annotate data/model/FFTModel.cpp @ 1790:dd51797e528e time-frequency-boxes

Some tidying
author Chris Cannam
date Wed, 25 Sep 2019 09:43:34 +0100
parents 4eac4bf35b45
children 1b688ab5f1b3
rev   line source
Chris@152 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
Chris@152 2
Chris@152 3 /*
Chris@152 4 Sonic Visualiser
Chris@152 5 An audio file viewer and annotation editor.
Chris@152 6 Centre for Digital Music, Queen Mary, University of London.
Chris@152 7 This file copyright 2006 Chris Cannam.
Chris@152 8
Chris@152 9 This program is free software; you can redistribute it and/or
Chris@152 10 modify it under the terms of the GNU General Public License as
Chris@152 11 published by the Free Software Foundation; either version 2 of the
Chris@152 12 License, or (at your option) any later version. See the file
Chris@152 13 COPYING included with this distribution for more information.
Chris@152 14 */
Chris@152 15
Chris@152 16 #include "FFTModel.h"
Chris@152 17 #include "DenseTimeValueModel.h"
Chris@152 18
Chris@183 19 #include "base/Profiler.h"
Chris@275 20 #include "base/Pitch.h"
Chris@1256 21 #include "base/HitCount.h"
Chris@1428 22 #include "base/Debug.h"
Chris@1573 23 #include "base/MovingMedian.h"
Chris@183 24
Chris@402 25 #include <algorithm>
Chris@402 26
Chris@152 27 #include <cassert>
Chris@1090 28 #include <deque>
Chris@152 29
Chris@1090 30 using namespace std;
Chris@1090 31
Chris@1256 32 static HitCount inSmallCache("FFTModel: Small FFT cache");
Chris@1256 33 static HitCount inSourceCache("FFTModel: Source data cache");
Chris@1256 34
Chris@1744 35 FFTModel::FFTModel(ModelId modelId,
Chris@152 36 int channel,
Chris@152 37 WindowType windowType,
Chris@929 38 int windowSize,
Chris@929 39 int windowIncrement,
Chris@1090 40 int fftSize) :
Chris@1744 41 m_model(modelId),
Chris@1780 42 m_sampleRate(0),
Chris@1090 43 m_channel(channel),
Chris@1090 44 m_windowType(windowType),
Chris@1090 45 m_windowSize(windowSize),
Chris@1090 46 m_windowIncrement(windowIncrement),
Chris@1090 47 m_fftSize(fftSize),
Chris@1091 48 m_windower(windowType, windowSize),
Chris@1093 49 m_fft(fftSize),
Chris@1780 50 m_maximumFrequency(0.0),
Chris@1371 51 m_cacheWriteIndex(0),
Chris@1093 52 m_cacheSize(3)
Chris@152 53 {
Chris@1371 54 while (m_cached.size() < m_cacheSize) {
Chris@1371 55 m_cached.push_back({ -1, cvec(m_fftSize / 2 + 1) });
Chris@1371 56 }
Chris@1371 57
Chris@1091 58 if (m_windowSize > m_fftSize) {
Chris@1428 59 SVCERR << "ERROR: FFTModel::FFTModel: window size (" << m_windowSize
Chris@1680 60 << ") may not exceed FFT size (" << m_fftSize << ")" << endl;
Chris@1680 61 throw invalid_argument("FFTModel window size may not exceed FFT size");
Chris@1091 62 }
Chris@1133 63
Chris@1270 64 m_fft.initFloat();
Chris@1270 65
Chris@1744 66 auto model = ModelById::getAs<DenseTimeValueModel>(m_model);
Chris@1744 67 if (model) {
Chris@1780 68 m_sampleRate = model->getSampleRate();
Chris@1780 69
Chris@1752 70 connect(model.get(), SIGNAL(modelChanged(ModelId)),
Chris@1752 71 this, SIGNAL(modelChanged(ModelId)));
Chris@1752 72 connect(model.get(), SIGNAL(modelChangedWithin(ModelId, sv_frame_t, sv_frame_t)),
Chris@1752 73 this, SIGNAL(modelChangedWithin(ModelId, sv_frame_t, sv_frame_t)));
Chris@1784 74 } else {
Chris@1784 75 m_error = QString("Model #%1 is not available").arg(m_model.untyped);
Chris@1744 76 }
Chris@152 77 }
Chris@152 78
Chris@152 79 FFTModel::~FFTModel()
Chris@152 80 {
Chris@152 81 }
Chris@152 82
Chris@1744 83 bool
Chris@1744 84 FFTModel::isOK() const
Chris@360 85 {
Chris@1744 86 auto model = ModelById::getAs<DenseTimeValueModel>(m_model);
Chris@1784 87 if (!model) {
Chris@1784 88 m_error = QString("Model #%1 is not available").arg(m_model.untyped);
Chris@1784 89 return false;
Chris@1784 90 }
Chris@1784 91 if (!model->isOK()) {
Chris@1784 92 m_error = QString("Model #%1 is not OK").arg(m_model.untyped);
Chris@1784 93 return false;
Chris@1784 94 }
Chris@1784 95 return true;
Chris@1744 96 }
Chris@1744 97
Chris@1744 98 int
Chris@1744 99 FFTModel::getCompletion() const
Chris@1744 100 {
Chris@1744 101 int c = 100;
Chris@1744 102 auto model = ModelById::getAs<DenseTimeValueModel>(m_model);
Chris@1744 103 if (model) {
Chris@1744 104 if (model->isReady(&c)) return 100;
Chris@360 105 }
Chris@1744 106 return c;
Chris@1744 107 }
Chris@1744 108
Chris@1780 109 void
Chris@1780 110 FFTModel::setMaximumFrequency(double freq)
Chris@1780 111 {
Chris@1780 112 m_maximumFrequency = freq;
Chris@360 113 }
Chris@360 114
Chris@1091 115 int
Chris@1091 116 FFTModel::getWidth() const
Chris@1091 117 {
Chris@1744 118 auto model = ModelById::getAs<DenseTimeValueModel>(m_model);
Chris@1744 119 if (!model) return 0;
Chris@1744 120 return int((model->getEndFrame() - model->getStartFrame())
Chris@1091 121 / m_windowIncrement) + 1;
Chris@1091 122 }
Chris@1091 123
Chris@1091 124 int
Chris@1091 125 FFTModel::getHeight() const
Chris@1091 126 {
Chris@1780 127 int height = m_fftSize / 2 + 1;
Chris@1780 128 if (m_maximumFrequency != 0.0) {
Chris@1780 129 int maxBin = int(ceil(m_maximumFrequency * m_fftSize) / m_sampleRate);
Chris@1780 130 if (maxBin >= 0 && maxBin < height) {
Chris@1780 131 return maxBin + 1;
Chris@1780 132 }
Chris@1780 133 }
Chris@1780 134 return height;
Chris@1091 135 }
Chris@1091 136
Chris@152 137 QString
Chris@929 138 FFTModel::getBinName(int n) const
Chris@152 139 {
Chris@1790 140 return tr("%1 Hz").arg(getBinValue(n));
Chris@1790 141 }
Chris@1790 142
Chris@1790 143 float
Chris@1790 144 FFTModel::getBinValue(int n) const
Chris@1790 145 {
Chris@1790 146 return float((m_sampleRate * n) / m_fftSize);
Chris@152 147 }
Chris@152 148
Chris@1091 149 FFTModel::Column
Chris@1091 150 FFTModel::getColumn(int x) const
Chris@1091 151 {
Chris@1091 152 auto cplx = getFFTColumn(x);
Chris@1091 153 Column col;
Chris@1154 154 col.reserve(cplx.size());
Chris@1091 155 for (auto c: cplx) col.push_back(abs(c));
Chris@1319 156 return col;
Chris@1091 157 }
Chris@1091 158
Chris@1200 159 FFTModel::Column
Chris@1200 160 FFTModel::getPhases(int x) const
Chris@1200 161 {
Chris@1200 162 auto cplx = getFFTColumn(x);
Chris@1200 163 Column col;
Chris@1200 164 col.reserve(cplx.size());
Chris@1201 165 for (auto c: cplx) {
Chris@1201 166 col.push_back(arg(c));
Chris@1201 167 }
Chris@1319 168 return col;
Chris@1200 169 }
Chris@1200 170
Chris@1091 171 float
Chris@1091 172 FFTModel::getMagnitudeAt(int x, int y) const
Chris@1091 173 {
Chris@1569 174 if (x < 0 || x >= getWidth() || y < 0 || y >= getHeight()) {
Chris@1569 175 return 0.f;
Chris@1569 176 }
Chris@1093 177 auto col = getFFTColumn(x);
Chris@1093 178 return abs(col[y]);
Chris@1091 179 }
Chris@1091 180
Chris@1091 181 float
Chris@1091 182 FFTModel::getMaximumMagnitudeAt(int x) const
Chris@1091 183 {
Chris@1091 184 Column col(getColumn(x));
Chris@1092 185 float max = 0.f;
Chris@1154 186 int n = int(col.size());
Chris@1154 187 for (int i = 0; i < n; ++i) {
Chris@1092 188 if (col[i] > max) max = col[i];
Chris@1092 189 }
Chris@1092 190 return max;
Chris@1091 191 }
Chris@1091 192
Chris@1091 193 float
Chris@1091 194 FFTModel::getPhaseAt(int x, int y) const
Chris@1091 195 {
Chris@1093 196 if (x < 0 || x >= getWidth() || y < 0 || y >= getHeight()) return 0.f;
Chris@1091 197 return arg(getFFTColumn(x)[y]);
Chris@1091 198 }
Chris@1091 199
Chris@1091 200 void
Chris@1091 201 FFTModel::getValuesAt(int x, int y, float &re, float &im) const
Chris@1091 202 {
Chris@1780 203 if (x < 0 || x >= getWidth() || y < 0 || y >= getHeight()) {
Chris@1780 204 re = 0.f;
Chris@1780 205 im = 0.f;
Chris@1780 206 return;
Chris@1780 207 }
Chris@1091 208 auto col = getFFTColumn(x);
Chris@1091 209 re = col[y].real();
Chris@1091 210 im = col[y].imag();
Chris@1091 211 }
Chris@1091 212
Chris@1091 213 bool
Chris@1091 214 FFTModel::getMagnitudesAt(int x, float *values, int minbin, int count) const
Chris@1091 215 {
Chris@1091 216 if (count == 0) count = getHeight();
Chris@1091 217 auto col = getFFTColumn(x);
Chris@1091 218 for (int i = 0; i < count; ++i) {
Chris@1091 219 values[i] = abs(col[minbin + i]);
Chris@1091 220 }
Chris@1091 221 return true;
Chris@1091 222 }
Chris@1091 223
Chris@1091 224 bool
Chris@1091 225 FFTModel::getPhasesAt(int x, float *values, int minbin, int count) const
Chris@1091 226 {
Chris@1091 227 if (count == 0) count = getHeight();
Chris@1091 228 auto col = getFFTColumn(x);
Chris@1091 229 for (int i = 0; i < count; ++i) {
Chris@1091 230 values[i] = arg(col[minbin + i]);
Chris@1091 231 }
Chris@1091 232 return true;
Chris@1091 233 }
Chris@1091 234
Chris@1091 235 bool
Chris@1091 236 FFTModel::getValuesAt(int x, float *reals, float *imags, int minbin, int count) const
Chris@1091 237 {
Chris@1091 238 if (count == 0) count = getHeight();
Chris@1091 239 auto col = getFFTColumn(x);
Chris@1091 240 for (int i = 0; i < count; ++i) {
Chris@1091 241 reals[i] = col[minbin + i].real();
Chris@1091 242 }
Chris@1091 243 for (int i = 0; i < count; ++i) {
Chris@1091 244 imags[i] = col[minbin + i].imag();
Chris@1091 245 }
Chris@1091 246 return true;
Chris@1091 247 }
Chris@1091 248
Chris@1326 249 FFTModel::fvec
Chris@1091 250 FFTModel::getSourceSamples(int column) const
Chris@1091 251 {
Chris@1094 252 // m_fftSize may be greater than m_windowSize, but not the reverse
Chris@1094 253
Chris@1094 254 // cerr << "getSourceSamples(" << column << ")" << endl;
Chris@1094 255
Chris@1091 256 auto range = getSourceSampleRange(column);
Chris@1094 257 auto data = getSourceData(range);
Chris@1094 258
Chris@1091 259 int off = (m_fftSize - m_windowSize) / 2;
Chris@1094 260
Chris@1094 261 if (off == 0) {
Chris@1094 262 return data;
Chris@1094 263 } else {
Chris@1094 264 vector<float> pad(off, 0.f);
Chris@1326 265 fvec padded;
Chris@1094 266 padded.reserve(m_fftSize);
Chris@1094 267 padded.insert(padded.end(), pad.begin(), pad.end());
Chris@1094 268 padded.insert(padded.end(), data.begin(), data.end());
Chris@1094 269 padded.insert(padded.end(), pad.begin(), pad.end());
Chris@1094 270 return padded;
Chris@1094 271 }
Chris@1094 272 }
Chris@1094 273
Chris@1326 274 FFTModel::fvec
Chris@1094 275 FFTModel::getSourceData(pair<sv_frame_t, sv_frame_t> range) const
Chris@1094 276 {
Chris@1094 277 // cerr << "getSourceData(" << range.first << "," << range.second
Chris@1094 278 // << "): saved range is (" << m_savedData.range.first
Chris@1094 279 // << "," << m_savedData.range.second << ")" << endl;
Chris@1094 280
Chris@1100 281 if (m_savedData.range == range) {
Chris@1256 282 inSourceCache.hit();
Chris@1100 283 return m_savedData.data;
Chris@1100 284 }
Chris@1094 285
Chris@1270 286 Profiler profiler("FFTModel::getSourceData (cache miss)");
Chris@1270 287
Chris@1094 288 if (range.first < m_savedData.range.second &&
Chris@1094 289 range.first >= m_savedData.range.first &&
Chris@1094 290 range.second > m_savedData.range.second) {
Chris@1094 291
Chris@1256 292 inSourceCache.partial();
Chris@1256 293
Chris@1100 294 sv_frame_t discard = range.first - m_savedData.range.first;
Chris@1100 295
Chris@1457 296 fvec data;
Chris@1457 297 data.reserve(range.second - range.first);
Chris@1094 298
Chris@1457 299 data.insert(data.end(),
Chris@1457 300 m_savedData.data.begin() + discard,
Chris@1457 301 m_savedData.data.end());
Chris@1100 302
Chris@1457 303 fvec rest = getSourceDataUncached
Chris@1457 304 ({ m_savedData.range.second, range.second });
Chris@1457 305
Chris@1457 306 data.insert(data.end(), rest.begin(), rest.end());
Chris@1094 307
Chris@1457 308 m_savedData = { range, data };
Chris@1457 309 return data;
Chris@1095 310
Chris@1095 311 } else {
Chris@1095 312
Chris@1256 313 inSourceCache.miss();
Chris@1256 314
Chris@1095 315 auto data = getSourceDataUncached(range);
Chris@1095 316 m_savedData = { range, data };
Chris@1095 317 return data;
Chris@1094 318 }
Chris@1095 319 }
Chris@1094 320
Chris@1326 321 FFTModel::fvec
Chris@1095 322 FFTModel::getSourceDataUncached(pair<sv_frame_t, sv_frame_t> range) const
Chris@1095 323 {
Chris@1457 324 Profiler profiler("FFTModel::getSourceDataUncached");
Chris@1688 325
Chris@1744 326 auto model = ModelById::getAs<DenseTimeValueModel>(m_model);
Chris@1744 327 if (!model) return {};
Chris@1457 328
Chris@1091 329 decltype(range.first) pfx = 0;
Chris@1091 330 if (range.first < 0) {
Chris@1091 331 pfx = -range.first;
Chris@1091 332 range = { 0, range.second };
Chris@1091 333 }
Chris@1096 334
Chris@1744 335 auto data = model->getData(m_channel,
Chris@1744 336 range.first,
Chris@1744 337 range.second - range.first);
Chris@1773 338 /*
Chris@1281 339 if (data.empty()) {
Chris@1281 340 SVDEBUG << "NOTE: empty source data for range (" << range.first << ","
Chris@1281 341 << range.second << ") (model end frame "
Chris@1744 342 << model->getEndFrame() << ")" << endl;
Chris@1281 343 }
Chris@1773 344 */
Chris@1281 345
Chris@1096 346 // don't return a partial frame
Chris@1096 347 data.resize(range.second - range.first, 0.f);
Chris@1096 348
Chris@1096 349 if (pfx > 0) {
Chris@1096 350 vector<float> pad(pfx, 0.f);
Chris@1096 351 data.insert(data.begin(), pad.begin(), pad.end());
Chris@1096 352 }
Chris@1096 353
Chris@1091 354 if (m_channel == -1) {
Chris@1744 355 int channels = model->getChannelCount();
Chris@1429 356 if (channels > 1) {
Chris@1096 357 int n = int(data.size());
Chris@1096 358 float factor = 1.f / float(channels);
Chris@1100 359 // use mean instead of sum for fft model input
Chris@1429 360 for (int i = 0; i < n; ++i) {
Chris@1429 361 data[i] *= factor;
Chris@1429 362 }
Chris@1429 363 }
Chris@1091 364 }
Chris@1094 365
Chris@1094 366 return data;
Chris@1091 367 }
Chris@1091 368
Chris@1780 369 FFTModel::cvec
Chris@1093 370 FFTModel::getFFTColumn(int n) const
Chris@1091 371 {
Chris@1780 372 int h = getHeight();
Chris@1780 373 bool truncate = (h < m_fftSize / 2 + 1);
Chris@1780 374
Chris@1258 375 // The small cache (i.e. the m_cached deque) is for cases where
Chris@1258 376 // values are looked up individually, and for e.g. peak-frequency
Chris@1258 377 // spectrograms where values from two consecutive columns are
Chris@1257 378 // needed at once. This cache gets essentially no hits when
Chris@1258 379 // scrolling through a magnitude spectrogram, but 95%+ hits with a
Chris@1569 380 // peak-frequency spectrogram or spectrum.
Chris@1257 381 for (const auto &incache : m_cached) {
Chris@1093 382 if (incache.n == n) {
Chris@1256 383 inSmallCache.hit();
Chris@1780 384 if (!truncate) {
Chris@1780 385 return incache.col;
Chris@1780 386 } else {
Chris@1780 387 return cvec(incache.col.begin(), incache.col.begin() + h);
Chris@1780 388 }
Chris@1093 389 }
Chris@1093 390 }
Chris@1256 391 inSmallCache.miss();
Chris@1258 392
Chris@1258 393 Profiler profiler("FFTModel::getFFTColumn (cache miss)");
Chris@1093 394
Chris@1093 395 auto samples = getSourceSamples(n);
Chris@1567 396 m_windower.cut(samples.data() + (m_fftSize - m_windowSize) / 2);
Chris@1270 397 breakfastquay::v_fftshift(samples.data(), m_fftSize);
Chris@1270 398
Chris@1371 399 cvec &col = m_cached[m_cacheWriteIndex].col;
Chris@1270 400
Chris@1270 401 m_fft.forwardInterleaved(samples.data(),
Chris@1270 402 reinterpret_cast<float *>(col.data()));
Chris@1093 403
Chris@1371 404 m_cached[m_cacheWriteIndex].n = n;
Chris@1371 405
Chris@1371 406 m_cacheWriteIndex = (m_cacheWriteIndex + 1) % m_cacheSize;
Chris@1093 407
Chris@1780 408 if (!truncate) {
Chris@1780 409 return col;
Chris@1780 410 } else {
Chris@1780 411 return cvec(col.begin(), col.begin() + h);
Chris@1780 412 }
Chris@1091 413 }
Chris@1091 414
Chris@275 415 bool
Chris@1045 416 FFTModel::estimateStableFrequency(int x, int y, double &frequency)
Chris@275 417 {
Chris@275 418 if (!isOK()) return false;
Chris@275 419
Chris@1090 420 frequency = double(y * getSampleRate()) / m_fftSize;
Chris@275 421
Chris@275 422 if (x+1 >= getWidth()) return false;
Chris@275 423
Chris@275 424 // At frequency f, a phase shift of 2pi (one cycle) happens in 1/f sec.
Chris@275 425 // At hopsize h and sample rate sr, one hop happens in h/sr sec.
Chris@275 426 // At window size w, for bin b, f is b*sr/w.
Chris@275 427 // thus 2pi phase shift happens in w/(b*sr) sec.
Chris@275 428 // We need to know what phase shift we expect from h/sr sec.
Chris@275 429 // -> 2pi * ((h/sr) / (w/(b*sr)))
Chris@275 430 // = 2pi * ((h * b * sr) / (w * sr))
Chris@275 431 // = 2pi * (h * b) / w.
Chris@275 432
Chris@1038 433 double oldPhase = getPhaseAt(x, y);
Chris@1038 434 double newPhase = getPhaseAt(x+1, y);
Chris@275 435
Chris@929 436 int incr = getResolution();
Chris@275 437
Chris@1090 438 double expectedPhase = oldPhase + (2.0 * M_PI * y * incr) / m_fftSize;
Chris@275 439
Chris@1038 440 double phaseError = princarg(newPhase - expectedPhase);
Chris@275 441
Chris@275 442 // The new frequency estimate based on the phase error resulting
Chris@275 443 // from assuming the "native" frequency of this bin
Chris@275 444
Chris@275 445 frequency =
Chris@1090 446 (getSampleRate() * (expectedPhase + phaseError - oldPhase)) /
Chris@1045 447 (2.0 * M_PI * incr);
Chris@275 448
Chris@275 449 return true;
Chris@275 450 }
Chris@275 451
Chris@275 452 FFTModel::PeakLocationSet
Chris@1191 453 FFTModel::getPeaks(PeakPickType type, int x, int ymin, int ymax) const
Chris@275 454 {
Chris@551 455 Profiler profiler("FFTModel::getPeaks");
Chris@1575 456
Chris@275 457 FFTModel::PeakLocationSet peaks;
Chris@275 458 if (!isOK()) return peaks;
Chris@275 459
Chris@275 460 if (ymax == 0 || ymax > getHeight() - 1) {
Chris@275 461 ymax = getHeight() - 1;
Chris@275 462 }
Chris@275 463
Chris@275 464 if (type == AllPeaks) {
Chris@551 465 int minbin = ymin;
Chris@551 466 if (minbin > 0) minbin = minbin - 1;
Chris@551 467 int maxbin = ymax;
Chris@551 468 if (maxbin < getHeight() - 1) maxbin = maxbin + 1;
Chris@551 469 const int n = maxbin - minbin + 1;
Chris@1218 470 float *values = new float[n];
Chris@551 471 getMagnitudesAt(x, values, minbin, maxbin - minbin + 1);
Chris@929 472 for (int bin = ymin; bin <= ymax; ++bin) {
Chris@551 473 if (bin == minbin || bin == maxbin) continue;
Chris@551 474 if (values[bin - minbin] > values[bin - minbin - 1] &&
Chris@551 475 values[bin - minbin] > values[bin - minbin + 1]) {
Chris@275 476 peaks.insert(bin);
Chris@275 477 }
Chris@275 478 }
Chris@1218 479 delete[] values;
Chris@275 480 return peaks;
Chris@275 481 }
Chris@275 482
Chris@551 483 Column values = getColumn(x);
Chris@1154 484 int nv = int(values.size());
Chris@275 485
Chris@500 486 float mean = 0.f;
Chris@1154 487 for (int i = 0; i < nv; ++i) mean += values[i];
Chris@1154 488 if (nv > 0) mean = mean / float(values.size());
Chris@1038 489
Chris@275 490 // For peak picking we use a moving median window, picking the
Chris@275 491 // highest value within each continuous region of values that
Chris@275 492 // exceed the median. For pitch adaptivity, we adjust the window
Chris@275 493 // size to a roughly constant pitch range (about four tones).
Chris@275 494
Chris@1040 495 sv_samplerate_t sampleRate = getSampleRate();
Chris@275 496
Chris@1090 497 vector<int> inrange;
Chris@1576 498 double dist = 0.5;
Chris@500 499
Chris@929 500 int medianWinSize = getPeakPickWindowSize(type, sampleRate, ymin, dist);
Chris@929 501 int halfWin = medianWinSize/2;
Chris@275 502
Chris@1573 503 MovingMedian<float> window(medianWinSize);
Chris@1573 504
Chris@929 505 int binmin;
Chris@275 506 if (ymin > halfWin) binmin = ymin - halfWin;
Chris@275 507 else binmin = 0;
Chris@275 508
Chris@929 509 int binmax;
Chris@1154 510 if (ymax + halfWin < nv) binmax = ymax + halfWin;
Chris@1154 511 else binmax = nv - 1;
Chris@275 512
Chris@929 513 int prevcentre = 0;
Chris@500 514
Chris@929 515 for (int bin = binmin; bin <= binmax; ++bin) {
Chris@275 516
Chris@275 517 float value = values[bin];
Chris@275 518
Chris@280 519 // so-called median will actually be the dist*100'th percentile
Chris@280 520 medianWinSize = getPeakPickWindowSize(type, sampleRate, bin, dist);
Chris@275 521 halfWin = medianWinSize/2;
Chris@275 522
Chris@1573 523 int actualSize = std::min(medianWinSize, bin - binmin + 1);
Chris@1573 524 window.resize(actualSize);
Chris@1573 525 window.setPercentile(dist * 100.0);
Chris@1573 526 window.push(value);
Chris@275 527
Chris@275 528 if (type == MajorPitchAdaptivePeaks) {
Chris@1154 529 if (ymax + halfWin < nv) binmax = ymax + halfWin;
Chris@1154 530 else binmax = nv - 1;
Chris@275 531 }
Chris@275 532
Chris@1573 533 float median = window.get();
Chris@275 534
Chris@929 535 int centrebin = 0;
Chris@500 536 if (bin > actualSize/2) centrebin = bin - actualSize/2;
Chris@500 537
Chris@500 538 while (centrebin > prevcentre || bin == binmin) {
Chris@275 539
Chris@500 540 if (centrebin > prevcentre) ++prevcentre;
Chris@500 541
Chris@500 542 float centre = values[prevcentre];
Chris@500 543
Chris@500 544 if (centre > median) {
Chris@500 545 inrange.push_back(centrebin);
Chris@500 546 }
Chris@500 547
Chris@1154 548 if (centre <= median || centrebin+1 == nv) {
Chris@500 549 if (!inrange.empty()) {
Chris@929 550 int peakbin = 0;
Chris@500 551 float peakval = 0.f;
Chris@929 552 for (int i = 0; i < (int)inrange.size(); ++i) {
Chris@500 553 if (i == 0 || values[inrange[i]] > peakval) {
Chris@500 554 peakval = values[inrange[i]];
Chris@500 555 peakbin = inrange[i];
Chris@500 556 }
Chris@500 557 }
Chris@500 558 inrange.clear();
Chris@500 559 if (peakbin >= ymin && peakbin <= ymax) {
Chris@500 560 peaks.insert(peakbin);
Chris@275 561 }
Chris@275 562 }
Chris@275 563 }
Chris@500 564
Chris@500 565 if (bin == binmin) break;
Chris@275 566 }
Chris@275 567 }
Chris@275 568
Chris@275 569 return peaks;
Chris@275 570 }
Chris@275 571
Chris@929 572 int
Chris@1040 573 FFTModel::getPeakPickWindowSize(PeakPickType type, sv_samplerate_t sampleRate,
Chris@1576 574 int bin, double &dist) const
Chris@275 575 {
Chris@1576 576 dist = 0.5; // dist is percentile / 100.0
Chris@275 577 if (type == MajorPeaks) return 10;
Chris@275 578 if (bin == 0) return 3;
Chris@280 579
Chris@1091 580 double binfreq = (sampleRate * bin) / m_fftSize;
Chris@1038 581 double hifreq = Pitch::getFrequencyForPitch(73, 0, binfreq);
Chris@280 582
Chris@1091 583 int hibin = int(lrint((hifreq * m_fftSize) / sampleRate));
Chris@275 584 int medianWinSize = hibin - bin;
Chris@1576 585
Chris@1575 586 if (medianWinSize < 3) {
Chris@1575 587 medianWinSize = 3;
Chris@1575 588 }
Chris@1576 589
Chris@1576 590 // We want to avoid the median window size changing too often, as
Chris@1576 591 // it requires a reallocation. So snap to a nearby round number.
Chris@1576 592
Chris@1575 593 if (medianWinSize > 20) {
Chris@1575 594 medianWinSize = (1 + medianWinSize / 10) * 10;
Chris@1575 595 }
Chris@1576 596 if (medianWinSize > 200) {
Chris@1576 597 medianWinSize = (1 + medianWinSize / 100) * 100;
Chris@1576 598 }
Chris@1576 599 if (medianWinSize > 2000) {
Chris@1576 600 medianWinSize = (1 + medianWinSize / 1000) * 1000;
Chris@1576 601 }
Chris@1576 602 if (medianWinSize > 20000) {
Chris@1576 603 medianWinSize = 20000;
Chris@1575 604 }
Chris@280 605
Chris@1576 606 if (medianWinSize < 100) {
Chris@1576 607 dist = 1.0 - (4.0 / medianWinSize);
Chris@1576 608 } else {
Chris@1576 609 dist = 1.0 - (8.0 / medianWinSize);
Chris@1576 610 }
Chris@1576 611 if (dist < 0.5) dist = 0.5;
Chris@1575 612
Chris@275 613 return medianWinSize;
Chris@275 614 }
Chris@275 615
Chris@275 616 FFTModel::PeakSet
Chris@929 617 FFTModel::getPeakFrequencies(PeakPickType type, int x,
Chris@1191 618 int ymin, int ymax) const
Chris@275 619 {
Chris@551 620 Profiler profiler("FFTModel::getPeakFrequencies");
Chris@551 621
Chris@275 622 PeakSet peaks;
Chris@275 623 if (!isOK()) return peaks;
Chris@275 624 PeakLocationSet locations = getPeaks(type, x, ymin, ymax);
Chris@275 625
Chris@1040 626 sv_samplerate_t sampleRate = getSampleRate();
Chris@929 627 int incr = getResolution();
Chris@275 628
Chris@275 629 // This duplicates some of the work of estimateStableFrequency to
Chris@275 630 // allow us to retrieve the phases in two separate vertical
Chris@275 631 // columns, instead of jumping back and forth between columns x and
Chris@275 632 // x+1, which may be significantly slower if re-seeking is needed
Chris@275 633
Chris@1090 634 vector<float> phases;
Chris@275 635 for (PeakLocationSet::iterator i = locations.begin();
Chris@275 636 i != locations.end(); ++i) {
Chris@275 637 phases.push_back(getPhaseAt(x, *i));
Chris@275 638 }
Chris@275 639
Chris@929 640 int phaseIndex = 0;
Chris@275 641 for (PeakLocationSet::iterator i = locations.begin();
Chris@275 642 i != locations.end(); ++i) {
Chris@1038 643 double oldPhase = phases[phaseIndex];
Chris@1038 644 double newPhase = getPhaseAt(x+1, *i);
Chris@1090 645 double expectedPhase = oldPhase + (2.0 * M_PI * *i * incr) / m_fftSize;
Chris@1038 646 double phaseError = princarg(newPhase - expectedPhase);
Chris@1038 647 double frequency =
Chris@275 648 (sampleRate * (expectedPhase + phaseError - oldPhase))
Chris@275 649 / (2 * M_PI * incr);
Chris@1045 650 peaks[*i] = frequency;
Chris@275 651 ++phaseIndex;
Chris@275 652 }
Chris@275 653
Chris@275 654 return peaks;
Chris@275 655 }
Chris@275 656