annotate data/model/FFTModel.cpp @ 1200:825d0d7641ba spectrogram-minor-refactor

Restore phase display
author Chris Cannam
date Thu, 04 Aug 2016 14:02:56 +0100
parents 6d09ad2ab21f
children 6f7a440b6218
rev   line source
Chris@152 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
Chris@152 2
Chris@152 3 /*
Chris@152 4 Sonic Visualiser
Chris@152 5 An audio file viewer and annotation editor.
Chris@152 6 Centre for Digital Music, Queen Mary, University of London.
Chris@152 7 This file copyright 2006 Chris Cannam.
Chris@152 8
Chris@152 9 This program is free software; you can redistribute it and/or
Chris@152 10 modify it under the terms of the GNU General Public License as
Chris@152 11 published by the Free Software Foundation; either version 2 of the
Chris@152 12 License, or (at your option) any later version. See the file
Chris@152 13 COPYING included with this distribution for more information.
Chris@152 14 */
Chris@152 15
Chris@152 16 #include "FFTModel.h"
Chris@152 17 #include "DenseTimeValueModel.h"
Chris@152 18
Chris@183 19 #include "base/Profiler.h"
Chris@275 20 #include "base/Pitch.h"
Chris@183 21
Chris@402 22 #include <algorithm>
Chris@402 23
Chris@152 24 #include <cassert>
Chris@1090 25 #include <deque>
Chris@152 26
Chris@608 27 #ifndef __GNUC__
Chris@608 28 #include <alloca.h>
Chris@608 29 #endif
Chris@608 30
Chris@1090 31 using namespace std;
Chris@1090 32
Chris@152 33 FFTModel::FFTModel(const DenseTimeValueModel *model,
Chris@152 34 int channel,
Chris@152 35 WindowType windowType,
Chris@929 36 int windowSize,
Chris@929 37 int windowIncrement,
Chris@1090 38 int fftSize) :
Chris@1090 39 m_model(model),
Chris@1090 40 m_channel(channel),
Chris@1090 41 m_windowType(windowType),
Chris@1090 42 m_windowSize(windowSize),
Chris@1090 43 m_windowIncrement(windowIncrement),
Chris@1090 44 m_fftSize(fftSize),
Chris@1091 45 m_windower(windowType, windowSize),
Chris@1093 46 m_fft(fftSize),
Chris@1093 47 m_cacheSize(3)
Chris@152 48 {
Chris@1091 49 if (m_windowSize > m_fftSize) {
Chris@1091 50 cerr << "ERROR: FFTModel::FFTModel: window size (" << m_windowSize
Chris@1091 51 << ") must be at least FFT size (" << m_fftSize << ")" << endl;
Chris@1091 52 throw invalid_argument("FFTModel window size must be at least FFT size");
Chris@1091 53 }
Chris@1133 54
Chris@1133 55 connect(model, SIGNAL(modelChanged()), this, SIGNAL(modelChanged()));
Chris@1133 56 connect(model, SIGNAL(modelChangedWithin(sv_frame_t, sv_frame_t)),
Chris@1133 57 this, SIGNAL(modelChangedWithin(sv_frame_t, sv_frame_t)));
Chris@152 58 }
Chris@152 59
Chris@152 60 FFTModel::~FFTModel()
Chris@152 61 {
Chris@152 62 }
Chris@152 63
Chris@360 64 void
Chris@360 65 FFTModel::sourceModelAboutToBeDeleted()
Chris@360 66 {
Chris@1090 67 if (m_model) {
Chris@1090 68 cerr << "FFTModel[" << this << "]::sourceModelAboutToBeDeleted(" << m_model << ")" << endl;
Chris@1090 69 m_model = 0;
Chris@360 70 }
Chris@360 71 }
Chris@360 72
Chris@1091 73 int
Chris@1091 74 FFTModel::getWidth() const
Chris@1091 75 {
Chris@1091 76 if (!m_model) return 0;
Chris@1091 77 return int((m_model->getEndFrame() - m_model->getStartFrame())
Chris@1091 78 / m_windowIncrement) + 1;
Chris@1091 79 }
Chris@1091 80
Chris@1091 81 int
Chris@1091 82 FFTModel::getHeight() const
Chris@1091 83 {
Chris@1091 84 return m_fftSize / 2 + 1;
Chris@1091 85 }
Chris@1091 86
Chris@152 87 QString
Chris@929 88 FFTModel::getBinName(int n) const
Chris@152 89 {
Chris@1040 90 sv_samplerate_t sr = getSampleRate();
Chris@152 91 if (!sr) return "";
Chris@204 92 QString name = tr("%1 Hz").arg((n * sr) / ((getHeight()-1) * 2));
Chris@152 93 return name;
Chris@152 94 }
Chris@152 95
Chris@1091 96 FFTModel::Column
Chris@1091 97 FFTModel::getColumn(int x) const
Chris@1091 98 {
Chris@1091 99 auto cplx = getFFTColumn(x);
Chris@1091 100 Column col;
Chris@1154 101 col.reserve(cplx.size());
Chris@1091 102 for (auto c: cplx) col.push_back(abs(c));
Chris@1154 103 return move(col);
Chris@1091 104 }
Chris@1091 105
Chris@1200 106 FFTModel::Column
Chris@1200 107 FFTModel::getPhases(int x) const
Chris@1200 108 {
Chris@1200 109 auto cplx = getFFTColumn(x);
Chris@1200 110 Column col;
Chris@1200 111 col.reserve(cplx.size());
Chris@1200 112 for (auto c: cplx) col.push_back(arg(c));
Chris@1200 113 return move(col);
Chris@1200 114 }
Chris@1200 115
Chris@1091 116 float
Chris@1091 117 FFTModel::getMagnitudeAt(int x, int y) const
Chris@1091 118 {
Chris@1093 119 if (x < 0 || x >= getWidth() || y < 0 || y >= getHeight()) return 0.f;
Chris@1093 120 auto col = getFFTColumn(x);
Chris@1093 121 return abs(col[y]);
Chris@1091 122 }
Chris@1091 123
Chris@1091 124 float
Chris@1091 125 FFTModel::getMaximumMagnitudeAt(int x) const
Chris@1091 126 {
Chris@1091 127 Column col(getColumn(x));
Chris@1092 128 float max = 0.f;
Chris@1154 129 int n = int(col.size());
Chris@1154 130 for (int i = 0; i < n; ++i) {
Chris@1092 131 if (col[i] > max) max = col[i];
Chris@1092 132 }
Chris@1092 133 return max;
Chris@1091 134 }
Chris@1091 135
Chris@1091 136 float
Chris@1091 137 FFTModel::getPhaseAt(int x, int y) const
Chris@1091 138 {
Chris@1093 139 if (x < 0 || x >= getWidth() || y < 0 || y >= getHeight()) return 0.f;
Chris@1091 140 return arg(getFFTColumn(x)[y]);
Chris@1091 141 }
Chris@1091 142
Chris@1091 143 void
Chris@1091 144 FFTModel::getValuesAt(int x, int y, float &re, float &im) const
Chris@1091 145 {
Chris@1091 146 auto col = getFFTColumn(x);
Chris@1091 147 re = col[y].real();
Chris@1091 148 im = col[y].imag();
Chris@1091 149 }
Chris@1091 150
Chris@1091 151 bool
Chris@1091 152 FFTModel::getMagnitudesAt(int x, float *values, int minbin, int count) const
Chris@1091 153 {
Chris@1091 154 if (count == 0) count = getHeight();
Chris@1091 155 auto col = getFFTColumn(x);
Chris@1091 156 for (int i = 0; i < count; ++i) {
Chris@1091 157 values[i] = abs(col[minbin + i]);
Chris@1091 158 }
Chris@1091 159 return true;
Chris@1091 160 }
Chris@1091 161
Chris@1091 162 bool
Chris@1091 163 FFTModel::getPhasesAt(int x, float *values, int minbin, int count) const
Chris@1091 164 {
Chris@1091 165 if (count == 0) count = getHeight();
Chris@1091 166 auto col = getFFTColumn(x);
Chris@1091 167 for (int i = 0; i < count; ++i) {
Chris@1091 168 values[i] = arg(col[minbin + i]);
Chris@1091 169 }
Chris@1091 170 return true;
Chris@1091 171 }
Chris@1091 172
Chris@1091 173 bool
Chris@1091 174 FFTModel::getValuesAt(int x, float *reals, float *imags, int minbin, int count) const
Chris@1091 175 {
Chris@1091 176 if (count == 0) count = getHeight();
Chris@1091 177 auto col = getFFTColumn(x);
Chris@1091 178 for (int i = 0; i < count; ++i) {
Chris@1091 179 reals[i] = col[minbin + i].real();
Chris@1091 180 }
Chris@1091 181 for (int i = 0; i < count; ++i) {
Chris@1091 182 imags[i] = col[minbin + i].imag();
Chris@1091 183 }
Chris@1091 184 return true;
Chris@1091 185 }
Chris@1091 186
Chris@1091 187 vector<float>
Chris@1091 188 FFTModel::getSourceSamples(int column) const
Chris@1091 189 {
Chris@1094 190 // m_fftSize may be greater than m_windowSize, but not the reverse
Chris@1094 191
Chris@1094 192 // cerr << "getSourceSamples(" << column << ")" << endl;
Chris@1094 193
Chris@1091 194 auto range = getSourceSampleRange(column);
Chris@1094 195 auto data = getSourceData(range);
Chris@1094 196
Chris@1091 197 int off = (m_fftSize - m_windowSize) / 2;
Chris@1094 198
Chris@1094 199 if (off == 0) {
Chris@1094 200 return data;
Chris@1094 201 } else {
Chris@1094 202 vector<float> pad(off, 0.f);
Chris@1094 203 vector<float> padded;
Chris@1094 204 padded.reserve(m_fftSize);
Chris@1094 205 padded.insert(padded.end(), pad.begin(), pad.end());
Chris@1094 206 padded.insert(padded.end(), data.begin(), data.end());
Chris@1094 207 padded.insert(padded.end(), pad.begin(), pad.end());
Chris@1094 208 return padded;
Chris@1094 209 }
Chris@1094 210 }
Chris@1094 211
Chris@1094 212 vector<float>
Chris@1094 213 FFTModel::getSourceData(pair<sv_frame_t, sv_frame_t> range) const
Chris@1094 214 {
Chris@1094 215 // cerr << "getSourceData(" << range.first << "," << range.second
Chris@1094 216 // << "): saved range is (" << m_savedData.range.first
Chris@1094 217 // << "," << m_savedData.range.second << ")" << endl;
Chris@1094 218
Chris@1100 219 if (m_savedData.range == range) {
Chris@1100 220 return m_savedData.data;
Chris@1100 221 }
Chris@1094 222
Chris@1094 223 if (range.first < m_savedData.range.second &&
Chris@1094 224 range.first >= m_savedData.range.first &&
Chris@1094 225 range.second > m_savedData.range.second) {
Chris@1094 226
Chris@1100 227 sv_frame_t discard = range.first - m_savedData.range.first;
Chris@1100 228
Chris@1100 229 vector<float> acc(m_savedData.data.begin() + discard,
Chris@1100 230 m_savedData.data.end());
Chris@1094 231
Chris@1095 232 vector<float> rest =
Chris@1095 233 getSourceDataUncached({ m_savedData.range.second, range.second });
Chris@1100 234
Chris@1100 235 acc.insert(acc.end(), rest.begin(), rest.end());
Chris@1094 236
Chris@1095 237 m_savedData = { range, acc };
Chris@1095 238 return acc;
Chris@1095 239
Chris@1095 240 } else {
Chris@1095 241
Chris@1095 242 auto data = getSourceDataUncached(range);
Chris@1095 243 m_savedData = { range, data };
Chris@1095 244 return data;
Chris@1094 245 }
Chris@1095 246 }
Chris@1094 247
Chris@1095 248 vector<float>
Chris@1095 249 FFTModel::getSourceDataUncached(pair<sv_frame_t, sv_frame_t> range) const
Chris@1095 250 {
Chris@1091 251 decltype(range.first) pfx = 0;
Chris@1091 252 if (range.first < 0) {
Chris@1091 253 pfx = -range.first;
Chris@1091 254 range = { 0, range.second };
Chris@1091 255 }
Chris@1096 256
Chris@1096 257 auto data = m_model->getData(m_channel,
Chris@1096 258 range.first,
Chris@1096 259 range.second - range.first);
Chris@1096 260
Chris@1096 261 // don't return a partial frame
Chris@1096 262 data.resize(range.second - range.first, 0.f);
Chris@1096 263
Chris@1096 264 if (pfx > 0) {
Chris@1096 265 vector<float> pad(pfx, 0.f);
Chris@1096 266 data.insert(data.begin(), pad.begin(), pad.end());
Chris@1096 267 }
Chris@1096 268
Chris@1091 269 if (m_channel == -1) {
Chris@1091 270 int channels = m_model->getChannelCount();
Chris@1091 271 if (channels > 1) {
Chris@1096 272 int n = int(data.size());
Chris@1096 273 float factor = 1.f / float(channels);
Chris@1100 274 // use mean instead of sum for fft model input
Chris@1096 275 for (int i = 0; i < n; ++i) {
Chris@1096 276 data[i] *= factor;
Chris@1091 277 }
Chris@1091 278 }
Chris@1091 279 }
Chris@1094 280
Chris@1094 281 return data;
Chris@1091 282 }
Chris@1091 283
Chris@1091 284 vector<complex<float>>
Chris@1093 285 FFTModel::getFFTColumn(int n) const
Chris@1091 286 {
Chris@1093 287 for (auto &incache : m_cached) {
Chris@1093 288 if (incache.n == n) {
Chris@1093 289 return incache.col;
Chris@1093 290 }
Chris@1093 291 }
Chris@1093 292
Chris@1093 293 auto samples = getSourceSamples(n);
Chris@1100 294 m_windower.cut(samples.data());
Chris@1093 295 auto col = m_fft.process(samples);
Chris@1093 296
Chris@1093 297 SavedColumn sc { n, col };
Chris@1093 298 if (m_cached.size() >= m_cacheSize) {
Chris@1093 299 m_cached.pop_front();
Chris@1093 300 }
Chris@1093 301 m_cached.push_back(sc);
Chris@1093 302
Chris@1154 303 return move(col);
Chris@1091 304 }
Chris@1091 305
Chris@275 306 bool
Chris@1045 307 FFTModel::estimateStableFrequency(int x, int y, double &frequency)
Chris@275 308 {
Chris@275 309 if (!isOK()) return false;
Chris@275 310
Chris@1090 311 frequency = double(y * getSampleRate()) / m_fftSize;
Chris@275 312
Chris@275 313 if (x+1 >= getWidth()) return false;
Chris@275 314
Chris@275 315 // At frequency f, a phase shift of 2pi (one cycle) happens in 1/f sec.
Chris@275 316 // At hopsize h and sample rate sr, one hop happens in h/sr sec.
Chris@275 317 // At window size w, for bin b, f is b*sr/w.
Chris@275 318 // thus 2pi phase shift happens in w/(b*sr) sec.
Chris@275 319 // We need to know what phase shift we expect from h/sr sec.
Chris@275 320 // -> 2pi * ((h/sr) / (w/(b*sr)))
Chris@275 321 // = 2pi * ((h * b * sr) / (w * sr))
Chris@275 322 // = 2pi * (h * b) / w.
Chris@275 323
Chris@1038 324 double oldPhase = getPhaseAt(x, y);
Chris@1038 325 double newPhase = getPhaseAt(x+1, y);
Chris@275 326
Chris@929 327 int incr = getResolution();
Chris@275 328
Chris@1090 329 double expectedPhase = oldPhase + (2.0 * M_PI * y * incr) / m_fftSize;
Chris@275 330
Chris@1038 331 double phaseError = princarg(newPhase - expectedPhase);
Chris@275 332
Chris@275 333 // The new frequency estimate based on the phase error resulting
Chris@275 334 // from assuming the "native" frequency of this bin
Chris@275 335
Chris@275 336 frequency =
Chris@1090 337 (getSampleRate() * (expectedPhase + phaseError - oldPhase)) /
Chris@1045 338 (2.0 * M_PI * incr);
Chris@275 339
Chris@275 340 return true;
Chris@275 341 }
Chris@275 342
Chris@275 343 FFTModel::PeakLocationSet
Chris@1191 344 FFTModel::getPeaks(PeakPickType type, int x, int ymin, int ymax) const
Chris@275 345 {
Chris@551 346 Profiler profiler("FFTModel::getPeaks");
Chris@551 347
Chris@275 348 FFTModel::PeakLocationSet peaks;
Chris@275 349 if (!isOK()) return peaks;
Chris@275 350
Chris@275 351 if (ymax == 0 || ymax > getHeight() - 1) {
Chris@275 352 ymax = getHeight() - 1;
Chris@275 353 }
Chris@275 354
Chris@275 355 if (type == AllPeaks) {
Chris@551 356 int minbin = ymin;
Chris@551 357 if (minbin > 0) minbin = minbin - 1;
Chris@551 358 int maxbin = ymax;
Chris@551 359 if (maxbin < getHeight() - 1) maxbin = maxbin + 1;
Chris@551 360 const int n = maxbin - minbin + 1;
Chris@608 361 #ifdef __GNUC__
Chris@551 362 float values[n];
Chris@608 363 #else
Chris@608 364 float *values = (float *)alloca(n * sizeof(float));
Chris@608 365 #endif
Chris@551 366 getMagnitudesAt(x, values, minbin, maxbin - minbin + 1);
Chris@929 367 for (int bin = ymin; bin <= ymax; ++bin) {
Chris@551 368 if (bin == minbin || bin == maxbin) continue;
Chris@551 369 if (values[bin - minbin] > values[bin - minbin - 1] &&
Chris@551 370 values[bin - minbin] > values[bin - minbin + 1]) {
Chris@275 371 peaks.insert(bin);
Chris@275 372 }
Chris@275 373 }
Chris@275 374 return peaks;
Chris@275 375 }
Chris@275 376
Chris@551 377 Column values = getColumn(x);
Chris@1154 378 int nv = int(values.size());
Chris@275 379
Chris@500 380 float mean = 0.f;
Chris@1154 381 for (int i = 0; i < nv; ++i) mean += values[i];
Chris@1154 382 if (nv > 0) mean = mean / float(values.size());
Chris@1038 383
Chris@275 384 // For peak picking we use a moving median window, picking the
Chris@275 385 // highest value within each continuous region of values that
Chris@275 386 // exceed the median. For pitch adaptivity, we adjust the window
Chris@275 387 // size to a roughly constant pitch range (about four tones).
Chris@275 388
Chris@1040 389 sv_samplerate_t sampleRate = getSampleRate();
Chris@275 390
Chris@1090 391 deque<float> window;
Chris@1090 392 vector<int> inrange;
Chris@280 393 float dist = 0.5;
Chris@500 394
Chris@929 395 int medianWinSize = getPeakPickWindowSize(type, sampleRate, ymin, dist);
Chris@929 396 int halfWin = medianWinSize/2;
Chris@275 397
Chris@929 398 int binmin;
Chris@275 399 if (ymin > halfWin) binmin = ymin - halfWin;
Chris@275 400 else binmin = 0;
Chris@275 401
Chris@929 402 int binmax;
Chris@1154 403 if (ymax + halfWin < nv) binmax = ymax + halfWin;
Chris@1154 404 else binmax = nv - 1;
Chris@275 405
Chris@929 406 int prevcentre = 0;
Chris@500 407
Chris@929 408 for (int bin = binmin; bin <= binmax; ++bin) {
Chris@275 409
Chris@275 410 float value = values[bin];
Chris@275 411
Chris@275 412 window.push_back(value);
Chris@275 413
Chris@280 414 // so-called median will actually be the dist*100'th percentile
Chris@280 415 medianWinSize = getPeakPickWindowSize(type, sampleRate, bin, dist);
Chris@275 416 halfWin = medianWinSize/2;
Chris@275 417
Chris@929 418 while ((int)window.size() > medianWinSize) {
Chris@500 419 window.pop_front();
Chris@500 420 }
Chris@500 421
Chris@1038 422 int actualSize = int(window.size());
Chris@275 423
Chris@275 424 if (type == MajorPitchAdaptivePeaks) {
Chris@1154 425 if (ymax + halfWin < nv) binmax = ymax + halfWin;
Chris@1154 426 else binmax = nv - 1;
Chris@275 427 }
Chris@275 428
Chris@1090 429 deque<float> sorted(window);
Chris@1090 430 sort(sorted.begin(), sorted.end());
Chris@1038 431 float median = sorted[int(float(sorted.size()) * dist)];
Chris@275 432
Chris@929 433 int centrebin = 0;
Chris@500 434 if (bin > actualSize/2) centrebin = bin - actualSize/2;
Chris@500 435
Chris@500 436 while (centrebin > prevcentre || bin == binmin) {
Chris@275 437
Chris@500 438 if (centrebin > prevcentre) ++prevcentre;
Chris@500 439
Chris@500 440 float centre = values[prevcentre];
Chris@500 441
Chris@500 442 if (centre > median) {
Chris@500 443 inrange.push_back(centrebin);
Chris@500 444 }
Chris@500 445
Chris@1154 446 if (centre <= median || centrebin+1 == nv) {
Chris@500 447 if (!inrange.empty()) {
Chris@929 448 int peakbin = 0;
Chris@500 449 float peakval = 0.f;
Chris@929 450 for (int i = 0; i < (int)inrange.size(); ++i) {
Chris@500 451 if (i == 0 || values[inrange[i]] > peakval) {
Chris@500 452 peakval = values[inrange[i]];
Chris@500 453 peakbin = inrange[i];
Chris@500 454 }
Chris@500 455 }
Chris@500 456 inrange.clear();
Chris@500 457 if (peakbin >= ymin && peakbin <= ymax) {
Chris@500 458 peaks.insert(peakbin);
Chris@275 459 }
Chris@275 460 }
Chris@275 461 }
Chris@500 462
Chris@500 463 if (bin == binmin) break;
Chris@275 464 }
Chris@275 465 }
Chris@275 466
Chris@275 467 return peaks;
Chris@275 468 }
Chris@275 469
Chris@929 470 int
Chris@1040 471 FFTModel::getPeakPickWindowSize(PeakPickType type, sv_samplerate_t sampleRate,
Chris@929 472 int bin, float &percentile) const
Chris@275 473 {
Chris@280 474 percentile = 0.5;
Chris@275 475 if (type == MajorPeaks) return 10;
Chris@275 476 if (bin == 0) return 3;
Chris@280 477
Chris@1091 478 double binfreq = (sampleRate * bin) / m_fftSize;
Chris@1038 479 double hifreq = Pitch::getFrequencyForPitch(73, 0, binfreq);
Chris@280 480
Chris@1091 481 int hibin = int(lrint((hifreq * m_fftSize) / sampleRate));
Chris@275 482 int medianWinSize = hibin - bin;
Chris@275 483 if (medianWinSize < 3) medianWinSize = 3;
Chris@280 484
Chris@1091 485 percentile = 0.5f + float(binfreq / sampleRate);
Chris@280 486
Chris@275 487 return medianWinSize;
Chris@275 488 }
Chris@275 489
Chris@275 490 FFTModel::PeakSet
Chris@929 491 FFTModel::getPeakFrequencies(PeakPickType type, int x,
Chris@1191 492 int ymin, int ymax) const
Chris@275 493 {
Chris@551 494 Profiler profiler("FFTModel::getPeakFrequencies");
Chris@551 495
Chris@275 496 PeakSet peaks;
Chris@275 497 if (!isOK()) return peaks;
Chris@275 498 PeakLocationSet locations = getPeaks(type, x, ymin, ymax);
Chris@275 499
Chris@1040 500 sv_samplerate_t sampleRate = getSampleRate();
Chris@929 501 int incr = getResolution();
Chris@275 502
Chris@275 503 // This duplicates some of the work of estimateStableFrequency to
Chris@275 504 // allow us to retrieve the phases in two separate vertical
Chris@275 505 // columns, instead of jumping back and forth between columns x and
Chris@275 506 // x+1, which may be significantly slower if re-seeking is needed
Chris@275 507
Chris@1090 508 vector<float> phases;
Chris@275 509 for (PeakLocationSet::iterator i = locations.begin();
Chris@275 510 i != locations.end(); ++i) {
Chris@275 511 phases.push_back(getPhaseAt(x, *i));
Chris@275 512 }
Chris@275 513
Chris@929 514 int phaseIndex = 0;
Chris@275 515 for (PeakLocationSet::iterator i = locations.begin();
Chris@275 516 i != locations.end(); ++i) {
Chris@1038 517 double oldPhase = phases[phaseIndex];
Chris@1038 518 double newPhase = getPhaseAt(x+1, *i);
Chris@1090 519 double expectedPhase = oldPhase + (2.0 * M_PI * *i * incr) / m_fftSize;
Chris@1038 520 double phaseError = princarg(newPhase - expectedPhase);
Chris@1038 521 double frequency =
Chris@275 522 (sampleRate * (expectedPhase + phaseError - oldPhase))
Chris@275 523 / (2 * M_PI * incr);
Chris@1045 524 peaks[*i] = frequency;
Chris@275 525 ++phaseIndex;
Chris@275 526 }
Chris@275 527
Chris@275 528 return peaks;
Chris@275 529 }
Chris@275 530