chris@31 1250 }
Chris@31 1251
Chris@31 1252 void
Chris@38 1253 SpectrogramLayer::Cache::resize(uint16_t **&array, size_t width, size_t height)
Chris@31 1254 {
Chris@44 1255 for (size_t i = width; i < m_width; ++i) {
Chris@38 1256 free(array[i]);
Chris@38 1257 }
Chris@31 1258
Chris@44 1259 if (width != m_width) {
Chris@44 1260 array = (uint16_t **)realloc(array, width * sizeof(uint16_t *));
Chris@38 1261 if (!array) throw std::bad_alloc();
Chris@44 1262 MUNLOCK(array, width * sizeof(uint16_t *));
Chris@38 1263 }
Chris@38 1264
Chris@44 1265 for (size_t i = m_width; i < width; ++i) {
Chris@38 1266 array[i] = 0;
Chris@38 1267 }
Chris@38 1268
Chris@44 1269 for (size_t i = 0; i < width; ++i) {
Chris@44 1270 array[i] = (uint16_t *)realloc(array[i], height * sizeof(uint16_t));
Chris@38 1271 if (!array[i]) throw std::bad_alloc();
Chris@44 1272 MUNLOCK(array[i], height * sizeof(uint16_t));
Chris@38 1273 }
Chris@31 1274 }
Chris@31 1275
Chris@31 1276 void
Chris@38 1277 SpectrogramLayer::Cache::reset()
Chris@31 1278 {
Chris@38 1279 for (size_t x = 0; x < m_width; ++x) {
Chris@38 1280 for (size_t y = 0; y < m_height; ++y) {
Chris@44 1281 m_magnitude[x][y] = 0;
Chris@44 1282 m_phase[x][y] = 0;
Chris@38 1283 }
Chris@40 1284 m_factor[x] = 1.0;
Chris@31 1285 }
Chris@38 1286 }
Chris@31 1287
Chris@0 1288 void
Chris@0 1289 SpectrogramLayer::CacheFillThread::run()
Chris@0 1290 {
Chris@0 1291 // std::cerr << "SpectrogramLayer::CacheFillThread::run" << std::endl;
Chris@0 1292
Chris@0 1293 m_layer.m_mutex.lock();
Chris@0 1294
Chris@0 1295 while (!m_layer.m_exiting) {
Chris@0 1296
Chris@0 1297 bool interrupted = false;
Chris@0 1298
Chris@0 1299 // std::cerr << "SpectrogramLayer::CacheFillThread::run in loop" << std::endl;
Chris@0 1300
Chris@48 1301 bool haveUndormantViews = false;
Chris@48 1302
Chris@48 1303 for (std::map<const void *, bool>::iterator i =
Chris@48 1304 m_layer.m_dormancy.begin();
Chris@48 1305 i != m_layer.m_dormancy.end(); ++i) {
Chris@48 1306
Chris@48 1307 if (!i->second) {
Chris@48 1308 haveUndormantViews = true;
Chris@48 1309 break;
Chris@48 1310 }
Chris@48 1311 }
Chris@48 1312
Chris@48 1313 if (!haveUndormantViews) {
Chris@48 1314
Chris@48 1315 if (m_layer.m_cacheInvalid && m_layer.m_cache) {
Chris@48 1316 std::cerr << "All views dormant, freeing spectrogram cache"
Chris@48 1317 << std::endl;
Chris@47 1318
Chris@34 1319 delete m_layer.m_cache;
Chris@34 1320 m_layer.m_cache = 0;
Chris@34 1321 }
Chris@34 1322
Chris@34 1323 } else if (m_layer.m_model && m_layer.m_cacheInvalid) {
Chris@0 1324
Chris@0 1325 // std::cerr << "SpectrogramLayer::CacheFillThread::run: something to do" << std::endl;
Chris@0 1326
Chris@0 1327 while (!m_layer.m_model->isReady()) {
Chris@0 1328 m_layer.m_condition.wait(&m_layer.m_mutex, 100);
Chris@48 1329 if (m_layer.m_exiting) break;
Chris@0 1330 }
Chris@0 1331
Chris@48 1332 if (m_layer.m_exiting) break;
Chris@48 1333
Chris@0 1334 m_layer.m_cacheInvalid = false;
Chris@0 1335 m_fillExtent = 0;
Chris@0 1336 m_fillCompletion = 0;
Chris@0 1337
Chris@0 1338 std::cerr << "SpectrogramLayer::CacheFillThread::run: model is ready" << std::endl;
Chris@0 1339
Chris@0 1340 size_t start = m_layer.m_model->getStartFrame();
Chris@0 1341 size_t end = m_layer.m_model->getEndFrame();
Chris@9 1342
Chris@41 1343 std::cerr << "start = " << start << ", end = " << end << std::endl;
Chris@41 1344
Chris@9 1345 WindowType windowType = m_layer.m_windowType;
Chris@0 1346 size_t windowSize = m_layer.m_windowSize;
Chris@0 1347 size_t windowIncrement = m_layer.getWindowIncrement();
Chris@0 1348
Chris@44 1349 size_t visibleStart = m_layer.m_candidateFillStartFrame;
Chris@44 1350 visibleStart = (visibleStart / windowIncrement) * windowIncrement;
Chris@0 1351
Chris@9 1352 size_t width = (end - start) / windowIncrement + 1;
Chris@9 1353 size_t height = windowSize / 2;
Chris@35 1354
Chris@35 1355 if (!m_layer.m_cache) {
Chris@38 1356 m_layer.m_cache = new Cache;
Chris@35 1357 }
Chris@9 1358
Chris@38 1359 m_layer.m_cache->resize(width, height);
Chris@0 1360 m_layer.setCacheColourmap();
Chris@43 1361 //!!! m_layer.m_cache->reset();
Chris@35 1362
Chris@33 1363 // We don't need a lock when writing to or reading from
Chris@38 1364 // the pixels in the cache. We do need to ensure we have
Chris@38 1365 // the width and height of the cache and the FFT
Chris@38 1366 // parameters known before we unlock, in case they change
Chris@38 1367 // in the model while we aren't holding a lock. It's safe
Chris@38 1368 // for us to continue to use the "old" values if that
Chris@38 1369 // happens, because they will continue to match the
Chris@38 1370 // dimensions of the actual cache (which we manage, not
Chris@38 1371 // the model).
Chris@0 1372 m_layer.m_mutex.unlock();
Chris@0 1373
Chris@0 1374 double *input = (double *)
Chris@0 1375 fftw_malloc(windowSize * sizeof(double));
Chris@0 1376
Chris@0 1377 fftw_complex *output = (fftw_complex *)
Chris@0 1378 fftw_malloc(windowSize * sizeof(fftw_complex));
Chris@0 1379
Chris@0 1380 fftw_plan plan = fftw_plan_dft_r2c_1d(windowSize, input,
Chris@1 1381 output, FFTW_ESTIMATE);
Chris@0 1382
Chris@9 1383 Window<double> windower(windowType, windowSize);
Chris@0 1384
Chris@0 1385 if (!plan) {
Chris@1 1386 std::cerr << "WARNING: fftw_plan_dft_r2c_1d(" << windowSize << ") failed!" << std::endl;
Chris@0 1387 fftw_free(input);
Chris@0 1388 fftw_free(output);
Chris@37 1389 m_layer.m_mutex.lock();
Chris@0 1390 continue;
Chris@0 1391 }
Chris@0 1392
Chris@0 1393 int counter = 0;
Chris@0 1394 int updateAt = (end / windowIncrement) / 20;
Chris@0 1395 if (updateAt < 100) updateAt = 100;
Chris@0 1396
Chris@44 1397 bool doVisibleFirst = (visibleStart != start);
Chris@0 1398
Chris@0 1399 if (doVisibleFirst) {
Chris@0 1400
Chris@44 1401 for (size_t f = visibleStart; f < end; f += windowIncrement) {
Chris@0 1402
Chris@38 1403 m_layer.fillCacheColumn(int((f - start) / windowIncrement),
Chris@38 1404 input, output, plan,
Chris@38 1405 windowSize, windowIncrement,
Chris@38 1406 windower);
Chris@38 1407
Chris@38 1408 if (m_layer.m_cacheInvalid || m_layer.m_exiting) {
Chris@0 1409 interrupted = true;
Chris@0 1410 m_fillExtent = 0;
Chris@0 1411 break;
Chris@0 1412 }
Chris@0 1413
Chris@38 1414 if (++counter == updateAt) {
Chris@37 1415 m_fillExtent = f;
Chris@0 1416 m_fillCompletion = size_t(100 * fabsf(float(f - visibleStart) /
Chris@0 1417 float(end - start)));
Chris@0 1418 counter = 0;
Chris@0 1419 }
Chris@0 1420 }
Chris@0 1421 }
Chris@0 1422
Chris@0 1423 if (!interrupted) {
Chris@0 1424
Chris@0 1425 size_t remainingEnd = end;
Chris@0 1426 if (doVisibleFirst) {
Chris@0 1427 remainingEnd = visibleStart;
Chris@0 1428 if (remainingEnd > start) --remainingEnd;
Chris@0 1429 else remainingEnd = start;
Chris@0 1430 }
Chris@0 1431 size_t baseCompletion = m_fillCompletion;
Chris@0 1432
Chris@0 1433 for (size_t f = start; f < remainingEnd; f += windowIncrement) {
Chris@0 1434
Chris@38 1435 m_layer.fillCacheColumn(int((f - start) / windowIncrement),
Chris@38 1436 input, output, plan,
Chris@38 1437 windowSize, windowIncrement,
Chris@38 1438 windower);
Chris@38 1439
Chris@38 1440 if (m_layer.m_cacheInvalid || m_layer.m_exiting) {
Chris@0 1441 interrupted = true;
Chris@0 1442 m_fillExtent = 0;
Chris@0 1443 break;
Chris@0 1444 }
Chris@0 1445
Chris@44 1446 if (++counter == updateAt) {
Chris@0 1447 m_fillExtent = f;
Chris@0 1448 m_fillCompletion = baseCompletion +
Chris@0 1449 size_t(100 * fabsf(float(f - start) /
Chris@0 1450 float(end - start)));
Chris@0 1451 counter = 0;
Chris@0 1452 }
Chris@0 1453 }
Chris@0 1454 }
Chris@0 1455
Chris@0 1456 fftw_destroy_plan(plan);
Chris@0 1457 fftw_free(output);
Chris@0 1458 fftw_free(input);
Chris@0 1459
Chris@0 1460 if (!interrupted) {
Chris@0 1461 m_fillExtent = end;
Chris@0 1462 m_fillCompletion = 100;
Chris@0 1463 }
Chris@0 1464
Chris@0 1465 m_layer.m_mutex.lock();
Chris@0 1466 }
Chris@0 1467
Chris@0 1468 if (!interrupted) m_layer.m_condition.wait(&m_layer.m_mutex, 2000);
Chris@0 1469 }
Chris@0 1470 }
Chris@0 1471
Chris@40 1472 float
Chris@40 1473 SpectrogramLayer::getEffectiveMinFrequency() const
Chris@40 1474 {
Chris@40 1475 int sr = m_model->getSampleRate();
Chris@40 1476 float minf = float(sr) / m_windowSize;
Chris@40 1477
Chris@40 1478 if (m_minFrequency > 0.0) {
Chris@40 1479 size_t minbin = size_t((double(m_minFrequency) * m_windowSize) / sr + 0.01);
Chris@40 1480 if (minbin < 1) minbin = 1;
Chris@40 1481 minf = minbin * sr / m_windowSize;
Chris@40 1482 }
Chris@40 1483
Chris@40 1484 return minf;
Chris@40 1485 }
Chris@40 1486
Chris@40 1487 float
Chris@40 1488 SpectrogramLayer::getEffectiveMaxFrequency() const
Chris@40 1489 {
Chris@40 1490 int sr = m_model->getSampleRate();
Chris@40 1491 float maxf = float(sr) / 2;
Chris@40 1492
Chris@40 1493 if (m_maxFrequency > 0.0) {
Chris@40 1494 size_t maxbin = size_t((double(m_maxFrequency) * m_windowSize) / sr + 0.1);
Chris@40 1495 if (maxbin > m_windowSize / 2) maxbin = m_windowSize / 2;
Chris@40 1496 maxf = maxbin * sr / m_windowSize;
Chris@40 1497 }
Chris@40 1498
Chris@40 1499 return maxf;
Chris@40 1500 }
Chris@40 1501
Chris@0 1502 bool
Chris@44 1503 SpectrogramLayer::getYBinRange(View *v, int y, float &q0, float &q1) const
Chris@0 1504 {
Chris@44 1505 int h = v->height();
Chris@0 1506 if (y < 0 || y >= h) return false;
Chris@0 1507
Chris@38 1508 int sr = m_model->getSampleRate();
Chris@40 1509 float minf = getEffectiveMinFrequency();
Chris@40 1510 float maxf = getEffectiveMaxFrequency();
Chris@0 1511
Chris@38 1512 bool logarithmic = (m_frequencyScale == LogFrequencyScale);
Chris@38 1513
Chris@44 1514 q0 = v->getFrequencyForY(y, minf, maxf, logarithmic);
Chris@44 1515 q1 = v->getFrequencyForY(y - 1, minf, maxf, logarithmic);
Chris@38 1516
Chris@38 1517 // Now map these on to actual bins
Chris@38 1518
Chris@40 1519 int b0 = int((q0 * m_windowSize) / sr);
Chris@40 1520 int b1 = int((q1 * m_windowSize) / sr);
Chris@0 1521
Chris@40 1522 //!!! this is supposed to return fractions-of-bins, as it were, hence the floats
Chris@38 1523 q0 = b0;
Chris@38 1524 q1 = b1;
Chris@38 1525
Chris@38 1526 // q0 = (b0 * sr) / m_windowSize;
Chris@38 1527 // q1 = (b1 * sr) / m_windowSize;
Chris@0 1528
Chris@0 1529 return true;
Chris@0 1530 }
Chris@38 1531
Chris@0 1532 bool
Chris@44 1533 SpectrogramLayer::getXBinRange(View *v, int x, float &s0, float &s1) const
Chris@0 1534 {
Chris@21 1535 size_t modelStart = m_model->getStartFrame();
Chris@21 1536 size_t modelEnd = m_model->getEndFrame();
Chris@0 1537
Chris@0 1538 // Each pixel column covers an exact range of sample frames:
Chris@44 1539 int f0 = v->getFrameForX(x) - modelStart;
Chris@44 1540 int f1 = v->getFrameForX(x + 1) - modelStart - 1;
Chris@20 1541
Chris@41 1542 if (f1 < int(modelStart) || f0 > int(modelEnd)) {
Chris@41 1543 return false;
Chris@41 1544 }
Chris@20 1545
Chris@0 1546 // And that range may be drawn from a possibly non-integral
Chris@0 1547 // range of spectrogram windows:
Chris@0 1548
Chris@0 1549 size_t windowIncrement = getWindowIncrement();
Chris@0 1550 s0 = float(f0) / windowIncrement;
Chris@0 1551 s1 = float(f1) / windowIncrement;
Chris@0 1552
Chris@0 1553 return true;
Chris@0 1554 }
Chris@0 1555
Chris@0 1556 bool
Chris@44 1557 SpectrogramLayer::getXBinSourceRange(View *v, int x, RealTime &min, RealTime &max) const
Chris@0 1558 {
Chris@0 1559 float s0 = 0, s1 = 0;
Chris@44 1560 if (!getXBinRange(v, x, s0, s1)) return false;
Chris@0 1561
Chris@0 1562 int s0i = int(s0 + 0.001);
Chris@0 1563 int s1i = int(s1);
Chris@0 1564
Chris@0 1565 int windowIncrement = getWindowIncrement();
Chris@0 1566 int w0 = s0i * windowIncrement - (m_windowSize - windowIncrement)/2;
Chris@0 1567 int w1 = s1i * windowIncrement + windowIncrement +
Chris@0 1568 (m_windowSize - windowIncrement)/2 - 1;
Chris@0 1569
Chris@0 1570 min = RealTime::frame2RealTime(w0, m_model->getSampleRate());
Chris@0 1571 max = RealTime::frame2RealTime(w1, m_model->getSampleRate());
Chris@0 1572 return true;
Chris@0 1573 }
Chris@0 1574
Chris@0 1575 bool
Chris@44 1576 SpectrogramLayer::getYBinSourceRange(View *v, int y, float &freqMin, float &freqMax)
Chris@0 1577 const
Chris@0 1578 {
Chris@0 1579 float q0 = 0, q1 = 0;
Chris@44 1580 if (!getYBinRange(v, y, q0, q1)) return false;
Chris@0 1581
Chris@0 1582 int q0i = int(q0 + 0.001);
Chris@0 1583 int q1i = int(q1);
Chris@0 1584
Chris@0 1585 int sr = m_model->getSampleRate();
Chris@0 1586
Chris@0 1587 for (int q = q0i; q <= q1i; ++q) {
Chris@35 1588 int binfreq = (sr * q) / m_windowSize;
Chris@0 1589 if (q == q0i) freqMin = binfreq;
Chris@0 1590 if (q == q1i) freqMax = binfreq;
Chris@0 1591 }
Chris@0 1592 return true;
Chris@0 1593 }
Chris@35 1594
Chris@35 1595 bool
Chris@44 1596 SpectrogramLayer::getAdjustedYBinSourceRange(View *v, int x, int y,
Chris@35 1597 float &freqMin, float &freqMax,
Chris@35 1598 float &adjFreqMin, float &adjFreqMax)
Chris@35 1599 const
Chris@35 1600 {
Chris@35 1601 float s0 = 0, s1 = 0;
Chris@44 1602 if (!getXBinRange(v, x, s0, s1)) return false;
Chris@35 1603
Chris@35 1604 float q0 = 0, q1 = 0;
Chris@44 1605 if (!getYBinRange(v, y, q0, q1)) return false;
Chris@35 1606
Chris@35 1607 int s0i = int(s0 + 0.001);
Chris@35 1608 int s1i = int(s1);
Chris@35 1609
Chris@35 1610 int q0i = int(q0 + 0.001);
Chris@35 1611 int q1i = int(q1);
Chris@35 1612
Chris@35 1613 int sr = m_model->getSampleRate();
Chris@35 1614
Chris@38 1615 size_t windowSize = m_windowSize;
Chris@38 1616 size_t windowIncrement = getWindowIncrement();
Chris@38 1617
Chris@35 1618 bool haveAdj = false;
Chris@35 1619
Chris@37 1620 bool peaksOnly = (m_binDisplay == PeakBins ||
Chris@37 1621 m_binDisplay == PeakFrequencies);
Chris@37 1622
Chris@35 1623 for (int q = q0i; q <= q1i; ++q) {
Chris@35 1624
Chris@35 1625 for (int s = s0i; s <= s1i; ++s) {
Chris@35 1626
Chris@35 1627 float binfreq = (sr * q) / m_windowSize;
Chris@35 1628 if (q == q0i) freqMin = binfreq;
Chris@35 1629 if (q == q1i) freqMax = binfreq;
Chris@37 1630
Chris@38 1631 if (!m_cache || m_cacheInvalid) break; //!!! lock?
Chris@38 1632
Chris@38 1633 if (peaksOnly && !m_cache->isLocalPeak(s, q)) continue;
Chris@38 1634
Chris@38 1635 if (!m_cache->isOverThreshold(s, q, m_threshold)) continue;
Chris@38 1636
Chris@38 1637 float freq = binfreq;
Chris@38 1638 bool steady = false;
Chris@40 1639
Chris@40 1640 if (s < int(m_cache->getWidth()) - 1) {
Chris@38 1641
Chris@38 1642 freq = calculateFrequency(q,
Chris@38 1643 windowSize,
Chris@38 1644 windowIncrement,
Chris@38 1645 sr,
Chris@38 1646 m_cache->getPhaseAt(s, q),
Chris@38 1647 m_cache->getPhaseAt(s+1, q),
Chris@38 1648 steady);
Chris@35 1649
Chris@38 1650 if (!haveAdj || freq < adjFreqMin) adjFreqMin = freq;
Chris@38 1651 if (!haveAdj || freq > adjFreqMax) adjFreqMax = freq;
Chris@35 1652
Chris@35 1653 haveAdj = true;
Chris@35 1654 }
Chris@35 1655 }
Chris@35 1656 }
Chris@35 1657
Chris@35 1658 if (!haveAdj) {
Chris@40 1659 adjFreqMin = adjFreqMax = 0.0;
Chris@35 1660 }
Chris@35 1661
Chris@35 1662 return haveAdj;
Chris@35 1663 }
Chris@0 1664
Chris@0 1665 bool
Chris@44 1666 SpectrogramLayer::getXYBinSourceRange(View *v, int x, int y,
Chris@38 1667 float &min, float &max,
Chris@38 1668 float &phaseMin, float &phaseMax) const
Chris@0 1669 {
Chris@0 1670 float q0 = 0, q1 = 0;
Chris@44 1671 if (!getYBinRange(v, y, q0, q1)) return false;
Chris@0 1672
Chris@0 1673 float s0 = 0, s1 = 0;
Chris@44 1674 if (!getXBinRange(v, x, s0, s1)) return false;
Chris@0 1675
Chris@0 1676 int q0i = int(q0 + 0.001);
Chris@0 1677 int q1i = int(q1);
Chris@0 1678
Chris@0 1679 int s0i = int(s0 + 0.001);
Chris@0 1680 int s1i = int(s1);
Chris@0 1681
Chris@37 1682 bool rv = false;
Chris@37 1683
Chris@0 1684 if (m_mutex.tryLock()) {
Chris@0 1685 if (m_cache && !m_cacheInvalid) {
Chris@0 1686
Chris@31 1687 int cw = m_cache->getWidth();
Chris@31 1688 int ch = m_cache->getHeight();
Chris@0 1689
Chris@38 1690 min = 0.0;
Chris@38 1691 max = 0.0;
Chris@38 1692 phaseMin = 0.0;
Chris@38 1693 phaseMax = 0.0;
Chris@38 1694 bool have = false;
Chris@0 1695
Chris@0 1696 for (int q = q0i; q <= q1i; ++q) {
Chris@0 1697 for (int s = s0i; s <= s1i; ++s) {
Chris@0 1698 if (s >= 0 && q >= 0 && s < cw && q < ch) {
Chris@38 1699
Chris@38 1700 float value;
Chris@38 1701
Chris@38 1702 value = m_cache->getPhaseAt(s, q);
Chris@38 1703 if (!have || value < phaseMin) { phaseMin = value; }
Chris@38 1704 if (!have || value > phaseMax) { phaseMax = value; }
Chris@38 1705
Chris@38 1706 value = m_cache->getMagnitudeAt(s, q);
Chris@38 1707 if (!have || value < min) { min = value; }
Chris@38 1708 if (!have || value > max) { max = value; }
Chris@38 1709
Chris@38 1710 have = true;
Chris@0 1711 }
Chris@0 1712 }
Chris@0 1713 }
Chris@0 1714
Chris@38 1715 if (have) {
Chris@37 1716 rv = true;
Chris@37 1717 }
Chris@0 1718 }
Chris@0 1719
Chris@0 1720 m_mutex.unlock();
Chris@0 1721 }
Chris@0 1722
Chris@37 1723 return rv;
Chris@0 1724 }
Chris@0 1725
Chris@0 1726 void
Chris@44 1727 SpectrogramLayer::paint(View *v, QPainter &paint, QRect rect) const
Chris@0 1728 {
Chris@55 1729 if (m_colourScheme == BlackOnWhite) {
Chris@55 1730 v->setLightBackground(true);
Chris@55 1731 } else {
Chris@55 1732 v->setLightBackground(false);
Chris@55 1733 }
Chris@55 1734
Chris@0 1735 // Profiler profiler("SpectrogramLayer::paint", true);
Chris@0 1736 #ifdef DEBUG_SPECTROGRAM_REPAINT
Chris@44 1737 std::cerr << "SpectrogramLayer::paint(): m_model is " << m_model << ", zoom level is " << v->getZoomLevel() << ", m_updateTimer " << m_updateTimer << ", pixmap cache invalid " << m_pixmapCacheInvalid << std::endl;
Chris@0 1738 #endif
Chris@45 1739
Chris@45 1740 long sf = v->getStartFrame();
Chris@45 1741 if (sf < 0) m_candidateFillStartFrame = 0;
Chris@45 1742 else m_candidateFillStartFrame = sf;
Chris@44 1743
Chris@0 1744 if (!m_model || !m_model->isOK() || !m_model->isReady()) {
Chris@0 1745 return;
Chris@0 1746 }
Chris@0 1747
Chris@47 1748 if (isLayerDormant(v)) {
Chris@48 1749 std::cerr << "SpectrogramLayer::paint(): Layer is dormant, making it undormant again" << std::endl;
Chris@29 1750 }
Chris@29 1751
Chris@48 1752 // Need to do this even if !isLayerDormant, as that could mean v
Chris@48 1753 // is not in the dormancy map at all -- we need it to be present
Chris@48 1754 // and accountable for when determining whether we need the cache
Chris@48 1755 // in the cache-fill thread above.
Chris@48 1756 m_dormancy[v] = false;
Chris@48 1757
Chris@0 1758 #ifdef DEBUG_SPECTROGRAM_REPAINT
Chris@0 1759 std::cerr << "SpectrogramLayer::paint(): About to lock" << std::endl;
Chris@0 1760 #endif
Chris@0 1761
Chris@37 1762 m_mutex.lock();
Chris@0 1763
Chris@0 1764 #ifdef DEBUG_SPECTROGRAM_REPAINT
Chris@0 1765 std::cerr << "SpectrogramLayer::paint(): locked" << std::endl;
Chris@0 1766 #endif
Chris@0 1767
Chris@0 1768 if (m_cacheInvalid) { // lock the mutex before checking this
Chris@0 1769 m_mutex.unlock();
Chris@0 1770 #ifdef DEBUG_SPECTROGRAM_REPAINT
Chris@0 1771 std::cerr << "SpectrogramLayer::paint(): Cache invalid, returning" << std::endl;
Chris@0 1772 #endif
Chris@0 1773 return;
Chris@0 1774 }
Chris@0 1775
Chris@0 1776 bool stillCacheing = (m_updateTimer != 0);
Chris@0 1777
Chris@0 1778 #ifdef DEBUG_SPECTROGRAM_REPAINT
Chris@0 1779 std::cerr << "SpectrogramLayer::paint(): Still cacheing = " << stillCacheing << std::endl;
Chris@0 1780 #endif
Chris@0 1781
Chris@44 1782 long startFrame = v->getStartFrame();
Chris@44 1783 int zoomLevel = v->getZoomLevel();
Chris@0 1784
Chris@0 1785 int x0 = 0;
Chris@44 1786 int x1 = v->width();
Chris@0 1787 int y0 = 0;
Chris@44 1788 int y1 = v->height();
Chris@0 1789
Chris@0 1790 bool recreateWholePixmapCache = true;
Chris@0 1791
Chris@0 1792 if (!m_pixmapCacheInvalid) {
Chris@0 1793
Chris@0 1794 //!!! This cache may have been obsoleted entirely by the
Chris@0 1795 //scrolling cache in View. Perhaps experiment with
Chris@0 1796 //removing it and see if it makes things even quicker (or else
Chris@0 1797 //make it optional)
Chris@0 1798
Chris@0 1799 if (int(m_pixmapCacheZoomLevel) == zoomLevel &&
Chris@44 1800 m_pixmapCache->width() == v->width() &&
Chris@44 1801 m_pixmapCache->height() == v->height()) {
Chris@44 1802
Chris@44 1803 if (v->getXForFrame(m_pixmapCacheStartFrame) ==
Chris@44 1804 v->getXForFrame(startFrame)) {
Chris@0 1805
Chris@0 1806 #ifdef DEBUG_SPECTROGRAM_REPAINT
Chris@0 1807 std::cerr << "SpectrogramLayer: pixmap cache good" << std::endl;
Chris@0 1808 #endif
Chris@0 1809
Chris@0 1810 m_mutex.unlock();
Chris@0 1811 paint.drawPixmap(rect, *m_pixmapCache, rect);
Chris@0 1812 return;
Chris@0 1813
Chris@0 1814 } else {
Chris@0 1815
Chris@0 1816 #ifdef DEBUG_SPECTROGRAM_REPAINT
Chris@0 1817 std::cerr << "SpectrogramLayer: pixmap cache partially OK" << std::endl;
Chris@0 1818 #endif
Chris@0 1819
Chris@0 1820 recreateWholePixmapCache = false;
Chris@0 1821
Chris@44 1822 int dx = v->getXForFrame(m_pixmapCacheStartFrame) -
Chris@44 1823 v->getXForFrame(startFrame);
Chris@0 1824
Chris@0 1825 #ifdef DEBUG_SPECTROGRAM_REPAINT
Chris@0 1826 std::cerr << "SpectrogramLayer: dx = " << dx << " (pixmap cache " << m_pixmapCache->width() << "x" << m_pixmapCache->height() << ")" << std::endl;
Chris@0 1827 #endif
Chris@0 1828
Chris@0 1829 if (dx > -m_pixmapCache->width() && dx < m_pixmapCache->width()) {
Chris@0 1830
Chris@0 1831 #if defined(Q_WS_WIN32) || defined(Q_WS_MAC)
Chris@0 1832 // Copying a pixmap to itself doesn't work
Chris@0 1833 // properly on Windows or Mac (it only works when
Chris@0 1834 // moving in one direction).
Chris@0 1835
Chris@0 1836 //!!! Need a utility function for this
Chris@0 1837
Chris@0 1838 static QPixmap *tmpPixmap = 0;
Chris@0 1839 if (!tmpPixmap ||
Chris@0 1840 tmpPixmap->width() != m_pixmapCache->width() ||
Chris@0 1841 tmpPixmap->height() != m_pixmapCache->height()) {
Chris@0 1842 delete tmpPixmap;
Chris@0 1843 tmpPixmap = new QPixmap(m_pixmapCache->width(),
Chris@0 1844 m_pixmapCache->height());
Chris@0 1845 }
Chris@0 1846 QPainter cachePainter;
Chris@0 1847 cachePainter.begin(tmpPixmap);
Chris@0 1848 cachePainter.drawPixmap(0, 0, *m_pixmapCache);
Chris@0 1849 cachePainter.end();
Chris@0 1850 cachePainter.begin(m_pixmapCache);
Chris@0 1851 cachePainter.drawPixmap(dx, 0, *tmpPixmap);
Chris@0 1852 cachePainter.end();
Chris@0 1853 #else
Chris@0 1854 QPainter cachePainter(m_pixmapCache);
Chris@0 1855 cachePainter.drawPixmap(dx, 0, *m_pixmapCache);
Chris@0 1856 cachePainter.end();
Chris@0 1857 #endif
Chris@0 1858
Chris@0 1859 paint.drawPixmap(rect, *m_pixmapCache, rect);
Chris@0 1860
Chris@0 1861 if (dx < 0) {
Chris@0 1862 x0 = m_pixmapCache->width() + dx;
Chris@0 1863 x1 = m_pixmapCache->width();
Chris@0 1864 } else {
Chris@0 1865 x0 = 0;
Chris@0 1866 x1 = dx;
Chris@0 1867 }
Chris@0 1868 }
Chris@0 1869 }
Chris@0 1870 } else {
Chris@0 1871 #ifdef DEBUG_SPECTROGRAM_REPAINT
Chris@0 1872 std::cerr << "SpectrogramLayer: pixmap cache useless" << std::endl;
Chris@0 1873 #endif
Chris@0 1874 }
Chris@0 1875 }
Chris@0 1876
Chris@0 1877 if (stillCacheing) {
Chris@0 1878 x0 = rect.left();
Chris@0 1879 x1 = rect.right() + 1;
Chris@0 1880 y0 = rect.top();
Chris@0 1881 y1 = rect.bottom() + 1;
Chris@0 1882 }
Chris@0 1883
Chris@0 1884 int w = x1 - x0;
Chris@0 1885 int h = y1 - y0;
Chris@0 1886
Chris@0 1887 // std::cerr << "x0 " << x0 << ", x1 " << x1 << ", w " << w << ", h " << h << std::endl;
Chris@0 1888
Chris@0 1889 QImage scaled(w, h, QImage::Format_RGB32);
Chris@41 1890 scaled.fill(m_cache->getColour(0).rgb());
Chris@35 1891
Chris@35 1892 float ymag[h];
Chris@35 1893 float ydiv[h];
Chris@37 1894
Chris@37 1895 int sr = m_model->getSampleRate();
Chris@35 1896
Chris@35 1897 size_t bins = m_windowSize / 2;
Chris@35 1898 if (m_maxFrequency > 0) {
Chris@35 1899 bins = int((double(m_maxFrequency) * m_windowSize) / sr + 0.1);
Chris@35 1900 if (bins > m_windowSize / 2) bins = m_windowSize / 2;
Chris@35 1901 }
Chris@35 1902
Chris@40 1903 size_t minbin = 1;
Chris@37 1904 if (m_minFrequency > 0) {
Chris@37 1905 minbin = int((double(m_minFrequency) * m_windowSize) / sr + 0.1);
Chris@40 1906 if (minbin < 1) minbin = 1;
Chris@37 1907 if (minbin >= bins) minbin = bins - 1;
Chris@37 1908 }
Chris@37 1909
Chris@37 1910 float minFreq = (float(minbin) * sr) / m_windowSize;
Chris@35 1911 float maxFreq = (float(bins) * sr) / m_windowSize;
Chris@0 1912
Chris@38 1913 size_t increment = getWindowIncrement();
Chris@40 1914
Chris@40 1915 bool logarithmic = (m_frequencyScale == LogFrequencyScale);
Chris@38 1916
Chris@0 1917 m_mutex.unlock();
Chris@0 1918
Chris@35 1919 for (int x = 0; x < w; ++x) {
Chris@35 1920
Chris@35 1921 m_mutex.lock();
Chris@35 1922 if (m_cacheInvalid) {
Chris@35 1923 m_mutex.unlock();
Chris@35 1924 break;
Chris@35 1925 }
Chris@35 1926
Chris@35 1927 for (int y = 0; y < h; ++y) {
Chris@40 1928 ymag[y] = 0.0;
Chris@40 1929 ydiv[y] = 0.0;
Chris@35 1930 }
Chris@35 1931
Chris@35 1932 float s0 = 0, s1 = 0;
Chris@35 1933
Chris@44 1934 if (!getXBinRange(v, x0 + x, s0, s1)) {
Chris@35 1935 assert(x <= scaled.width());
Chris@35 1936 m_mutex.unlock();
Chris@35 1937 continue;
Chris@35 1938 }
Chris@35 1939
Chris@35 1940 int s0i = int(s0 + 0.001);
Chris@35 1941 int s1i = int(s1);
Chris@35 1942
Chris@45 1943 if (s1i >= m_cache->getWidth()) {
Chris@45 1944 if (s0i >= m_cache->getWidth()) {
Chris@45 1945 m_mutex.unlock();
Chris@45 1946 continue;
Chris@45 1947 } else {
Chris@45 1948 s1i = s0i;
Chris@45 1949 }
Chris@45 1950 }
Chris@45 1951
Chris@38 1952 for (size_t q = minbin; q < bins; ++q) {
Chris@35 1953
Chris@40 1954 float f0 = (float(q) * sr) / m_windowSize;
Chris@40 1955 float f1 = (float(q + 1) * sr) / m_windowSize;
Chris@40 1956
Chris@40 1957 float y0 = 0, y1 = 0;
Chris@40 1958
Chris@45 1959 if (m_binDisplay != PeakFrequencies) {
Chris@44 1960 y0 = v->getYForFrequency(f1, minFreq, maxFreq, logarithmic);
Chris@44 1961 y1 = v->getYForFrequency(f0, minFreq, maxFreq, logarithmic);
Chris@40 1962 }
Chris@40 1963
Chris@35 1964 for (int s = s0i; s <= s1i; ++s) {
Chris@35 1965
Chris@40 1966 if (m_binDisplay == PeakBins ||
Chris@40 1967 m_binDisplay == PeakFrequencies) {
Chris@40 1968 if (!m_cache->isLocalPeak(s, q)) continue;
Chris@40 1969 }
Chris@40 1970
Chris@40 1971 if (!m_cache->isOverThreshold(s, q, m_threshold)) continue;
Chris@40 1972
Chris@35 1973 float sprop = 1.0;
Chris@35 1974 if (s == s0i) sprop *= (s + 1) - s0;
Chris@35 1975 if (s == s1i) sprop *= s1 - s;
Chris@35 1976
Chris@38 1977 if (m_binDisplay == PeakFrequencies &&
Chris@40 1978 s < int(m_cache->getWidth()) - 1) {
Chris@35 1979
Chris@38 1980 bool steady = false;
Chris@38 1981 f0 = f1 = calculateFrequency(q,
Chris@38 1982 m_windowSize,
Chris@38 1983 increment,
Chris@38 1984 sr,
Chris@38 1985 m_cache->getPhaseAt(s, q),
Chris@38 1986 m_cache->getPhaseAt(s+1, q),
Chris@38 1987 steady);
Chris@40 1988
Chris@44 1989 y0 = y1 = v->getYForFrequency
Chris@40 1990 (f0, minFreq, maxFreq, logarithmic);
Chris@35 1991 }
Chris@38 1992
Chris@35 1993 int y0i = int(y0 + 0.001);
Chris@35 1994 int y1i = int(y1);
Chris@35 1995
Chris@35 1996 for (int y = y0i; y <= y1i; ++y) {
Chris@35 1997
Chris@35 1998 if (y < 0 || y >= h) continue;
Chris@35 1999
Chris@35 2000 float yprop = sprop;
Chris@35 2001 if (y == y0i) yprop *= (y + 1) - y0;
Chris@35 2002 if (y == y1i) yprop *= y1 - y;
Chris@37 2003
Chris@38 2004 float value;
Chris@38 2005
Chris@38 2006 if (m_colourScale == PhaseColourScale) {
Chris@38 2007 value = m_cache->getPhaseAt(s, q);
Chris@38 2008 } else if (m_normalizeColumns) {
Chris@38 2009 value = m_cache->getNormalizedMagnitudeAt(s, q) * m_gain;
Chris@38 2010 } else {
Chris@38 2011 value = m_cache->getMagnitudeAt(s, q) * m_gain;
Chris@38 2012 }
Chris@37 2013
Chris@37 2014 ymag[y] += yprop * value;
Chris@35 2015 ydiv[y] += yprop;
Chris@35 2016 }
Chris@35 2017 }
Chris@35 2018 }
Chris@35 2019
Chris@35 2020 for (int y = 0; y < h; ++y) {
Chris@35 2021
Chris@35 2022 if (ydiv[y] > 0.0) {
Chris@40 2023
Chris@40 2024 unsigned char pixel = 0;
Chris@40 2025
Chris@38 2026 float avg = ymag[y] / ydiv[y];
Chris@38 2027 pixel = getDisplayValue(avg);
Chris@40 2028
Chris@40 2029 assert(x <= scaled.width());
Chris@40 2030 QColor c = m_cache->getColour(pixel);
Chris@40 2031 scaled.setPixel(x, y,
Chris@40 2032 qRgb(c.red(), c.green(), c.blue()));
Chris@35 2033 }
Chris@35 2034 }
Chris@35 2035
Chris@35 2036 m_mutex.unlock();
Chris@35 2037 }
Chris@35 2038
Chris@0 2039 paint.drawImage(x0, y0, scaled);
Chris@0 2040
Chris@0 2041 if (recreateWholePixmapCache) {
Chris@0 2042 delete m_pixmapCache;
Chris@0 2043 m_pixmapCache = new QPixmap(w, h);
Chris@0 2044 }
Chris@0 2045
Chris@0 2046 QPainter cachePainter(m_pixmapCache);
Chris@0 2047 cachePainter.drawImage(x0, y0, scaled);
Chris@0 2048 cachePainter.end();
Chris@0 2049
Chris@0 2050 m_pixmapCacheInvalid = false;
Chris@0 2051 m_pixmapCacheStartFrame = startFrame;
Chris@0 2052 m_pixmapCacheZoomLevel = zoomLevel;
Chris@0 2053
Chris@0 2054 #ifdef DEBUG_SPECTROGRAM_REPAINT
Chris@0 2055 std::cerr << "SpectrogramLayer::paint() returning" << std::endl;
Chris@0 2056 #endif
Chris@0 2057 }
Chris@0 2058
Chris@42 2059 float
Chris@44 2060 SpectrogramLayer::getYForFrequency(View *v, float frequency) const
Chris@42 2061 {
Chris@44 2062 return v->getYForFrequency(frequency,
Chris@44 2063 getEffectiveMinFrequency(),
Chris@44 2064 getEffectiveMaxFrequency(),
Chris@44 2065 m_frequencyScale == LogFrequencyScale);
Chris@42 2066 }
Chris@42 2067
Chris@42 2068 float
Chris@44 2069 SpectrogramLayer::getFrequencyForY(View *v, int y) const
Chris@42 2070 {
Chris@44 2071 return v->getFrequencyForY(y,
Chris@44 2072 getEffectiveMinFrequency(),
Chris@44 2073 getEffectiveMaxFrequency(),
Chris@44 2074 m_frequencyScale == LogFrequencyScale);
Chris@42 2075 }
Chris@42 2076
Chris@0 2077 int
Chris@0 2078 SpectrogramLayer::getCompletion() const
Chris@0 2079 {
Chris@0 2080 if (m_updateTimer == 0) return 100;
Chris@0 2081 size_t completion = m_fillThread->getFillCompletion();
Chris@0 2082 // std::cerr << "SpectrogramLayer::getCompletion: completion = " << completion << std::endl;
Chris@0 2083 return completion;
Chris@0 2084 }
Chris@0 2085
Chris@28 2086 bool
Chris@44 2087 SpectrogramLayer::snapToFeatureFrame(View *v, int &frame,
Chris@28 2088 size_t &resolution,
Chris@28 2089 SnapType snap) const
Chris@13 2090 {
Chris@13 2091 resolution = getWindowIncrement();
Chris@28 2092 int left = (frame / resolution) * resolution;
Chris@28 2093 int right = left + resolution;
Chris@28 2094
Chris@28 2095 switch (snap) {
Chris@28 2096 case SnapLeft: frame = left; break;
Chris@28 2097 case SnapRight: frame = right; break;
Chris@28 2098 case SnapNearest:
Chris@28 2099 case SnapNeighbouring:
Chris@28 2100 if (frame - left > right - frame) frame = right;
Chris@28 2101 else frame = left;
Chris@28 2102 break;
Chris@28 2103 }
Chris@28 2104
Chris@28 2105 return true;
Chris@28 2106 }
Chris@13 2107
Chris@25 2108 QString
Chris@44 2109 SpectrogramLayer::getFeatureDescription(View *v, QPoint &pos) const
Chris@25 2110 {
Chris@25 2111 int x = pos.x();
Chris@25 2112 int y = pos.y();
Chris@0 2113
Chris@25 2114 if (!m_model || !m_model->isOK()) return "";
Chris@0 2115
Chris@38 2116 float magMin = 0, magMax = 0;
Chris@38 2117 float phaseMin = 0, phaseMax = 0;
Chris@0 2118 float freqMin = 0, freqMax = 0;
Chris@35 2119 float adjFreqMin = 0, adjFreqMax = 0;
Chris@25 2120 QString pitchMin, pitchMax;
Chris@0 2121 RealTime rtMin, rtMax;
Chris@0 2122
Chris@38 2123 bool haveValues = false;
Chris@0 2124
Chris@44 2125 if (!getXBinSourceRange(v, x, rtMin, rtMax)) {
Chris@38 2126 return "";
Chris@38 2127 }
Chris@44 2128 if (getXYBinSourceRange(v, x, y, magMin, magMax, phaseMin, phaseMax)) {
Chris@38 2129 haveValues = true;
Chris@38 2130 }
Chris@0 2131
Chris@35 2132 QString adjFreqText = "", adjPitchText = "";
Chris@35 2133
Chris@38 2134 if (m_binDisplay == PeakFrequencies) {
Chris@35 2135
Chris@44 2136 if (!getAdjustedYBinSourceRange(v, x, y, freqMin, freqMax,
Chris@38 2137 adjFreqMin, adjFreqMax)) {
Chris@38 2138 return "";
Chris@38 2139 }
Chris@35 2140
Chris@35 2141 if (adjFreqMin != adjFreqMax) {
Chris@65 2142 adjFreqText = tr("Peak Frequency:\t%1 - %2 Hz\n")
Chris@35 2143 .arg(adjFreqMin).arg(adjFreqMax);
Chris@35 2144 } else {
Chris@65 2145 adjFreqText = tr("Peak Frequency:\t%1 Hz\n")
Chris@35 2146 .arg(adjFreqMin);
Chris@38 2147 }
Chris@38 2148
Chris@38 2149 QString pmin = Pitch::getPitchLabelForFrequency(adjFreqMin);
Chris@38 2150 QString pmax = Pitch::getPitchLabelForFrequency(adjFreqMax);
Chris@38 2151
Chris@38 2152 if (pmin != pmax) {
Chris@65 2153 adjPitchText = tr("Peak Pitch:\t%3 - %4\n").arg(pmin).arg(pmax);
Chris@38 2154 } else {
Chris@65 2155 adjPitchText = tr("Peak Pitch:\t%2\n").arg(pmin);
Chris@35 2156 }
Chris@35 2157
Chris@35 2158 } else {
Chris@35 2159
Chris@44 2160 if (!getYBinSourceRange(v, y, freqMin, freqMax)) return "";
Chris@35 2161 }
Chris@35 2162
Chris@25 2163 QString text;
Chris@25 2164
Chris@25 2165 if (rtMin != rtMax) {
Chris@25 2166 text += tr("Time:\t%1 - %2\n")
Chris@25 2167 .arg(rtMin.toText(true).c_str())
Chris@25 2168 .arg(rtMax.toText(true).c_str());
Chris@25 2169 } else {
Chris@25 2170 text += tr("Time:\t%1\n")
Chris@25 2171 .arg(rtMin.toText(true).c_str());
Chris@0 2172 }
Chris@0 2173
Chris@25 2174 if (freqMin != freqMax) {
Chris@65 2175 text += tr("%1Bin Frequency:\t%2 - %3 Hz\n%4Bin Pitch:\t%5 - %6\n")
Chris@65 2176 .arg(adjFreqText)
Chris@25 2177 .arg(freqMin)
Chris@25 2178 .arg(freqMax)
Chris@65 2179 .arg(adjPitchText)
Chris@65 2180 .arg(Pitch::getPitchLabelForFrequency(freqMin))
Chris@65 2181 .arg(Pitch::getPitchLabelForFrequency(freqMax));
Chris@65 2182 } else {
Chris@65 2183 text += tr("%1Bin Frequency:\t%2 Hz\n%3Bin Pitch:\t%4\n")
Chris@35 2184 .arg(adjFreqText)
Chris@25 2185 .arg(freqMin)
Chris@65 2186 .arg(adjPitchText)
Chris@65 2187 .arg(Pitch::getPitchLabelForFrequency(freqMin));
Chris@25 2188 }
Chris@25 2189
Chris@38 2190 if (haveValues) {
Chris@38 2191 float dbMin = AudioLevel::multiplier_to_dB(magMin);
Chris@38 2192 float dbMax = AudioLevel::multiplier_to_dB(magMax);
Chris@43 2193 QString dbMinString;
Chris@43 2194 QString dbMaxString;
Chris@43 2195 if (dbMin == AudioLevel::DB_FLOOR) {
Chris@43 2196 dbMinString = tr("-Inf");
Chris@43 2197 } else {
Chris@43 2198 dbMinString = QString("%1").arg(lrintf(dbMin));
Chris@43 2199 }
Chris@43 2200 if (dbMax == AudioLevel::DB_FLOOR) {
Chris@43 2201 dbMaxString = tr("-Inf");
Chris@43 2202 } else {
Chris@43 2203 dbMaxString = QString("%1").arg(lrintf(dbMax));
Chris@43 2204 }
Chris@25 2205 if (lrintf(dbMin) != lrintf(dbMax)) {
Chris@25 2206 text += tr("dB:\t%1 - %2").arg(lrintf(dbMin)).arg(lrintf(dbMax));
Chris@25 2207 } else {
Chris@25 2208 text += tr("dB:\t%1").arg(lrintf(dbMin));
Chris@25 2209 }
Chris@38 2210 if (phaseMin != phaseMax) {
Chris@38 2211 text += tr("\nPhase:\t%1 - %2").arg(phaseMin).arg(phaseMax);
Chris@38 2212 } else {
Chris@38 2213 text += tr("\nPhase:\t%1").arg(phaseMin);
Chris@38 2214 }
Chris@25 2215 }
Chris@25 2216
Chris@25 2217 return text;
Chris@0 2218 }
Chris@25 2219
Chris@0 2220 int
Chris@40 2221 SpectrogramLayer::getColourScaleWidth(QPainter &paint) const
Chris@40 2222 {
Chris@40 2223 int cw;
Chris@40 2224
Chris@40 2225 switch (m_colourScale) {
Chris@40 2226 default:
Chris@40 2227 case LinearColourScale:
Chris@40 2228 cw = paint.fontMetrics().width(QString("0.00"));
Chris@40 2229 break;
Chris@40 2230
Chris@40 2231 case MeterColourScale:
Chris@40 2232 case dBColourScale:
Chris@40 2233 cw = std::max(paint.fontMetrics().width(tr("-Inf")),
Chris@40 2234 paint.fontMetrics().width(tr("-90")));
Chris@40 2235 break;
Chris@40 2236
Chris@40 2237 case PhaseColourScale:
Chris@40 2238 cw = paint.fontMetrics().width(QString("-") + QChar(0x3c0));
Chris@40 2239 break;
Chris@40 2240 }
Chris@40 2241
Chris@40 2242 return cw;
Chris@40 2243 }
Chris@40 2244
Chris@40 2245 int
Chris@44 2246 SpectrogramLayer::getVerticalScaleWidth(View *v, QPainter &paint) const
Chris@0 2247 {
Chris@0 2248 if (!m_model || !m_model->isOK()) return 0;
Chris@0 2249
Chris@40 2250 int cw = getColourScaleWidth(paint);
Chris@40 2251
Chris@0 2252 int tw = paint.fontMetrics().width(QString("%1")
Chris@0 2253 .arg(m_maxFrequency > 0 ?
Chris@0 2254 m_maxFrequency - 1 :
Chris@0 2255 m_model->getSampleRate() / 2));
Chris@0 2256
Chris@0 2257 int fw = paint.fontMetrics().width(QString("43Hz"));
Chris@0 2258 if (tw < fw) tw = fw;
Chris@40 2259
Chris@40 2260 int tickw = (m_frequencyScale == LogFrequencyScale ? 10 : 4);
Chris@0 2261
Chris@40 2262 return cw + tickw + tw + 13;
Chris@0 2263 }
Chris@0 2264
Chris@0 2265 void
Chris@44 2266 SpectrogramLayer::paintVerticalScale(View *v, QPainter &paint, QRect rect) const
Chris@0 2267 {
Chris@0 2268 if (!m_model || !m_model->isOK()) {
Chris@0 2269 return;
Chris@0 2270 }
Chris@0 2271
Chris@0 2272 int h = rect.height(), w = rect.width();
Chris@0 2273
Chris@40 2274 int tickw = (m_frequencyScale == LogFrequencyScale ? 10 : 4);
Chris@40 2275 int pkw = (m_frequencyScale == LogFrequencyScale ? 10 : 0);
Chris@40 2276
Chris@0 2277 size_t bins = m_windowSize / 2;
Chris@0 2278 int sr = m_model->getSampleRate();
Chris@0 2279
Chris@0 2280 if (m_maxFrequency > 0) {
Chris@0 2281 bins = int((double(m_maxFrequency) * m_windowSize) / sr + 0.1);
Chris@0 2282 if (bins > m_windowSize / 2) bins = m_windowSize / 2;
Chris@0 2283 }
Chris@0 2284
Chris@40 2285 int cw = getColourScaleWidth(paint);
Chris@40 2286
Chris@0 2287 int py = -1;
Chris@0 2288 int textHeight = paint.fontMetrics().height();
Chris@0 2289 int toff = -textHeight + paint.fontMetrics().ascent() + 2;
Chris@0 2290
Chris@40 2291 if (m_cache && !m_cacheInvalid && h > textHeight * 2 + 10) { //!!! lock?
Chris@40 2292
Chris@40 2293 int ch = h - textHeight * 2 - 8;
Chris@40 2294 paint.drawRect(4, textHeight + 4, cw - 1, ch + 1);
Chris@40 2295
Chris@40 2296 QString top, bottom;
Chris@40 2297
Chris@40 2298 switch (m_colourScale) {
Chris@40 2299 default:
Chris@40 2300 case LinearColourScale:
Chris@40 2301 top = (m_normalizeColumns ? "1.0" : "0.02");
Chris@40 2302 bottom = (m_normalizeColumns ? "0.0" : "0.00");
Chris@40 2303 break;
Chris@40 2304
Chris@40 2305 case MeterColourScale:
Chris@40 2306 top = (m_normalizeColumns ? QString("0") :
Chris@40 2307 QString("%1").arg(int(AudioLevel::multiplier_to_dB(0.02))));
Chris@40 2308 bottom = QString("%1").
Chris@40 2309 arg(int(AudioLevel::multiplier_to_dB
Chris@40 2310 (AudioLevel::preview_to_multiplier(0, 255))));
Chris@40 2311 break;
Chris@40 2312
Chris@40 2313 case dBColourScale:
Chris@40 2314 top = "0";
Chris@40 2315 bottom = "-80";
Chris@40 2316 break;
Chris@40 2317
Chris@40 2318 case PhaseColourScale:
Chris@40 2319 top = QChar(0x3c0);
Chris@40 2320 bottom = "-" + top;
Chris@40 2321 break;
Chris@40 2322 }
Chris@40 2323
Chris@40 2324 paint.drawText((cw + 6 - paint.fontMetrics().width(top)) / 2,
Chris@40 2325 2 + textHeight + toff, top);
Chris@40 2326
Chris@40 2327 paint.drawText((cw + 6 - paint.fontMetrics().width(bottom)) / 2,
Chris@40 2328 h + toff - 3, bottom);
Chris@40 2329
Chris@40 2330 paint.save();
Chris@40 2331 paint.setBrush(Qt::NoBrush);
Chris@40 2332 for (int i = 0; i < ch; ++i) {
Chris@40 2333 int v = (i * 255) / ch + 1;
Chris@40 2334 paint.setPen(m_cache->getColour(v));
Chris@40 2335 paint.drawLine(5, 4 + textHeight + ch - i,
Chris@40 2336 cw + 2, 4 + textHeight + ch - i);
Chris@40 2337 }
Chris@40 2338 paint.restore();
Chris@40 2339 }
Chris@40 2340
Chris@40 2341 paint.drawLine(cw + 7, 0, cw + 7, h);
Chris@40 2342
Chris@0 2343 int bin = -1;
Chris@0 2344
Chris@44 2345 for (int y = 0; y < v->height(); ++y) {
Chris@0 2346
Chris@0 2347 float q0, q1;
Chris@44 2348 if (!getYBinRange(v, v->height() - y, q0, q1)) continue;
Chris@0 2349
Chris@0 2350 int vy;
Chris@0 2351
Chris@0 2352 if (int(q0) > bin) {
Chris@0 2353 vy = y;
Chris@0 2354 bin = int(q0);
Chris@0 2355 } else {
Chris@0 2356 continue;
Chris@0 2357 }
Chris@0 2358
Chris@40 2359 int freq = (sr * bin) / m_windowSize;
Chris@0 2360
Chris@0 2361 if (py >= 0 && (vy - py) < textHeight - 1) {
Chris@40 2362 if (m_frequencyScale == LinearFrequencyScale) {
Chris@40 2363 paint.drawLine(w - tickw, h - vy, w, h - vy);
Chris@40 2364 }
Chris@0 2365 continue;
Chris@0 2366 }
Chris@0 2367
Chris@0 2368 QString text = QString("%1").arg(freq);
Chris@40 2369 if (bin == 1) text = QString("%1Hz").arg(freq); // bin 0 is DC
Chris@40 2370 paint.drawLine(cw + 7, h - vy, w - pkw - 1, h - vy);
Chris@0 2371
Chris@0 2372 if (h - vy - textHeight >= -2) {
Chris@40 2373 int tx = w - 3 - paint.fontMetrics().width(text) - std::max(tickw, pkw);
Chris@0 2374 paint.drawText(tx, h - vy + toff, text);
Chris@0 2375 }
Chris@0 2376
Chris@0 2377 py = vy;
Chris@0 2378 }
Chris@40 2379
Chris@40 2380 if (m_frequencyScale == LogFrequencyScale) {
Chris@40 2381
Chris@40 2382 paint.drawLine(w - pkw - 1, 0, w - pkw - 1, h);
Chris@40 2383
Chris@40 2384 int sr = m_model->getSampleRate();//!!! lock?
Chris@40 2385 float minf = getEffectiveMinFrequency();
Chris@40 2386 float maxf = getEffectiveMaxFrequency();
Chris@40 2387
Chris@40 2388 int py = h;
Chris@40 2389 paint.setBrush(paint.pen().color());
Chris@40 2390
Chris@40 2391 for (int i = 0; i < 128; ++i) {
Chris@40 2392
Chris@40 2393 float f = Pitch::getFrequencyForPitch(i);
Chris@44 2394 int y = lrintf(v->getYForFrequency(f, minf, maxf, true));
Chris@40 2395 int n = (i % 12);
Chris@40 2396 if (n == 1 || n == 3 || n == 6 || n == 8 || n == 10) {
Chris@40 2397 // black notes
Chris@40 2398 paint.drawLine(w - pkw, y, w, y);
Chris@41 2399 int rh = ((py - y) / 4) * 2;
Chris@41 2400 if (rh < 2) rh = 2;
Chris@41 2401 paint.drawRect(w - pkw, y - (py-y)/4, pkw/2, rh);
Chris@40 2402 } else if (n == 0 || n == 5) {
Chris@40 2403 // C, A
Chris@40 2404 if (py < h) {
Chris@40 2405 paint.drawLine(w - pkw, (y + py) / 2, w, (y + py) / 2);
Chris@40 2406 }
Chris@40 2407 }
Chris@40 2408
Chris@40 2409 py = y;
Chris@40 2410 }
Chris@40 2411 }
Chris@0 2412 }
Chris@0 2413
Chris@6 2414 QString
Chris@6 2415 SpectrogramLayer::toXmlString(QString indent, QString extraAttributes) const
Chris@6 2416 {
Chris@6 2417 QString s;
Chris@6 2418
Chris@6 2419 s += QString("channel=\"%1\" "
Chris@6 2420 "windowSize=\"%2\" "
Chris@6 2421 "windowType=\"%3\" "
Chris@6 2422 "windowOverlap=\"%4\" "
Chris@37 2423 "gain=\"%5\" "
Chris@37 2424 "threshold=\"%6\" ")
Chris@6 2425 .arg(m_channel)
Chris@6 2426 .arg(m_windowSize)
Chris@6 2427 .arg(m_windowType)
Chris@6 2428 .arg(m_windowOverlap)
Chris@37 2429 .arg(m_gain)
Chris@37 2430 .arg(m_threshold);
Chris@37 2431
Chris@37 2432 s += QString("minFrequency=\"%1\" "
Chris@37 2433 "maxFrequency=\"%2\" "
Chris@37 2434 "colourScale=\"%3\" "
Chris@37 2435 "colourScheme=\"%4\" "
Chris@37 2436 "colourRotation=\"%5\" "
Chris@37 2437 "frequencyScale=\"%6\" "
Chris@37 2438 "binDisplay=\"%7\" "
Chris@37 2439 "normalizeColumns=\"%8\"")
Chris@37 2440 .arg(m_minFrequency)
Chris@6 2441 .arg(m_maxFrequency)
Chris@6 2442 .arg(m_colourScale)
Chris@6 2443 .arg(m_colourScheme)
Chris@37 2444 .arg(m_colourRotation)
Chris@35 2445 .arg(m_frequencyScale)
Chris@37 2446 .arg(m_binDisplay)
Chris@36 2447 .arg(m_normalizeColumns ? "true" : "false");
Chris@6 2448
Chris@6 2449 return Layer::toXmlString(indent, extraAttributes + " " + s);
Chris@6 2450 }
Chris@6 2451
Chris@11 2452 void
Chris@11 2453 SpectrogramLayer::setProperties(const QXmlAttributes &attributes)
Chris@11 2454 {
Chris@11 2455 bool ok = false;
Chris@11 2456
Chris@11 2457 int channel = attributes.value("channel").toInt(&ok);
Chris@11 2458 if (ok) setChannel(channel);
Chris@11 2459
Chris@11 2460 size_t windowSize = attributes.value("windowSize").toUInt(&ok);
Chris@11 2461 if (ok) setWindowSize(windowSize);
Chris@11 2462
Chris@11 2463 WindowType windowType = (WindowType)
Chris@11 2464 attributes.value("windowType").toInt(&ok);
Chris@11 2465 if (ok) setWindowType(windowType);
Chris@11 2466
Chris@11 2467 size_t windowOverlap = attributes.value("windowOverlap").toUInt(&ok);
Chris@11 2468 if (ok) setWindowOverlap(windowOverlap);
Chris@11 2469
Chris@11 2470 float gain = attributes.value("gain").toFloat(&ok);
Chris@11 2471 if (ok) setGain(gain);
Chris@11 2472
Chris@37 2473 float threshold = attributes.value("threshold").toFloat(&ok);
Chris@37 2474 if (ok) setThreshold(threshold);
Chris@37 2475
Chris@37 2476 size_t minFrequency = attributes.value("minFrequency").toUInt(&ok);
Chris@37 2477 if (ok) setMinFrequency(minFrequency);
Chris@37 2478
Chris@11 2479 size_t maxFrequency = attributes.value("maxFrequency").toUInt(&ok);
Chris@11 2480 if (ok) setMaxFrequency(maxFrequency);
Chris@11 2481
Chris@11 2482 ColourScale colourScale = (ColourScale)
Chris@11 2483 attributes.value("colourScale").toInt(&ok);
Chris@11 2484 if (ok) setColourScale(colourScale);
Chris@11 2485
Chris@11 2486 ColourScheme colourScheme = (ColourScheme)
Chris@11 2487 attributes.value("colourScheme").toInt(&ok);
Chris@11 2488 if (ok) setColourScheme(colourScheme);
Chris@11 2489
Chris@37 2490 int colourRotation = attributes.value("colourRotation").toInt(&ok);
Chris@37 2491 if (ok) setColourRotation(colourRotation);
Chris@37 2492
Chris@11 2493 FrequencyScale frequencyScale = (FrequencyScale)
Chris@11 2494 attributes.value("frequencyScale").toInt(&ok);
Chris@11 2495 if (ok) setFrequencyScale(frequencyScale);
Chris@35 2496
Chris@37 2497 BinDisplay binDisplay = (BinDisplay)
Chris@37 2498 attributes.value("binDisplay").toInt(&ok);
Chris@37 2499 if (ok) setBinDisplay(binDisplay);
Chris@36 2500
Chris@36 2501 bool normalizeColumns =
Chris@36 2502 (attributes.value("normalizeColumns").trimmed() == "true");
Chris@36 2503 setNormalizeColumns(normalizeColumns);
Chris@11 2504 }
Chris@11 2505
Chris@11 2506
Chris@0 2507 #ifdef INCLUDE_MOCFILES
Chris@0 2508 #include "SpectrogramLayer.moc.cpp"
Chris@0 2509 #endif
Chris@0 2510