annotate data/model/FFTModel.cpp @ 1377:f1c4ca3ccaa3 dev/refactor-piper-related

Change setDesiredExtractor signature to take ServerDescription aggregate.
author Lucas Thompson <lucas.thompson@qmul.ac.uk>
date Fri, 10 Feb 2017 11:30:29 +0000
parents fad8f533ca13
children 87ae75da6527
rev   line source
Chris@152 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
Chris@152 2
Chris@152 3 /*
Chris@152 4 Sonic Visualiser
Chris@152 5 An audio file viewer and annotation editor.
Chris@152 6 Centre for Digital Music, Queen Mary, University of London.
Chris@152 7 This file copyright 2006 Chris Cannam.
Chris@152 8
Chris@152 9 This program is free software; you can redistribute it and/or
Chris@152 10 modify it under the terms of the GNU General Public License as
Chris@152 11 published by the Free Software Foundation; either version 2 of the
Chris@152 12 License, or (at your option) any later version. See the file
Chris@152 13 COPYING included with this distribution for more information.
Chris@152 14 */
Chris@152 15
Chris@152 16 #include "FFTModel.h"
Chris@152 17 #include "DenseTimeValueModel.h"
Chris@152 18
Chris@183 19 #include "base/Profiler.h"
Chris@275 20 #include "base/Pitch.h"
Chris@1256 21 #include "base/HitCount.h"
Chris@183 22
Chris@402 23 #include <algorithm>
Chris@402 24
Chris@152 25 #include <cassert>
Chris@1090 26 #include <deque>
Chris@152 27
Chris@1090 28 using namespace std;
Chris@1090 29
Chris@1256 30 static HitCount inSmallCache("FFTModel: Small FFT cache");
Chris@1256 31 static HitCount inSourceCache("FFTModel: Source data cache");
Chris@1256 32
Chris@152 33 FFTModel::FFTModel(const DenseTimeValueModel *model,
Chris@152 34 int channel,
Chris@152 35 WindowType windowType,
Chris@929 36 int windowSize,
Chris@929 37 int windowIncrement,
Chris@1090 38 int fftSize) :
Chris@1090 39 m_model(model),
Chris@1090 40 m_channel(channel),
Chris@1090 41 m_windowType(windowType),
Chris@1090 42 m_windowSize(windowSize),
Chris@1090 43 m_windowIncrement(windowIncrement),
Chris@1090 44 m_fftSize(fftSize),
Chris@1091 45 m_windower(windowType, windowSize),
Chris@1093 46 m_fft(fftSize),
Chris@1371 47 m_cacheWriteIndex(0),
Chris@1093 48 m_cacheSize(3)
Chris@152 49 {
Chris@1371 50 while (m_cached.size() < m_cacheSize) {
Chris@1371 51 m_cached.push_back({ -1, cvec(m_fftSize / 2 + 1) });
Chris@1371 52 }
Chris@1371 53
Chris@1091 54 if (m_windowSize > m_fftSize) {
Chris@1091 55 cerr << "ERROR: FFTModel::FFTModel: window size (" << m_windowSize
Chris@1091 56 << ") must be at least FFT size (" << m_fftSize << ")" << endl;
Chris@1091 57 throw invalid_argument("FFTModel window size must be at least FFT size");
Chris@1091 58 }
Chris@1133 59
Chris@1270 60 m_fft.initFloat();
Chris@1270 61
Chris@1133 62 connect(model, SIGNAL(modelChanged()), this, SIGNAL(modelChanged()));
Chris@1133 63 connect(model, SIGNAL(modelChangedWithin(sv_frame_t, sv_frame_t)),
Chris@1133 64 this, SIGNAL(modelChangedWithin(sv_frame_t, sv_frame_t)));
Chris@152 65 }
Chris@152 66
Chris@152 67 FFTModel::~FFTModel()
Chris@152 68 {
Chris@152 69 }
Chris@152 70
Chris@360 71 void
Chris@360 72 FFTModel::sourceModelAboutToBeDeleted()
Chris@360 73 {
Chris@1090 74 if (m_model) {
Chris@1090 75 cerr << "FFTModel[" << this << "]::sourceModelAboutToBeDeleted(" << m_model << ")" << endl;
Chris@1090 76 m_model = 0;
Chris@360 77 }
Chris@360 78 }
Chris@360 79
Chris@1091 80 int
Chris@1091 81 FFTModel::getWidth() const
Chris@1091 82 {
Chris@1091 83 if (!m_model) return 0;
Chris@1091 84 return int((m_model->getEndFrame() - m_model->getStartFrame())
Chris@1091 85 / m_windowIncrement) + 1;
Chris@1091 86 }
Chris@1091 87
Chris@1091 88 int
Chris@1091 89 FFTModel::getHeight() const
Chris@1091 90 {
Chris@1091 91 return m_fftSize / 2 + 1;
Chris@1091 92 }
Chris@1091 93
Chris@152 94 QString
Chris@929 95 FFTModel::getBinName(int n) const
Chris@152 96 {
Chris@1040 97 sv_samplerate_t sr = getSampleRate();
Chris@152 98 if (!sr) return "";
Chris@204 99 QString name = tr("%1 Hz").arg((n * sr) / ((getHeight()-1) * 2));
Chris@152 100 return name;
Chris@152 101 }
Chris@152 102
Chris@1091 103 FFTModel::Column
Chris@1091 104 FFTModel::getColumn(int x) const
Chris@1091 105 {
Chris@1091 106 auto cplx = getFFTColumn(x);
Chris@1091 107 Column col;
Chris@1154 108 col.reserve(cplx.size());
Chris@1091 109 for (auto c: cplx) col.push_back(abs(c));
Chris@1319 110 return col;
Chris@1091 111 }
Chris@1091 112
Chris@1200 113 FFTModel::Column
Chris@1200 114 FFTModel::getPhases(int x) const
Chris@1200 115 {
Chris@1200 116 auto cplx = getFFTColumn(x);
Chris@1200 117 Column col;
Chris@1200 118 col.reserve(cplx.size());
Chris@1201 119 for (auto c: cplx) {
Chris@1201 120 col.push_back(arg(c));
Chris@1201 121 }
Chris@1319 122 return col;
Chris@1200 123 }
Chris@1200 124
Chris@1091 125 float
Chris@1091 126 FFTModel::getMagnitudeAt(int x, int y) const
Chris@1091 127 {
Chris@1093 128 if (x < 0 || x >= getWidth() || y < 0 || y >= getHeight()) return 0.f;
Chris@1093 129 auto col = getFFTColumn(x);
Chris@1093 130 return abs(col[y]);
Chris@1091 131 }
Chris@1091 132
Chris@1091 133 float
Chris@1091 134 FFTModel::getMaximumMagnitudeAt(int x) const
Chris@1091 135 {
Chris@1091 136 Column col(getColumn(x));
Chris@1092 137 float max = 0.f;
Chris@1154 138 int n = int(col.size());
Chris@1154 139 for (int i = 0; i < n; ++i) {
Chris@1092 140 if (col[i] > max) max = col[i];
Chris@1092 141 }
Chris@1092 142 return max;
Chris@1091 143 }
Chris@1091 144
Chris@1091 145 float
Chris@1091 146 FFTModel::getPhaseAt(int x, int y) const
Chris@1091 147 {
Chris@1093 148 if (x < 0 || x >= getWidth() || y < 0 || y >= getHeight()) return 0.f;
Chris@1091 149 return arg(getFFTColumn(x)[y]);
Chris@1091 150 }
Chris@1091 151
Chris@1091 152 void
Chris@1091 153 FFTModel::getValuesAt(int x, int y, float &re, float &im) const
Chris@1091 154 {
Chris@1091 155 auto col = getFFTColumn(x);
Chris@1091 156 re = col[y].real();
Chris@1091 157 im = col[y].imag();
Chris@1091 158 }
Chris@1091 159
Chris@1091 160 bool
Chris@1091 161 FFTModel::getMagnitudesAt(int x, float *values, int minbin, int count) const
Chris@1091 162 {
Chris@1091 163 if (count == 0) count = getHeight();
Chris@1091 164 auto col = getFFTColumn(x);
Chris@1091 165 for (int i = 0; i < count; ++i) {
Chris@1091 166 values[i] = abs(col[minbin + i]);
Chris@1091 167 }
Chris@1091 168 return true;
Chris@1091 169 }
Chris@1091 170
Chris@1091 171 bool
Chris@1091 172 FFTModel::getPhasesAt(int x, float *values, int minbin, int count) const
Chris@1091 173 {
Chris@1091 174 if (count == 0) count = getHeight();
Chris@1091 175 auto col = getFFTColumn(x);
Chris@1091 176 for (int i = 0; i < count; ++i) {
Chris@1091 177 values[i] = arg(col[minbin + i]);
Chris@1091 178 }
Chris@1091 179 return true;
Chris@1091 180 }
Chris@1091 181
Chris@1091 182 bool
Chris@1091 183 FFTModel::getValuesAt(int x, float *reals, float *imags, int minbin, int count) const
Chris@1091 184 {
Chris@1091 185 if (count == 0) count = getHeight();
Chris@1091 186 auto col = getFFTColumn(x);
Chris@1091 187 for (int i = 0; i < count; ++i) {
Chris@1091 188 reals[i] = col[minbin + i].real();
Chris@1091 189 }
Chris@1091 190 for (int i = 0; i < count; ++i) {
Chris@1091 191 imags[i] = col[minbin + i].imag();
Chris@1091 192 }
Chris@1091 193 return true;
Chris@1091 194 }
Chris@1091 195
Chris@1326 196 FFTModel::fvec
Chris@1091 197 FFTModel::getSourceSamples(int column) const
Chris@1091 198 {
Chris@1094 199 // m_fftSize may be greater than m_windowSize, but not the reverse
Chris@1094 200
Chris@1094 201 // cerr << "getSourceSamples(" << column << ")" << endl;
Chris@1094 202
Chris@1091 203 auto range = getSourceSampleRange(column);
Chris@1094 204 auto data = getSourceData(range);
Chris@1094 205
Chris@1091 206 int off = (m_fftSize - m_windowSize) / 2;
Chris@1094 207
Chris@1094 208 if (off == 0) {
Chris@1094 209 return data;
Chris@1094 210 } else {
Chris@1094 211 vector<float> pad(off, 0.f);
Chris@1326 212 fvec padded;
Chris@1094 213 padded.reserve(m_fftSize);
Chris@1094 214 padded.insert(padded.end(), pad.begin(), pad.end());
Chris@1094 215 padded.insert(padded.end(), data.begin(), data.end());
Chris@1094 216 padded.insert(padded.end(), pad.begin(), pad.end());
Chris@1094 217 return padded;
Chris@1094 218 }
Chris@1094 219 }
Chris@1094 220
Chris@1326 221 FFTModel::fvec
Chris@1094 222 FFTModel::getSourceData(pair<sv_frame_t, sv_frame_t> range) const
Chris@1094 223 {
Chris@1094 224 // cerr << "getSourceData(" << range.first << "," << range.second
Chris@1094 225 // << "): saved range is (" << m_savedData.range.first
Chris@1094 226 // << "," << m_savedData.range.second << ")" << endl;
Chris@1094 227
Chris@1100 228 if (m_savedData.range == range) {
Chris@1256 229 inSourceCache.hit();
Chris@1100 230 return m_savedData.data;
Chris@1100 231 }
Chris@1094 232
Chris@1270 233 Profiler profiler("FFTModel::getSourceData (cache miss)");
Chris@1270 234
Chris@1094 235 if (range.first < m_savedData.range.second &&
Chris@1094 236 range.first >= m_savedData.range.first &&
Chris@1094 237 range.second > m_savedData.range.second) {
Chris@1094 238
Chris@1256 239 inSourceCache.partial();
Chris@1256 240
Chris@1100 241 sv_frame_t discard = range.first - m_savedData.range.first;
Chris@1100 242
Chris@1326 243 fvec acc(m_savedData.data.begin() + discard, m_savedData.data.end());
Chris@1094 244
Chris@1326 245 fvec rest = getSourceDataUncached({ m_savedData.range.second, range.second });
Chris@1100 246
Chris@1100 247 acc.insert(acc.end(), rest.begin(), rest.end());
Chris@1094 248
Chris@1095 249 m_savedData = { range, acc };
Chris@1095 250 return acc;
Chris@1095 251
Chris@1095 252 } else {
Chris@1095 253
Chris@1256 254 inSourceCache.miss();
Chris@1256 255
Chris@1095 256 auto data = getSourceDataUncached(range);
Chris@1095 257 m_savedData = { range, data };
Chris@1095 258 return data;
Chris@1094 259 }
Chris@1095 260 }
Chris@1094 261
Chris@1326 262 FFTModel::fvec
Chris@1095 263 FFTModel::getSourceDataUncached(pair<sv_frame_t, sv_frame_t> range) const
Chris@1095 264 {
Chris@1091 265 decltype(range.first) pfx = 0;
Chris@1091 266 if (range.first < 0) {
Chris@1091 267 pfx = -range.first;
Chris@1091 268 range = { 0, range.second };
Chris@1091 269 }
Chris@1096 270
Chris@1096 271 auto data = m_model->getData(m_channel,
Chris@1096 272 range.first,
Chris@1096 273 range.second - range.first);
Chris@1096 274
Chris@1281 275 if (data.empty()) {
Chris@1281 276 SVDEBUG << "NOTE: empty source data for range (" << range.first << ","
Chris@1281 277 << range.second << ") (model end frame "
Chris@1281 278 << m_model->getEndFrame() << ")" << endl;
Chris@1281 279 }
Chris@1281 280
Chris@1096 281 // don't return a partial frame
Chris@1096 282 data.resize(range.second - range.first, 0.f);
Chris@1096 283
Chris@1096 284 if (pfx > 0) {
Chris@1096 285 vector<float> pad(pfx, 0.f);
Chris@1096 286 data.insert(data.begin(), pad.begin(), pad.end());
Chris@1096 287 }
Chris@1096 288
Chris@1091 289 if (m_channel == -1) {
Chris@1091 290 int channels = m_model->getChannelCount();
Chris@1091 291 if (channels > 1) {
Chris@1096 292 int n = int(data.size());
Chris@1096 293 float factor = 1.f / float(channels);
Chris@1100 294 // use mean instead of sum for fft model input
Chris@1096 295 for (int i = 0; i < n; ++i) {
Chris@1096 296 data[i] *= factor;
Chris@1091 297 }
Chris@1091 298 }
Chris@1091 299 }
Chris@1094 300
Chris@1094 301 return data;
Chris@1091 302 }
Chris@1091 303
Chris@1371 304 const FFTModel::cvec &
Chris@1093 305 FFTModel::getFFTColumn(int n) const
Chris@1091 306 {
Chris@1258 307 // The small cache (i.e. the m_cached deque) is for cases where
Chris@1258 308 // values are looked up individually, and for e.g. peak-frequency
Chris@1258 309 // spectrograms where values from two consecutive columns are
Chris@1257 310 // needed at once. This cache gets essentially no hits when
Chris@1258 311 // scrolling through a magnitude spectrogram, but 95%+ hits with a
Chris@1258 312 // peak-frequency spectrogram.
Chris@1257 313 for (const auto &incache : m_cached) {
Chris@1093 314 if (incache.n == n) {
Chris@1256 315 inSmallCache.hit();
Chris@1093 316 return incache.col;
Chris@1093 317 }
Chris@1093 318 }
Chris@1256 319 inSmallCache.miss();
Chris@1258 320
Chris@1258 321 Profiler profiler("FFTModel::getFFTColumn (cache miss)");
Chris@1093 322
Chris@1093 323 auto samples = getSourceSamples(n);
Chris@1100 324 m_windower.cut(samples.data());
Chris@1270 325 breakfastquay::v_fftshift(samples.data(), m_fftSize);
Chris@1270 326
Chris@1371 327 cvec &col = m_cached[m_cacheWriteIndex].col;
Chris@1270 328
Chris@1270 329 m_fft.forwardInterleaved(samples.data(),
Chris@1270 330 reinterpret_cast<float *>(col.data()));
Chris@1093 331
Chris@1371 332 m_cached[m_cacheWriteIndex].n = n;
Chris@1371 333
Chris@1371 334 m_cacheWriteIndex = (m_cacheWriteIndex + 1) % m_cacheSize;
Chris@1093 335
Chris@1319 336 return col;
Chris@1091 337 }
Chris@1091 338
Chris@275 339 bool
Chris@1045 340 FFTModel::estimateStableFrequency(int x, int y, double &frequency)
Chris@275 341 {
Chris@275 342 if (!isOK()) return false;
Chris@275 343
Chris@1090 344 frequency = double(y * getSampleRate()) / m_fftSize;
Chris@275 345
Chris@275 346 if (x+1 >= getWidth()) return false;
Chris@275 347
Chris@275 348 // At frequency f, a phase shift of 2pi (one cycle) happens in 1/f sec.
Chris@275 349 // At hopsize h and sample rate sr, one hop happens in h/sr sec.
Chris@275 350 // At window size w, for bin b, f is b*sr/w.
Chris@275 351 // thus 2pi phase shift happens in w/(b*sr) sec.
Chris@275 352 // We need to know what phase shift we expect from h/sr sec.
Chris@275 353 // -> 2pi * ((h/sr) / (w/(b*sr)))
Chris@275 354 // = 2pi * ((h * b * sr) / (w * sr))
Chris@275 355 // = 2pi * (h * b) / w.
Chris@275 356
Chris@1038 357 double oldPhase = getPhaseAt(x, y);
Chris@1038 358 double newPhase = getPhaseAt(x+1, y);
Chris@275 359
Chris@929 360 int incr = getResolution();
Chris@275 361
Chris@1090 362 double expectedPhase = oldPhase + (2.0 * M_PI * y * incr) / m_fftSize;
Chris@275 363
Chris@1038 364 double phaseError = princarg(newPhase - expectedPhase);
Chris@275 365
Chris@275 366 // The new frequency estimate based on the phase error resulting
Chris@275 367 // from assuming the "native" frequency of this bin
Chris@275 368
Chris@275 369 frequency =
Chris@1090 370 (getSampleRate() * (expectedPhase + phaseError - oldPhase)) /
Chris@1045 371 (2.0 * M_PI * incr);
Chris@275 372
Chris@275 373 return true;
Chris@275 374 }
Chris@275 375
Chris@275 376 FFTModel::PeakLocationSet
Chris@1191 377 FFTModel::getPeaks(PeakPickType type, int x, int ymin, int ymax) const
Chris@275 378 {
Chris@551 379 Profiler profiler("FFTModel::getPeaks");
Chris@551 380
Chris@275 381 FFTModel::PeakLocationSet peaks;
Chris@275 382 if (!isOK()) return peaks;
Chris@275 383
Chris@275 384 if (ymax == 0 || ymax > getHeight() - 1) {
Chris@275 385 ymax = getHeight() - 1;
Chris@275 386 }
Chris@275 387
Chris@275 388 if (type == AllPeaks) {
Chris@551 389 int minbin = ymin;
Chris@551 390 if (minbin > 0) minbin = minbin - 1;
Chris@551 391 int maxbin = ymax;
Chris@551 392 if (maxbin < getHeight() - 1) maxbin = maxbin + 1;
Chris@551 393 const int n = maxbin - minbin + 1;
Chris@1218 394 float *values = new float[n];
Chris@551 395 getMagnitudesAt(x, values, minbin, maxbin - minbin + 1);
Chris@929 396 for (int bin = ymin; bin <= ymax; ++bin) {
Chris@551 397 if (bin == minbin || bin == maxbin) continue;
Chris@551 398 if (values[bin - minbin] > values[bin - minbin - 1] &&
Chris@551 399 values[bin - minbin] > values[bin - minbin + 1]) {
Chris@275 400 peaks.insert(bin);
Chris@275 401 }
Chris@275 402 }
Chris@1218 403 delete[] values;
Chris@275 404 return peaks;
Chris@275 405 }
Chris@275 406
Chris@551 407 Column values = getColumn(x);
Chris@1154 408 int nv = int(values.size());
Chris@275 409
Chris@500 410 float mean = 0.f;
Chris@1154 411 for (int i = 0; i < nv; ++i) mean += values[i];
Chris@1154 412 if (nv > 0) mean = mean / float(values.size());
Chris@1038 413
Chris@275 414 // For peak picking we use a moving median window, picking the
Chris@275 415 // highest value within each continuous region of values that
Chris@275 416 // exceed the median. For pitch adaptivity, we adjust the window
Chris@275 417 // size to a roughly constant pitch range (about four tones).
Chris@275 418
Chris@1040 419 sv_samplerate_t sampleRate = getSampleRate();
Chris@275 420
Chris@1090 421 deque<float> window;
Chris@1090 422 vector<int> inrange;
Chris@280 423 float dist = 0.5;
Chris@500 424
Chris@929 425 int medianWinSize = getPeakPickWindowSize(type, sampleRate, ymin, dist);
Chris@929 426 int halfWin = medianWinSize/2;
Chris@275 427
Chris@929 428 int binmin;
Chris@275 429 if (ymin > halfWin) binmin = ymin - halfWin;
Chris@275 430 else binmin = 0;
Chris@275 431
Chris@929 432 int binmax;
Chris@1154 433 if (ymax + halfWin < nv) binmax = ymax + halfWin;
Chris@1154 434 else binmax = nv - 1;
Chris@275 435
Chris@929 436 int prevcentre = 0;
Chris@500 437
Chris@929 438 for (int bin = binmin; bin <= binmax; ++bin) {
Chris@275 439
Chris@275 440 float value = values[bin];
Chris@275 441
Chris@275 442 window.push_back(value);
Chris@275 443
Chris@280 444 // so-called median will actually be the dist*100'th percentile
Chris@280 445 medianWinSize = getPeakPickWindowSize(type, sampleRate, bin, dist);
Chris@275 446 halfWin = medianWinSize/2;
Chris@275 447
Chris@929 448 while ((int)window.size() > medianWinSize) {
Chris@500 449 window.pop_front();
Chris@500 450 }
Chris@500 451
Chris@1038 452 int actualSize = int(window.size());
Chris@275 453
Chris@275 454 if (type == MajorPitchAdaptivePeaks) {
Chris@1154 455 if (ymax + halfWin < nv) binmax = ymax + halfWin;
Chris@1154 456 else binmax = nv - 1;
Chris@275 457 }
Chris@275 458
Chris@1090 459 deque<float> sorted(window);
Chris@1090 460 sort(sorted.begin(), sorted.end());
Chris@1038 461 float median = sorted[int(float(sorted.size()) * dist)];
Chris@275 462
Chris@929 463 int centrebin = 0;
Chris@500 464 if (bin > actualSize/2) centrebin = bin - actualSize/2;
Chris@500 465
Chris@500 466 while (centrebin > prevcentre || bin == binmin) {
Chris@275 467
Chris@500 468 if (centrebin > prevcentre) ++prevcentre;
Chris@500 469
Chris@500 470 float centre = values[prevcentre];
Chris@500 471
Chris@500 472 if (centre > median) {
Chris@500 473 inrange.push_back(centrebin);
Chris@500 474 }
Chris@500 475
Chris@1154 476 if (centre <= median || centrebin+1 == nv) {
Chris@500 477 if (!inrange.empty()) {
Chris@929 478 int peakbin = 0;
Chris@500 479 float peakval = 0.f;
Chris@929 480 for (int i = 0; i < (int)inrange.size(); ++i) {
Chris@500 481 if (i == 0 || values[inrange[i]] > peakval) {
Chris@500 482 peakval = values[inrange[i]];
Chris@500 483 peakbin = inrange[i];
Chris@500 484 }
Chris@500 485 }
Chris@500 486 inrange.clear();
Chris@500 487 if (peakbin >= ymin && peakbin <= ymax) {
Chris@500 488 peaks.insert(peakbin);
Chris@275 489 }
Chris@275 490 }
Chris@275 491 }
Chris@500 492
Chris@500 493 if (bin == binmin) break;
Chris@275 494 }
Chris@275 495 }
Chris@275 496
Chris@275 497 return peaks;
Chris@275 498 }
Chris@275 499
Chris@929 500 int
Chris@1040 501 FFTModel::getPeakPickWindowSize(PeakPickType type, sv_samplerate_t sampleRate,
Chris@929 502 int bin, float &percentile) const
Chris@275 503 {
Chris@280 504 percentile = 0.5;
Chris@275 505 if (type == MajorPeaks) return 10;
Chris@275 506 if (bin == 0) return 3;
Chris@280 507
Chris@1091 508 double binfreq = (sampleRate * bin) / m_fftSize;
Chris@1038 509 double hifreq = Pitch::getFrequencyForPitch(73, 0, binfreq);
Chris@280 510
Chris@1091 511 int hibin = int(lrint((hifreq * m_fftSize) / sampleRate));
Chris@275 512 int medianWinSize = hibin - bin;
Chris@275 513 if (medianWinSize < 3) medianWinSize = 3;
Chris@280 514
Chris@1091 515 percentile = 0.5f + float(binfreq / sampleRate);
Chris@280 516
Chris@275 517 return medianWinSize;
Chris@275 518 }
Chris@275 519
Chris@275 520 FFTModel::PeakSet
Chris@929 521 FFTModel::getPeakFrequencies(PeakPickType type, int x,
Chris@1191 522 int ymin, int ymax) const
Chris@275 523 {
Chris@551 524 Profiler profiler("FFTModel::getPeakFrequencies");
Chris@551 525
Chris@275 526 PeakSet peaks;
Chris@275 527 if (!isOK()) return peaks;
Chris@275 528 PeakLocationSet locations = getPeaks(type, x, ymin, ymax);
Chris@275 529
Chris@1040 530 sv_samplerate_t sampleRate = getSampleRate();
Chris@929 531 int incr = getResolution();
Chris@275 532
Chris@275 533 // This duplicates some of the work of estimateStableFrequency to
Chris@275 534 // allow us to retrieve the phases in two separate vertical
Chris@275 535 // columns, instead of jumping back and forth between columns x and
Chris@275 536 // x+1, which may be significantly slower if re-seeking is needed
Chris@275 537
Chris@1090 538 vector<float> phases;
Chris@275 539 for (PeakLocationSet::iterator i = locations.begin();
Chris@275 540 i != locations.end(); ++i) {
Chris@275 541 phases.push_back(getPhaseAt(x, *i));
Chris@275 542 }
Chris@275 543
Chris@929 544 int phaseIndex = 0;
Chris@275 545 for (PeakLocationSet::iterator i = locations.begin();
Chris@275 546 i != locations.end(); ++i) {
Chris@1038 547 double oldPhase = phases[phaseIndex];
Chris@1038 548 double newPhase = getPhaseAt(x+1, *i);
Chris@1090 549 double expectedPhase = oldPhase + (2.0 * M_PI * *i * incr) / m_fftSize;
Chris@1038 550 double phaseError = princarg(newPhase - expectedPhase);
Chris@1038 551 double frequency =
Chris@275 552 (sampleRate * (expectedPhase + phaseError - oldPhase))
Chris@275 553 / (2 * M_PI * incr);
Chris@1045 554 peaks[*i] = frequency;
Chris@275 555 ++phaseIndex;
Chris@275 556 }
Chris@275 557
Chris@275 558 return peaks;
Chris@275 559 }
Chris@275 560