annotate data/model/FFTModel.cpp @ 280:daf89d31f45c

* Restore Scale setting which had mistakenly disappeared from spectrum * Some tweaks to spectrum peaks * Make spectrum default to 4096/75%... or is that overdoing it? * Show harmonic cursor even during playback if in measure mode and mouse in relevant pane * Avoid crash when trying to measure a non-layer * Various adjustments to some icons to make them look better in white-on-black schemes
author Chris Cannam
date Fri, 13 Jul 2007 15:54:17 +0000
parents 522f82311e4e
children c022976d18e8
rev   line source
Chris@152 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
Chris@152 2
Chris@152 3 /*
Chris@152 4 Sonic Visualiser
Chris@152 5 An audio file viewer and annotation editor.
Chris@152 6 Centre for Digital Music, Queen Mary, University of London.
Chris@152 7 This file copyright 2006 Chris Cannam.
Chris@152 8
Chris@152 9 This program is free software; you can redistribute it and/or
Chris@152 10 modify it under the terms of the GNU General Public License as
Chris@152 11 published by the Free Software Foundation; either version 2 of the
Chris@152 12 License, or (at your option) any later version. See the file
Chris@152 13 COPYING included with this distribution for more information.
Chris@152 14 */
Chris@152 15
Chris@152 16 #include "FFTModel.h"
Chris@152 17 #include "DenseTimeValueModel.h"
Chris@152 18
Chris@183 19 #include "base/Profiler.h"
Chris@275 20 #include "base/Pitch.h"
Chris@183 21
Chris@152 22 #include <cassert>
Chris@152 23
Chris@152 24 FFTModel::FFTModel(const DenseTimeValueModel *model,
Chris@152 25 int channel,
Chris@152 26 WindowType windowType,
Chris@152 27 size_t windowSize,
Chris@152 28 size_t windowIncrement,
Chris@152 29 size_t fftSize,
Chris@152 30 bool polar,
Chris@152 31 size_t fillFromColumn) :
Chris@152 32 //!!! ZoomConstraint!
Chris@152 33 m_server(0),
Chris@152 34 m_xshift(0),
Chris@152 35 m_yshift(0)
Chris@152 36 {
Chris@152 37 m_server = FFTDataServer::getFuzzyInstance(model,
Chris@152 38 channel,
Chris@152 39 windowType,
Chris@152 40 windowSize,
Chris@152 41 windowIncrement,
Chris@152 42 fftSize,
Chris@152 43 polar,
Chris@152 44 fillFromColumn);
Chris@152 45
Chris@200 46 if (!m_server) return; // caller should check isOK()
Chris@200 47
Chris@152 48 size_t xratio = windowIncrement / m_server->getWindowIncrement();
Chris@152 49 size_t yratio = m_server->getFFTSize() / fftSize;
Chris@152 50
Chris@152 51 while (xratio > 1) {
Chris@152 52 if (xratio & 0x1) {
Chris@152 53 std::cerr << "ERROR: FFTModel: Window increment ratio "
Chris@152 54 << windowIncrement << " / "
Chris@152 55 << m_server->getWindowIncrement()
Chris@152 56 << " must be a power of two" << std::endl;
Chris@152 57 assert(!(xratio & 0x1));
Chris@152 58 }
Chris@152 59 ++m_xshift;
Chris@152 60 xratio >>= 1;
Chris@152 61 }
Chris@152 62
Chris@152 63 while (yratio > 1) {
Chris@152 64 if (yratio & 0x1) {
Chris@152 65 std::cerr << "ERROR: FFTModel: FFT size ratio "
Chris@152 66 << m_server->getFFTSize() << " / " << fftSize
Chris@152 67 << " must be a power of two" << std::endl;
Chris@152 68 assert(!(yratio & 0x1));
Chris@152 69 }
Chris@152 70 ++m_yshift;
Chris@152 71 yratio >>= 1;
Chris@152 72 }
Chris@152 73 }
Chris@152 74
Chris@152 75 FFTModel::~FFTModel()
Chris@152 76 {
Chris@200 77 if (m_server) FFTDataServer::releaseInstance(m_server);
Chris@152 78 }
Chris@152 79
Chris@152 80 size_t
Chris@152 81 FFTModel::getSampleRate() const
Chris@152 82 {
Chris@152 83 return isOK() ? m_server->getModel()->getSampleRate() : 0;
Chris@152 84 }
Chris@152 85
Chris@152 86 void
Chris@182 87 FFTModel::getColumn(size_t x, Column &result) const
Chris@152 88 {
Chris@183 89 Profiler profiler("FFTModel::getColumn", false);
Chris@183 90
Chris@152 91 result.clear();
Chris@152 92 size_t height(getHeight());
Chris@152 93 for (size_t y = 0; y < height; ++y) {
Chris@152 94 result.push_back(const_cast<FFTModel *>(this)->getMagnitudeAt(x, y));
Chris@152 95 }
Chris@152 96 }
Chris@152 97
Chris@152 98 QString
Chris@152 99 FFTModel::getBinName(size_t n) const
Chris@152 100 {
Chris@152 101 size_t sr = getSampleRate();
Chris@152 102 if (!sr) return "";
Chris@204 103 QString name = tr("%1 Hz").arg((n * sr) / ((getHeight()-1) * 2));
Chris@152 104 return name;
Chris@152 105 }
Chris@152 106
Chris@275 107 bool
Chris@275 108 FFTModel::estimateStableFrequency(size_t x, size_t y, float &frequency)
Chris@275 109 {
Chris@275 110 if (!isOK()) return false;
Chris@275 111
Chris@275 112 size_t sampleRate = m_server->getModel()->getSampleRate();
Chris@275 113
Chris@275 114 size_t fftSize = m_server->getFFTSize() >> m_yshift;
Chris@275 115 frequency = (float(y) * sampleRate) / fftSize;
Chris@275 116
Chris@275 117 if (x+1 >= getWidth()) return false;
Chris@275 118
Chris@275 119 // At frequency f, a phase shift of 2pi (one cycle) happens in 1/f sec.
Chris@275 120 // At hopsize h and sample rate sr, one hop happens in h/sr sec.
Chris@275 121 // At window size w, for bin b, f is b*sr/w.
Chris@275 122 // thus 2pi phase shift happens in w/(b*sr) sec.
Chris@275 123 // We need to know what phase shift we expect from h/sr sec.
Chris@275 124 // -> 2pi * ((h/sr) / (w/(b*sr)))
Chris@275 125 // = 2pi * ((h * b * sr) / (w * sr))
Chris@275 126 // = 2pi * (h * b) / w.
Chris@275 127
Chris@275 128 float oldPhase = getPhaseAt(x, y);
Chris@275 129 float newPhase = getPhaseAt(x+1, y);
Chris@275 130
Chris@275 131 size_t incr = getResolution();
Chris@275 132
Chris@275 133 float expectedPhase = oldPhase + (2.0 * M_PI * y * incr) / fftSize;
Chris@275 134
Chris@275 135 float phaseError = princargf(newPhase - expectedPhase);
Chris@275 136
Chris@275 137 // bool stable = (fabsf(phaseError) < (1.1f * (m_windowIncrement * M_PI) / m_fftSize));
Chris@275 138
Chris@275 139 // The new frequency estimate based on the phase error resulting
Chris@275 140 // from assuming the "native" frequency of this bin
Chris@275 141
Chris@275 142 frequency =
Chris@275 143 (sampleRate * (expectedPhase + phaseError - oldPhase)) /
Chris@275 144 (2 * M_PI * incr);
Chris@275 145
Chris@275 146 return true;
Chris@275 147 }
Chris@275 148
Chris@275 149 FFTModel::PeakLocationSet
Chris@275 150 FFTModel::getPeaks(PeakPickType type, size_t x, size_t ymin, size_t ymax)
Chris@275 151 {
Chris@275 152 FFTModel::PeakLocationSet peaks;
Chris@275 153 if (!isOK()) return peaks;
Chris@275 154
Chris@275 155 if (ymax == 0 || ymax > getHeight() - 1) {
Chris@275 156 ymax = getHeight() - 1;
Chris@275 157 }
Chris@275 158
Chris@275 159 Column values;
Chris@275 160
Chris@275 161 if (type == AllPeaks) {
Chris@275 162 for (size_t y = ymin; y <= ymax; ++y) {
Chris@275 163 values.push_back(getMagnitudeAt(x, y));
Chris@275 164 }
Chris@275 165 size_t i = 0;
Chris@275 166 for (size_t bin = ymin; bin <= ymax; ++bin) {
Chris@275 167 if ((i == 0 || values[i] > values[i-1]) &&
Chris@275 168 (i == values.size()-1 || values[i] >= values[i+1])) {
Chris@275 169 peaks.insert(bin);
Chris@275 170 }
Chris@275 171 ++i;
Chris@275 172 }
Chris@275 173 return peaks;
Chris@275 174 }
Chris@275 175
Chris@275 176 getColumn(x, values);
Chris@275 177
Chris@275 178 // For peak picking we use a moving median window, picking the
Chris@275 179 // highest value within each continuous region of values that
Chris@275 180 // exceed the median. For pitch adaptivity, we adjust the window
Chris@275 181 // size to a roughly constant pitch range (about four tones).
Chris@275 182
Chris@275 183 size_t sampleRate = getSampleRate();
Chris@275 184
Chris@275 185 std::deque<float> window;
Chris@275 186 std::vector<size_t> inrange;
Chris@280 187 float dist = 0.5;
Chris@280 188 size_t medianWinSize = getPeakPickWindowSize(type, sampleRate, ymin, dist);
Chris@275 189 size_t halfWin = medianWinSize/2;
Chris@275 190
Chris@275 191 size_t binmin;
Chris@275 192 if (ymin > halfWin) binmin = ymin - halfWin;
Chris@275 193 else binmin = 0;
Chris@275 194
Chris@275 195 size_t binmax;
Chris@275 196 if (ymax + halfWin < values.size()) binmax = ymax + halfWin;
Chris@275 197 else binmax = values.size()-1;
Chris@275 198
Chris@275 199 for (size_t bin = binmin; bin <= binmax; ++bin) {
Chris@275 200
Chris@275 201 float value = values[bin];
Chris@275 202
Chris@275 203 window.push_back(value);
Chris@275 204
Chris@280 205 // so-called median will actually be the dist*100'th percentile
Chris@280 206 medianWinSize = getPeakPickWindowSize(type, sampleRate, bin, dist);
Chris@275 207 halfWin = medianWinSize/2;
Chris@275 208
Chris@275 209 while (window.size() > medianWinSize) window.pop_front();
Chris@275 210
Chris@275 211 if (type == MajorPitchAdaptivePeaks) {
Chris@275 212 if (ymax + halfWin < values.size()) binmax = ymax + halfWin;
Chris@275 213 else binmax = values.size()-1;
Chris@275 214 }
Chris@275 215
Chris@275 216 std::deque<float> sorted(window);
Chris@275 217 std::sort(sorted.begin(), sorted.end());
Chris@280 218 float median = sorted[int(sorted.size() * dist)];
Chris@275 219
Chris@275 220 if (value > median) {
Chris@275 221 inrange.push_back(bin);
Chris@275 222 }
Chris@275 223
Chris@275 224 if (value <= median || bin+1 == values.size()) {
Chris@275 225 size_t peakbin = 0;
Chris@275 226 float peakval = 0.f;
Chris@275 227 if (!inrange.empty()) {
Chris@275 228 for (size_t i = 0; i < inrange.size(); ++i) {
Chris@275 229 if (i == 0 || values[inrange[i]] > peakval) {
Chris@275 230 peakval = values[inrange[i]];
Chris@275 231 peakbin = inrange[i];
Chris@275 232 }
Chris@275 233 }
Chris@275 234 inrange.clear();
Chris@275 235 if (peakbin >= ymin && peakbin <= ymax) {
Chris@275 236 peaks.insert(peakbin);
Chris@275 237 }
Chris@275 238 }
Chris@275 239 }
Chris@275 240 }
Chris@275 241
Chris@275 242 return peaks;
Chris@275 243 }
Chris@275 244
Chris@275 245 size_t
Chris@280 246 FFTModel::getPeakPickWindowSize(PeakPickType type, size_t sampleRate,
Chris@280 247 size_t bin, float &percentile) const
Chris@275 248 {
Chris@280 249 percentile = 0.5;
Chris@275 250 if (type == MajorPeaks) return 10;
Chris@275 251 if (bin == 0) return 3;
Chris@280 252
Chris@275 253 size_t fftSize = m_server->getFFTSize() >> m_yshift;
Chris@275 254 float binfreq = (sampleRate * bin) / fftSize;
Chris@275 255 float hifreq = Pitch::getFrequencyForPitch(73, 0, binfreq);
Chris@280 256
Chris@275 257 int hibin = lrintf((hifreq * fftSize) / sampleRate);
Chris@275 258 int medianWinSize = hibin - bin;
Chris@275 259 if (medianWinSize < 3) medianWinSize = 3;
Chris@280 260
Chris@280 261 percentile = 0.5 + (binfreq / sampleRate);
Chris@280 262
Chris@275 263 return medianWinSize;
Chris@275 264 }
Chris@275 265
Chris@275 266 FFTModel::PeakSet
Chris@275 267 FFTModel::getPeakFrequencies(PeakPickType type, size_t x,
Chris@275 268 size_t ymin, size_t ymax)
Chris@275 269 {
Chris@275 270 PeakSet peaks;
Chris@275 271 if (!isOK()) return peaks;
Chris@275 272 PeakLocationSet locations = getPeaks(type, x, ymin, ymax);
Chris@275 273
Chris@275 274 size_t sampleRate = getSampleRate();
Chris@275 275 size_t fftSize = m_server->getFFTSize() >> m_yshift;
Chris@275 276 size_t incr = getResolution();
Chris@275 277
Chris@275 278 // This duplicates some of the work of estimateStableFrequency to
Chris@275 279 // allow us to retrieve the phases in two separate vertical
Chris@275 280 // columns, instead of jumping back and forth between columns x and
Chris@275 281 // x+1, which may be significantly slower if re-seeking is needed
Chris@275 282
Chris@275 283 std::vector<float> phases;
Chris@275 284 for (PeakLocationSet::iterator i = locations.begin();
Chris@275 285 i != locations.end(); ++i) {
Chris@275 286 phases.push_back(getPhaseAt(x, *i));
Chris@275 287 }
Chris@275 288
Chris@275 289 size_t phaseIndex = 0;
Chris@275 290 for (PeakLocationSet::iterator i = locations.begin();
Chris@275 291 i != locations.end(); ++i) {
Chris@275 292 float oldPhase = phases[phaseIndex];
Chris@275 293 float newPhase = getPhaseAt(x+1, *i);
Chris@275 294 float expectedPhase = oldPhase + (2.0 * M_PI * *i * incr) / fftSize;
Chris@275 295 float phaseError = princargf(newPhase - expectedPhase);
Chris@275 296 float frequency =
Chris@275 297 (sampleRate * (expectedPhase + phaseError - oldPhase))
Chris@275 298 / (2 * M_PI * incr);
Chris@275 299 // bool stable = (fabsf(phaseError) < (1.1f * (incr * M_PI) / fftSize));
Chris@275 300 // if (stable)
Chris@275 301 peaks[*i] = frequency;
Chris@275 302 ++phaseIndex;
Chris@275 303 }
Chris@275 304
Chris@275 305 return peaks;
Chris@275 306 }
Chris@275 307
Chris@152 308 Model *
Chris@152 309 FFTModel::clone() const
Chris@152 310 {
Chris@152 311 return new FFTModel(*this);
Chris@152 312 }
Chris@152 313
Chris@152 314 FFTModel::FFTModel(const FFTModel &model) :
Chris@152 315 DenseThreeDimensionalModel(),
Chris@152 316 m_server(model.m_server),
Chris@152 317 m_xshift(model.m_xshift),
Chris@152 318 m_yshift(model.m_yshift)
Chris@152 319 {
Chris@152 320 FFTDataServer::claimInstance(m_server);
Chris@152 321 }
Chris@152 322