annotate data/model/FFTModel.cpp @ 1786:a72921e2194f time-frequency-boxes

Ensure CSV-style export from time-freq box model is in the expected format
author Chris Cannam
date Fri, 20 Sep 2019 11:24:47 +0100
parents 4eac4bf35b45
children dd51797e528e
rev   line source
Chris@152 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
Chris@152 2
Chris@152 3 /*
Chris@152 4 Sonic Visualiser
Chris@152 5 An audio file viewer and annotation editor.
Chris@152 6 Centre for Digital Music, Queen Mary, University of London.
Chris@152 7 This file copyright 2006 Chris Cannam.
Chris@152 8
Chris@152 9 This program is free software; you can redistribute it and/or
Chris@152 10 modify it under the terms of the GNU General Public License as
Chris@152 11 published by the Free Software Foundation; either version 2 of the
Chris@152 12 License, or (at your option) any later version. See the file
Chris@152 13 COPYING included with this distribution for more information.
Chris@152 14 */
Chris@152 15
Chris@152 16 #include "FFTModel.h"
Chris@152 17 #include "DenseTimeValueModel.h"
Chris@152 18
Chris@183 19 #include "base/Profiler.h"
Chris@275 20 #include "base/Pitch.h"
Chris@1256 21 #include "base/HitCount.h"
Chris@1428 22 #include "base/Debug.h"
Chris@1573 23 #include "base/MovingMedian.h"
Chris@183 24
Chris@402 25 #include <algorithm>
Chris@402 26
Chris@152 27 #include <cassert>
Chris@1090 28 #include <deque>
Chris@152 29
Chris@1090 30 using namespace std;
Chris@1090 31
Chris@1256 32 static HitCount inSmallCache("FFTModel: Small FFT cache");
Chris@1256 33 static HitCount inSourceCache("FFTModel: Source data cache");
Chris@1256 34
Chris@1744 35 FFTModel::FFTModel(ModelId modelId,
Chris@152 36 int channel,
Chris@152 37 WindowType windowType,
Chris@929 38 int windowSize,
Chris@929 39 int windowIncrement,
Chris@1090 40 int fftSize) :
Chris@1744 41 m_model(modelId),
Chris@1780 42 m_sampleRate(0),
Chris@1090 43 m_channel(channel),
Chris@1090 44 m_windowType(windowType),
Chris@1090 45 m_windowSize(windowSize),
Chris@1090 46 m_windowIncrement(windowIncrement),
Chris@1090 47 m_fftSize(fftSize),
Chris@1091 48 m_windower(windowType, windowSize),
Chris@1093 49 m_fft(fftSize),
Chris@1780 50 m_maximumFrequency(0.0),
Chris@1371 51 m_cacheWriteIndex(0),
Chris@1093 52 m_cacheSize(3)
Chris@152 53 {
Chris@1371 54 while (m_cached.size() < m_cacheSize) {
Chris@1371 55 m_cached.push_back({ -1, cvec(m_fftSize / 2 + 1) });
Chris@1371 56 }
Chris@1371 57
Chris@1091 58 if (m_windowSize > m_fftSize) {
Chris@1428 59 SVCERR << "ERROR: FFTModel::FFTModel: window size (" << m_windowSize
Chris@1680 60 << ") may not exceed FFT size (" << m_fftSize << ")" << endl;
Chris@1680 61 throw invalid_argument("FFTModel window size may not exceed FFT size");
Chris@1091 62 }
Chris@1133 63
Chris@1270 64 m_fft.initFloat();
Chris@1270 65
Chris@1744 66 auto model = ModelById::getAs<DenseTimeValueModel>(m_model);
Chris@1744 67 if (model) {
Chris@1780 68 m_sampleRate = model->getSampleRate();
Chris@1780 69
Chris@1752 70 connect(model.get(), SIGNAL(modelChanged(ModelId)),
Chris@1752 71 this, SIGNAL(modelChanged(ModelId)));
Chris@1752 72 connect(model.get(), SIGNAL(modelChangedWithin(ModelId, sv_frame_t, sv_frame_t)),
Chris@1752 73 this, SIGNAL(modelChangedWithin(ModelId, sv_frame_t, sv_frame_t)));
Chris@1784 74 } else {
Chris@1784 75 m_error = QString("Model #%1 is not available").arg(m_model.untyped);
Chris@1744 76 }
Chris@152 77 }
Chris@152 78
Chris@152 79 FFTModel::~FFTModel()
Chris@152 80 {
Chris@152 81 }
Chris@152 82
Chris@1744 83 bool
Chris@1744 84 FFTModel::isOK() const
Chris@360 85 {
Chris@1744 86 auto model = ModelById::getAs<DenseTimeValueModel>(m_model);
Chris@1784 87 if (!model) {
Chris@1784 88 m_error = QString("Model #%1 is not available").arg(m_model.untyped);
Chris@1784 89 return false;
Chris@1784 90 }
Chris@1784 91 if (!model->isOK()) {
Chris@1784 92 m_error = QString("Model #%1 is not OK").arg(m_model.untyped);
Chris@1784 93 return false;
Chris@1784 94 }
Chris@1784 95 return true;
Chris@1744 96 }
Chris@1744 97
Chris@1744 98 int
Chris@1744 99 FFTModel::getCompletion() const
Chris@1744 100 {
Chris@1744 101 int c = 100;
Chris@1744 102 auto model = ModelById::getAs<DenseTimeValueModel>(m_model);
Chris@1744 103 if (model) {
Chris@1744 104 if (model->isReady(&c)) return 100;
Chris@360 105 }
Chris@1744 106 return c;
Chris@1744 107 }
Chris@1744 108
Chris@1744 109 sv_samplerate_t
Chris@1744 110 FFTModel::getSampleRate() const
Chris@1744 111 {
Chris@1780 112 return m_sampleRate;
Chris@1780 113 }
Chris@1780 114
Chris@1780 115 void
Chris@1780 116 FFTModel::setMaximumFrequency(double freq)
Chris@1780 117 {
Chris@1780 118 m_maximumFrequency = freq;
Chris@360 119 }
Chris@360 120
Chris@1091 121 int
Chris@1091 122 FFTModel::getWidth() const
Chris@1091 123 {
Chris@1744 124 auto model = ModelById::getAs<DenseTimeValueModel>(m_model);
Chris@1744 125 if (!model) return 0;
Chris@1744 126 return int((model->getEndFrame() - model->getStartFrame())
Chris@1091 127 / m_windowIncrement) + 1;
Chris@1091 128 }
Chris@1091 129
Chris@1091 130 int
Chris@1091 131 FFTModel::getHeight() const
Chris@1091 132 {
Chris@1780 133 int height = m_fftSize / 2 + 1;
Chris@1780 134 if (m_maximumFrequency != 0.0) {
Chris@1780 135 int maxBin = int(ceil(m_maximumFrequency * m_fftSize) / m_sampleRate);
Chris@1780 136 if (maxBin >= 0 && maxBin < height) {
Chris@1780 137 return maxBin + 1;
Chris@1780 138 }
Chris@1780 139 }
Chris@1780 140 return height;
Chris@1091 141 }
Chris@1091 142
Chris@152 143 QString
Chris@929 144 FFTModel::getBinName(int n) const
Chris@152 145 {
Chris@1040 146 sv_samplerate_t sr = getSampleRate();
Chris@152 147 if (!sr) return "";
Chris@1780 148 QString name = tr("%1 Hz").arg((double(n) * sr) / m_fftSize);
Chris@152 149 return name;
Chris@152 150 }
Chris@152 151
Chris@1091 152 FFTModel::Column
Chris@1091 153 FFTModel::getColumn(int x) const
Chris@1091 154 {
Chris@1091 155 auto cplx = getFFTColumn(x);
Chris@1091 156 Column col;
Chris@1154 157 col.reserve(cplx.size());
Chris@1091 158 for (auto c: cplx) col.push_back(abs(c));
Chris@1319 159 return col;
Chris@1091 160 }
Chris@1091 161
Chris@1200 162 FFTModel::Column
Chris@1200 163 FFTModel::getPhases(int x) const
Chris@1200 164 {
Chris@1200 165 auto cplx = getFFTColumn(x);
Chris@1200 166 Column col;
Chris@1200 167 col.reserve(cplx.size());
Chris@1201 168 for (auto c: cplx) {
Chris@1201 169 col.push_back(arg(c));
Chris@1201 170 }
Chris@1319 171 return col;
Chris@1200 172 }
Chris@1200 173
Chris@1091 174 float
Chris@1091 175 FFTModel::getMagnitudeAt(int x, int y) const
Chris@1091 176 {
Chris@1569 177 if (x < 0 || x >= getWidth() || y < 0 || y >= getHeight()) {
Chris@1569 178 return 0.f;
Chris@1569 179 }
Chris@1093 180 auto col = getFFTColumn(x);
Chris@1093 181 return abs(col[y]);
Chris@1091 182 }
Chris@1091 183
Chris@1091 184 float
Chris@1091 185 FFTModel::getMaximumMagnitudeAt(int x) const
Chris@1091 186 {
Chris@1091 187 Column col(getColumn(x));
Chris@1092 188 float max = 0.f;
Chris@1154 189 int n = int(col.size());
Chris@1154 190 for (int i = 0; i < n; ++i) {
Chris@1092 191 if (col[i] > max) max = col[i];
Chris@1092 192 }
Chris@1092 193 return max;
Chris@1091 194 }
Chris@1091 195
Chris@1091 196 float
Chris@1091 197 FFTModel::getPhaseAt(int x, int y) const
Chris@1091 198 {
Chris@1093 199 if (x < 0 || x >= getWidth() || y < 0 || y >= getHeight()) return 0.f;
Chris@1091 200 return arg(getFFTColumn(x)[y]);
Chris@1091 201 }
Chris@1091 202
Chris@1091 203 void
Chris@1091 204 FFTModel::getValuesAt(int x, int y, float &re, float &im) const
Chris@1091 205 {
Chris@1780 206 if (x < 0 || x >= getWidth() || y < 0 || y >= getHeight()) {
Chris@1780 207 re = 0.f;
Chris@1780 208 im = 0.f;
Chris@1780 209 return;
Chris@1780 210 }
Chris@1091 211 auto col = getFFTColumn(x);
Chris@1091 212 re = col[y].real();
Chris@1091 213 im = col[y].imag();
Chris@1091 214 }
Chris@1091 215
Chris@1091 216 bool
Chris@1091 217 FFTModel::getMagnitudesAt(int x, float *values, int minbin, int count) const
Chris@1091 218 {
Chris@1091 219 if (count == 0) count = getHeight();
Chris@1091 220 auto col = getFFTColumn(x);
Chris@1091 221 for (int i = 0; i < count; ++i) {
Chris@1091 222 values[i] = abs(col[minbin + i]);
Chris@1091 223 }
Chris@1091 224 return true;
Chris@1091 225 }
Chris@1091 226
Chris@1091 227 bool
Chris@1091 228 FFTModel::getPhasesAt(int x, float *values, int minbin, int count) const
Chris@1091 229 {
Chris@1091 230 if (count == 0) count = getHeight();
Chris@1091 231 auto col = getFFTColumn(x);
Chris@1091 232 for (int i = 0; i < count; ++i) {
Chris@1091 233 values[i] = arg(col[minbin + i]);
Chris@1091 234 }
Chris@1091 235 return true;
Chris@1091 236 }
Chris@1091 237
Chris@1091 238 bool
Chris@1091 239 FFTModel::getValuesAt(int x, float *reals, float *imags, int minbin, int count) const
Chris@1091 240 {
Chris@1091 241 if (count == 0) count = getHeight();
Chris@1091 242 auto col = getFFTColumn(x);
Chris@1091 243 for (int i = 0; i < count; ++i) {
Chris@1091 244 reals[i] = col[minbin + i].real();
Chris@1091 245 }
Chris@1091 246 for (int i = 0; i < count; ++i) {
Chris@1091 247 imags[i] = col[minbin + i].imag();
Chris@1091 248 }
Chris@1091 249 return true;
Chris@1091 250 }
Chris@1091 251
Chris@1326 252 FFTModel::fvec
Chris@1091 253 FFTModel::getSourceSamples(int column) const
Chris@1091 254 {
Chris@1094 255 // m_fftSize may be greater than m_windowSize, but not the reverse
Chris@1094 256
Chris@1094 257 // cerr << "getSourceSamples(" << column << ")" << endl;
Chris@1094 258
Chris@1091 259 auto range = getSourceSampleRange(column);
Chris@1094 260 auto data = getSourceData(range);
Chris@1094 261
Chris@1091 262 int off = (m_fftSize - m_windowSize) / 2;
Chris@1094 263
Chris@1094 264 if (off == 0) {
Chris@1094 265 return data;
Chris@1094 266 } else {
Chris@1094 267 vector<float> pad(off, 0.f);
Chris@1326 268 fvec padded;
Chris@1094 269 padded.reserve(m_fftSize);
Chris@1094 270 padded.insert(padded.end(), pad.begin(), pad.end());
Chris@1094 271 padded.insert(padded.end(), data.begin(), data.end());
Chris@1094 272 padded.insert(padded.end(), pad.begin(), pad.end());
Chris@1094 273 return padded;
Chris@1094 274 }
Chris@1094 275 }
Chris@1094 276
Chris@1326 277 FFTModel::fvec
Chris@1094 278 FFTModel::getSourceData(pair<sv_frame_t, sv_frame_t> range) const
Chris@1094 279 {
Chris@1094 280 // cerr << "getSourceData(" << range.first << "," << range.second
Chris@1094 281 // << "): saved range is (" << m_savedData.range.first
Chris@1094 282 // << "," << m_savedData.range.second << ")" << endl;
Chris@1094 283
Chris@1100 284 if (m_savedData.range == range) {
Chris@1256 285 inSourceCache.hit();
Chris@1100 286 return m_savedData.data;
Chris@1100 287 }
Chris@1094 288
Chris@1270 289 Profiler profiler("FFTModel::getSourceData (cache miss)");
Chris@1270 290
Chris@1094 291 if (range.first < m_savedData.range.second &&
Chris@1094 292 range.first >= m_savedData.range.first &&
Chris@1094 293 range.second > m_savedData.range.second) {
Chris@1094 294
Chris@1256 295 inSourceCache.partial();
Chris@1256 296
Chris@1100 297 sv_frame_t discard = range.first - m_savedData.range.first;
Chris@1100 298
Chris@1457 299 fvec data;
Chris@1457 300 data.reserve(range.second - range.first);
Chris@1094 301
Chris@1457 302 data.insert(data.end(),
Chris@1457 303 m_savedData.data.begin() + discard,
Chris@1457 304 m_savedData.data.end());
Chris@1100 305
Chris@1457 306 fvec rest = getSourceDataUncached
Chris@1457 307 ({ m_savedData.range.second, range.second });
Chris@1457 308
Chris@1457 309 data.insert(data.end(), rest.begin(), rest.end());
Chris@1094 310
Chris@1457 311 m_savedData = { range, data };
Chris@1457 312 return data;
Chris@1095 313
Chris@1095 314 } else {
Chris@1095 315
Chris@1256 316 inSourceCache.miss();
Chris@1256 317
Chris@1095 318 auto data = getSourceDataUncached(range);
Chris@1095 319 m_savedData = { range, data };
Chris@1095 320 return data;
Chris@1094 321 }
Chris@1095 322 }
Chris@1094 323
Chris@1326 324 FFTModel::fvec
Chris@1095 325 FFTModel::getSourceDataUncached(pair<sv_frame_t, sv_frame_t> range) const
Chris@1095 326 {
Chris@1457 327 Profiler profiler("FFTModel::getSourceDataUncached");
Chris@1688 328
Chris@1744 329 auto model = ModelById::getAs<DenseTimeValueModel>(m_model);
Chris@1744 330 if (!model) return {};
Chris@1457 331
Chris@1091 332 decltype(range.first) pfx = 0;
Chris@1091 333 if (range.first < 0) {
Chris@1091 334 pfx = -range.first;
Chris@1091 335 range = { 0, range.second };
Chris@1091 336 }
Chris@1096 337
Chris@1744 338 auto data = model->getData(m_channel,
Chris@1744 339 range.first,
Chris@1744 340 range.second - range.first);
Chris@1773 341 /*
Chris@1281 342 if (data.empty()) {
Chris@1281 343 SVDEBUG << "NOTE: empty source data for range (" << range.first << ","
Chris@1281 344 << range.second << ") (model end frame "
Chris@1744 345 << model->getEndFrame() << ")" << endl;
Chris@1281 346 }
Chris@1773 347 */
Chris@1281 348
Chris@1096 349 // don't return a partial frame
Chris@1096 350 data.resize(range.second - range.first, 0.f);
Chris@1096 351
Chris@1096 352 if (pfx > 0) {
Chris@1096 353 vector<float> pad(pfx, 0.f);
Chris@1096 354 data.insert(data.begin(), pad.begin(), pad.end());
Chris@1096 355 }
Chris@1096 356
Chris@1091 357 if (m_channel == -1) {
Chris@1744 358 int channels = model->getChannelCount();
Chris@1429 359 if (channels > 1) {
Chris@1096 360 int n = int(data.size());
Chris@1096 361 float factor = 1.f / float(channels);
Chris@1100 362 // use mean instead of sum for fft model input
Chris@1429 363 for (int i = 0; i < n; ++i) {
Chris@1429 364 data[i] *= factor;
Chris@1429 365 }
Chris@1429 366 }
Chris@1091 367 }
Chris@1094 368
Chris@1094 369 return data;
Chris@1091 370 }
Chris@1091 371
Chris@1780 372 FFTModel::cvec
Chris@1093 373 FFTModel::getFFTColumn(int n) const
Chris@1091 374 {
Chris@1780 375 int h = getHeight();
Chris@1780 376 bool truncate = (h < m_fftSize / 2 + 1);
Chris@1780 377
Chris@1258 378 // The small cache (i.e. the m_cached deque) is for cases where
Chris@1258 379 // values are looked up individually, and for e.g. peak-frequency
Chris@1258 380 // spectrograms where values from two consecutive columns are
Chris@1257 381 // needed at once. This cache gets essentially no hits when
Chris@1258 382 // scrolling through a magnitude spectrogram, but 95%+ hits with a
Chris@1569 383 // peak-frequency spectrogram or spectrum.
Chris@1257 384 for (const auto &incache : m_cached) {
Chris@1093 385 if (incache.n == n) {
Chris@1256 386 inSmallCache.hit();
Chris@1780 387 if (!truncate) {
Chris@1780 388 return incache.col;
Chris@1780 389 } else {
Chris@1780 390 return cvec(incache.col.begin(), incache.col.begin() + h);
Chris@1780 391 }
Chris@1093 392 }
Chris@1093 393 }
Chris@1256 394 inSmallCache.miss();
Chris@1258 395
Chris@1258 396 Profiler profiler("FFTModel::getFFTColumn (cache miss)");
Chris@1093 397
Chris@1093 398 auto samples = getSourceSamples(n);
Chris@1567 399 m_windower.cut(samples.data() + (m_fftSize - m_windowSize) / 2);
Chris@1270 400 breakfastquay::v_fftshift(samples.data(), m_fftSize);
Chris@1270 401
Chris@1371 402 cvec &col = m_cached[m_cacheWriteIndex].col;
Chris@1270 403
Chris@1270 404 m_fft.forwardInterleaved(samples.data(),
Chris@1270 405 reinterpret_cast<float *>(col.data()));
Chris@1093 406
Chris@1371 407 m_cached[m_cacheWriteIndex].n = n;
Chris@1371 408
Chris@1371 409 m_cacheWriteIndex = (m_cacheWriteIndex + 1) % m_cacheSize;
Chris@1093 410
Chris@1780 411 if (!truncate) {
Chris@1780 412 return col;
Chris@1780 413 } else {
Chris@1780 414 return cvec(col.begin(), col.begin() + h);
Chris@1780 415 }
Chris@1091 416 }
Chris@1091 417
Chris@275 418 bool
Chris@1045 419 FFTModel::estimateStableFrequency(int x, int y, double &frequency)
Chris@275 420 {
Chris@275 421 if (!isOK()) return false;
Chris@275 422
Chris@1090 423 frequency = double(y * getSampleRate()) / m_fftSize;
Chris@275 424
Chris@275 425 if (x+1 >= getWidth()) return false;
Chris@275 426
Chris@275 427 // At frequency f, a phase shift of 2pi (one cycle) happens in 1/f sec.
Chris@275 428 // At hopsize h and sample rate sr, one hop happens in h/sr sec.
Chris@275 429 // At window size w, for bin b, f is b*sr/w.
Chris@275 430 // thus 2pi phase shift happens in w/(b*sr) sec.
Chris@275 431 // We need to know what phase shift we expect from h/sr sec.
Chris@275 432 // -> 2pi * ((h/sr) / (w/(b*sr)))
Chris@275 433 // = 2pi * ((h * b * sr) / (w * sr))
Chris@275 434 // = 2pi * (h * b) / w.
Chris@275 435
Chris@1038 436 double oldPhase = getPhaseAt(x, y);
Chris@1038 437 double newPhase = getPhaseAt(x+1, y);
Chris@275 438
Chris@929 439 int incr = getResolution();
Chris@275 440
Chris@1090 441 double expectedPhase = oldPhase + (2.0 * M_PI * y * incr) / m_fftSize;
Chris@275 442
Chris@1038 443 double phaseError = princarg(newPhase - expectedPhase);
Chris@275 444
Chris@275 445 // The new frequency estimate based on the phase error resulting
Chris@275 446 // from assuming the "native" frequency of this bin
Chris@275 447
Chris@275 448 frequency =
Chris@1090 449 (getSampleRate() * (expectedPhase + phaseError - oldPhase)) /
Chris@1045 450 (2.0 * M_PI * incr);
Chris@275 451
Chris@275 452 return true;
Chris@275 453 }
Chris@275 454
Chris@275 455 FFTModel::PeakLocationSet
Chris@1191 456 FFTModel::getPeaks(PeakPickType type, int x, int ymin, int ymax) const
Chris@275 457 {
Chris@551 458 Profiler profiler("FFTModel::getPeaks");
Chris@1575 459
Chris@275 460 FFTModel::PeakLocationSet peaks;
Chris@275 461 if (!isOK()) return peaks;
Chris@275 462
Chris@275 463 if (ymax == 0 || ymax > getHeight() - 1) {
Chris@275 464 ymax = getHeight() - 1;
Chris@275 465 }
Chris@275 466
Chris@275 467 if (type == AllPeaks) {
Chris@551 468 int minbin = ymin;
Chris@551 469 if (minbin > 0) minbin = minbin - 1;
Chris@551 470 int maxbin = ymax;
Chris@551 471 if (maxbin < getHeight() - 1) maxbin = maxbin + 1;
Chris@551 472 const int n = maxbin - minbin + 1;
Chris@1218 473 float *values = new float[n];
Chris@551 474 getMagnitudesAt(x, values, minbin, maxbin - minbin + 1);
Chris@929 475 for (int bin = ymin; bin <= ymax; ++bin) {
Chris@551 476 if (bin == minbin || bin == maxbin) continue;
Chris@551 477 if (values[bin - minbin] > values[bin - minbin - 1] &&
Chris@551 478 values[bin - minbin] > values[bin - minbin + 1]) {
Chris@275 479 peaks.insert(bin);
Chris@275 480 }
Chris@275 481 }
Chris@1218 482 delete[] values;
Chris@275 483 return peaks;
Chris@275 484 }
Chris@275 485
Chris@551 486 Column values = getColumn(x);
Chris@1154 487 int nv = int(values.size());
Chris@275 488
Chris@500 489 float mean = 0.f;
Chris@1154 490 for (int i = 0; i < nv; ++i) mean += values[i];
Chris@1154 491 if (nv > 0) mean = mean / float(values.size());
Chris@1038 492
Chris@275 493 // For peak picking we use a moving median window, picking the
Chris@275 494 // highest value within each continuous region of values that
Chris@275 495 // exceed the median. For pitch adaptivity, we adjust the window
Chris@275 496 // size to a roughly constant pitch range (about four tones).
Chris@275 497
Chris@1040 498 sv_samplerate_t sampleRate = getSampleRate();
Chris@275 499
Chris@1090 500 vector<int> inrange;
Chris@1576 501 double dist = 0.5;
Chris@500 502
Chris@929 503 int medianWinSize = getPeakPickWindowSize(type, sampleRate, ymin, dist);
Chris@929 504 int halfWin = medianWinSize/2;
Chris@275 505
Chris@1573 506 MovingMedian<float> window(medianWinSize);
Chris@1573 507
Chris@929 508 int binmin;
Chris@275 509 if (ymin > halfWin) binmin = ymin - halfWin;
Chris@275 510 else binmin = 0;
Chris@275 511
Chris@929 512 int binmax;
Chris@1154 513 if (ymax + halfWin < nv) binmax = ymax + halfWin;
Chris@1154 514 else binmax = nv - 1;
Chris@275 515
Chris@929 516 int prevcentre = 0;
Chris@500 517
Chris@929 518 for (int bin = binmin; bin <= binmax; ++bin) {
Chris@275 519
Chris@275 520 float value = values[bin];
Chris@275 521
Chris@280 522 // so-called median will actually be the dist*100'th percentile
Chris@280 523 medianWinSize = getPeakPickWindowSize(type, sampleRate, bin, dist);
Chris@275 524 halfWin = medianWinSize/2;
Chris@275 525
Chris@1573 526 int actualSize = std::min(medianWinSize, bin - binmin + 1);
Chris@1573 527 window.resize(actualSize);
Chris@1573 528 window.setPercentile(dist * 100.0);
Chris@1573 529 window.push(value);
Chris@275 530
Chris@275 531 if (type == MajorPitchAdaptivePeaks) {
Chris@1154 532 if (ymax + halfWin < nv) binmax = ymax + halfWin;
Chris@1154 533 else binmax = nv - 1;
Chris@275 534 }
Chris@275 535
Chris@1573 536 float median = window.get();
Chris@275 537
Chris@929 538 int centrebin = 0;
Chris@500 539 if (bin > actualSize/2) centrebin = bin - actualSize/2;
Chris@500 540
Chris@500 541 while (centrebin > prevcentre || bin == binmin) {
Chris@275 542
Chris@500 543 if (centrebin > prevcentre) ++prevcentre;
Chris@500 544
Chris@500 545 float centre = values[prevcentre];
Chris@500 546
Chris@500 547 if (centre > median) {
Chris@500 548 inrange.push_back(centrebin);
Chris@500 549 }
Chris@500 550
Chris@1154 551 if (centre <= median || centrebin+1 == nv) {
Chris@500 552 if (!inrange.empty()) {
Chris@929 553 int peakbin = 0;
Chris@500 554 float peakval = 0.f;
Chris@929 555 for (int i = 0; i < (int)inrange.size(); ++i) {
Chris@500 556 if (i == 0 || values[inrange[i]] > peakval) {
Chris@500 557 peakval = values[inrange[i]];
Chris@500 558 peakbin = inrange[i];
Chris@500 559 }
Chris@500 560 }
Chris@500 561 inrange.clear();
Chris@500 562 if (peakbin >= ymin && peakbin <= ymax) {
Chris@500 563 peaks.insert(peakbin);
Chris@275 564 }
Chris@275 565 }
Chris@275 566 }
Chris@500 567
Chris@500 568 if (bin == binmin) break;
Chris@275 569 }
Chris@275 570 }
Chris@275 571
Chris@275 572 return peaks;
Chris@275 573 }
Chris@275 574
Chris@929 575 int
Chris@1040 576 FFTModel::getPeakPickWindowSize(PeakPickType type, sv_samplerate_t sampleRate,
Chris@1576 577 int bin, double &dist) const
Chris@275 578 {
Chris@1576 579 dist = 0.5; // dist is percentile / 100.0
Chris@275 580 if (type == MajorPeaks) return 10;
Chris@275 581 if (bin == 0) return 3;
Chris@280 582
Chris@1091 583 double binfreq = (sampleRate * bin) / m_fftSize;
Chris@1038 584 double hifreq = Pitch::getFrequencyForPitch(73, 0, binfreq);
Chris@280 585
Chris@1091 586 int hibin = int(lrint((hifreq * m_fftSize) / sampleRate));
Chris@275 587 int medianWinSize = hibin - bin;
Chris@1576 588
Chris@1575 589 if (medianWinSize < 3) {
Chris@1575 590 medianWinSize = 3;
Chris@1575 591 }
Chris@1576 592
Chris@1576 593 // We want to avoid the median window size changing too often, as
Chris@1576 594 // it requires a reallocation. So snap to a nearby round number.
Chris@1576 595
Chris@1575 596 if (medianWinSize > 20) {
Chris@1575 597 medianWinSize = (1 + medianWinSize / 10) * 10;
Chris@1575 598 }
Chris@1576 599 if (medianWinSize > 200) {
Chris@1576 600 medianWinSize = (1 + medianWinSize / 100) * 100;
Chris@1576 601 }
Chris@1576 602 if (medianWinSize > 2000) {
Chris@1576 603 medianWinSize = (1 + medianWinSize / 1000) * 1000;
Chris@1576 604 }
Chris@1576 605 if (medianWinSize > 20000) {
Chris@1576 606 medianWinSize = 20000;
Chris@1575 607 }
Chris@280 608
Chris@1576 609 if (medianWinSize < 100) {
Chris@1576 610 dist = 1.0 - (4.0 / medianWinSize);
Chris@1576 611 } else {
Chris@1576 612 dist = 1.0 - (8.0 / medianWinSize);
Chris@1576 613 }
Chris@1576 614 if (dist < 0.5) dist = 0.5;
Chris@1575 615
Chris@275 616 return medianWinSize;
Chris@275 617 }
Chris@275 618
Chris@275 619 FFTModel::PeakSet
Chris@929 620 FFTModel::getPeakFrequencies(PeakPickType type, int x,
Chris@1191 621 int ymin, int ymax) const
Chris@275 622 {
Chris@551 623 Profiler profiler("FFTModel::getPeakFrequencies");
Chris@551 624
Chris@275 625 PeakSet peaks;
Chris@275 626 if (!isOK()) return peaks;
Chris@275 627 PeakLocationSet locations = getPeaks(type, x, ymin, ymax);
Chris@275 628
Chris@1040 629 sv_samplerate_t sampleRate = getSampleRate();
Chris@929 630 int incr = getResolution();
Chris@275 631
Chris@275 632 // This duplicates some of the work of estimateStableFrequency to
Chris@275 633 // allow us to retrieve the phases in two separate vertical
Chris@275 634 // columns, instead of jumping back and forth between columns x and
Chris@275 635 // x+1, which may be significantly slower if re-seeking is needed
Chris@275 636
Chris@1090 637 vector<float> phases;
Chris@275 638 for (PeakLocationSet::iterator i = locations.begin();
Chris@275 639 i != locations.end(); ++i) {
Chris@275 640 phases.push_back(getPhaseAt(x, *i));
Chris@275 641 }
Chris@275 642
Chris@929 643 int phaseIndex = 0;
Chris@275 644 for (PeakLocationSet::iterator i = locations.begin();
Chris@275 645 i != locations.end(); ++i) {
Chris@1038 646 double oldPhase = phases[phaseIndex];
Chris@1038 647 double newPhase = getPhaseAt(x+1, *i);
Chris@1090 648 double expectedPhase = oldPhase + (2.0 * M_PI * *i * incr) / m_fftSize;
Chris@1038 649 double phaseError = princarg(newPhase - expectedPhase);
Chris@1038 650 double frequency =
Chris@275 651 (sampleRate * (expectedPhase + phaseError - oldPhase))
Chris@275 652 / (2 * M_PI * incr);
Chris@1045 653 peaks[*i] = frequency;
Chris@275 654 ++phaseIndex;
Chris@275 655 }
Chris@275 656
Chris@275 657 return peaks;
Chris@275 658 }
Chris@275 659