Chris@152
|
1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
|
Chris@152
|
2
|
Chris@152
|
3 /*
|
Chris@152
|
4 Sonic Visualiser
|
Chris@152
|
5 An audio file viewer and annotation editor.
|
Chris@152
|
6 Centre for Digital Music, Queen Mary, University of London.
|
Chris@152
|
7 This file copyright 2006 Chris Cannam.
|
Chris@152
|
8
|
Chris@152
|
9 This program is free software; you can redistribute it and/or
|
Chris@152
|
10 modify it under the terms of the GNU General Public License as
|
Chris@152
|
11 published by the Free Software Foundation; either version 2 of the
|
Chris@152
|
12 License, or (at your option) any later version. See the file
|
Chris@152
|
13 COPYING included with this distribution for more information.
|
Chris@152
|
14 */
|
Chris@152
|
15
|
Chris@152
|
16 #include "FFTModel.h"
|
Chris@152
|
17 #include "DenseTimeValueModel.h"
|
Chris@152
|
18
|
Chris@183
|
19 #include "base/Profiler.h"
|
Chris@275
|
20 #include "base/Pitch.h"
|
Chris@1256
|
21 #include "base/HitCount.h"
|
Chris@1428
|
22 #include "base/Debug.h"
|
Chris@183
|
23
|
Chris@402
|
24 #include <algorithm>
|
Chris@402
|
25
|
Chris@152
|
26 #include <cassert>
|
Chris@1090
|
27 #include <deque>
|
Chris@152
|
28
|
Chris@1090
|
29 using namespace std;
|
Chris@1090
|
30
|
Chris@1256
|
31 static HitCount inSmallCache("FFTModel: Small FFT cache");
|
Chris@1256
|
32 static HitCount inSourceCache("FFTModel: Source data cache");
|
Chris@1256
|
33
|
Chris@152
|
34 FFTModel::FFTModel(const DenseTimeValueModel *model,
|
Chris@152
|
35 int channel,
|
Chris@152
|
36 WindowType windowType,
|
Chris@929
|
37 int windowSize,
|
Chris@929
|
38 int windowIncrement,
|
Chris@1090
|
39 int fftSize) :
|
Chris@1090
|
40 m_model(model),
|
Chris@1090
|
41 m_channel(channel),
|
Chris@1090
|
42 m_windowType(windowType),
|
Chris@1090
|
43 m_windowSize(windowSize),
|
Chris@1090
|
44 m_windowIncrement(windowIncrement),
|
Chris@1090
|
45 m_fftSize(fftSize),
|
Chris@1091
|
46 m_windower(windowType, windowSize),
|
Chris@1093
|
47 m_fft(fftSize),
|
Chris@1371
|
48 m_cacheWriteIndex(0),
|
Chris@1093
|
49 m_cacheSize(3)
|
Chris@152
|
50 {
|
Chris@1371
|
51 while (m_cached.size() < m_cacheSize) {
|
Chris@1371
|
52 m_cached.push_back({ -1, cvec(m_fftSize / 2 + 1) });
|
Chris@1371
|
53 }
|
Chris@1371
|
54
|
Chris@1091
|
55 if (m_windowSize > m_fftSize) {
|
Chris@1428
|
56 SVCERR << "ERROR: FFTModel::FFTModel: window size (" << m_windowSize
|
Chris@1428
|
57 << ") must be at least FFT size (" << m_fftSize << ")" << endl;
|
Chris@1091
|
58 throw invalid_argument("FFTModel window size must be at least FFT size");
|
Chris@1091
|
59 }
|
Chris@1133
|
60
|
Chris@1270
|
61 m_fft.initFloat();
|
Chris@1270
|
62
|
Chris@1133
|
63 connect(model, SIGNAL(modelChanged()), this, SIGNAL(modelChanged()));
|
Chris@1133
|
64 connect(model, SIGNAL(modelChangedWithin(sv_frame_t, sv_frame_t)),
|
Chris@1133
|
65 this, SIGNAL(modelChangedWithin(sv_frame_t, sv_frame_t)));
|
Chris@152
|
66 }
|
Chris@152
|
67
|
Chris@152
|
68 FFTModel::~FFTModel()
|
Chris@152
|
69 {
|
Chris@152
|
70 }
|
Chris@152
|
71
|
Chris@360
|
72 void
|
Chris@360
|
73 FFTModel::sourceModelAboutToBeDeleted()
|
Chris@360
|
74 {
|
Chris@1090
|
75 if (m_model) {
|
Chris@1428
|
76 SVDEBUG << "FFTModel[" << this << "]::sourceModelAboutToBeDeleted(" << m_model << ")" << endl;
|
Chris@1090
|
77 m_model = 0;
|
Chris@360
|
78 }
|
Chris@360
|
79 }
|
Chris@360
|
80
|
Chris@1091
|
81 int
|
Chris@1091
|
82 FFTModel::getWidth() const
|
Chris@1091
|
83 {
|
Chris@1091
|
84 if (!m_model) return 0;
|
Chris@1091
|
85 return int((m_model->getEndFrame() - m_model->getStartFrame())
|
Chris@1091
|
86 / m_windowIncrement) + 1;
|
Chris@1091
|
87 }
|
Chris@1091
|
88
|
Chris@1091
|
89 int
|
Chris@1091
|
90 FFTModel::getHeight() const
|
Chris@1091
|
91 {
|
Chris@1091
|
92 return m_fftSize / 2 + 1;
|
Chris@1091
|
93 }
|
Chris@1091
|
94
|
Chris@152
|
95 QString
|
Chris@929
|
96 FFTModel::getBinName(int n) const
|
Chris@152
|
97 {
|
Chris@1040
|
98 sv_samplerate_t sr = getSampleRate();
|
Chris@152
|
99 if (!sr) return "";
|
Chris@204
|
100 QString name = tr("%1 Hz").arg((n * sr) / ((getHeight()-1) * 2));
|
Chris@152
|
101 return name;
|
Chris@152
|
102 }
|
Chris@152
|
103
|
Chris@1091
|
104 FFTModel::Column
|
Chris@1091
|
105 FFTModel::getColumn(int x) const
|
Chris@1091
|
106 {
|
Chris@1091
|
107 auto cplx = getFFTColumn(x);
|
Chris@1091
|
108 Column col;
|
Chris@1154
|
109 col.reserve(cplx.size());
|
Chris@1091
|
110 for (auto c: cplx) col.push_back(abs(c));
|
Chris@1319
|
111 return col;
|
Chris@1091
|
112 }
|
Chris@1091
|
113
|
Chris@1200
|
114 FFTModel::Column
|
Chris@1200
|
115 FFTModel::getPhases(int x) const
|
Chris@1200
|
116 {
|
Chris@1200
|
117 auto cplx = getFFTColumn(x);
|
Chris@1200
|
118 Column col;
|
Chris@1200
|
119 col.reserve(cplx.size());
|
Chris@1201
|
120 for (auto c: cplx) {
|
Chris@1201
|
121 col.push_back(arg(c));
|
Chris@1201
|
122 }
|
Chris@1319
|
123 return col;
|
Chris@1200
|
124 }
|
Chris@1200
|
125
|
Chris@1091
|
126 float
|
Chris@1091
|
127 FFTModel::getMagnitudeAt(int x, int y) const
|
Chris@1091
|
128 {
|
Chris@1093
|
129 if (x < 0 || x >= getWidth() || y < 0 || y >= getHeight()) return 0.f;
|
Chris@1093
|
130 auto col = getFFTColumn(x);
|
Chris@1093
|
131 return abs(col[y]);
|
Chris@1091
|
132 }
|
Chris@1091
|
133
|
Chris@1091
|
134 float
|
Chris@1091
|
135 FFTModel::getMaximumMagnitudeAt(int x) const
|
Chris@1091
|
136 {
|
Chris@1091
|
137 Column col(getColumn(x));
|
Chris@1092
|
138 float max = 0.f;
|
Chris@1154
|
139 int n = int(col.size());
|
Chris@1154
|
140 for (int i = 0; i < n; ++i) {
|
Chris@1092
|
141 if (col[i] > max) max = col[i];
|
Chris@1092
|
142 }
|
Chris@1092
|
143 return max;
|
Chris@1091
|
144 }
|
Chris@1091
|
145
|
Chris@1091
|
146 float
|
Chris@1091
|
147 FFTModel::getPhaseAt(int x, int y) const
|
Chris@1091
|
148 {
|
Chris@1093
|
149 if (x < 0 || x >= getWidth() || y < 0 || y >= getHeight()) return 0.f;
|
Chris@1091
|
150 return arg(getFFTColumn(x)[y]);
|
Chris@1091
|
151 }
|
Chris@1091
|
152
|
Chris@1091
|
153 void
|
Chris@1091
|
154 FFTModel::getValuesAt(int x, int y, float &re, float &im) const
|
Chris@1091
|
155 {
|
Chris@1091
|
156 auto col = getFFTColumn(x);
|
Chris@1091
|
157 re = col[y].real();
|
Chris@1091
|
158 im = col[y].imag();
|
Chris@1091
|
159 }
|
Chris@1091
|
160
|
Chris@1091
|
161 bool
|
Chris@1091
|
162 FFTModel::getMagnitudesAt(int x, float *values, int minbin, int count) const
|
Chris@1091
|
163 {
|
Chris@1091
|
164 if (count == 0) count = getHeight();
|
Chris@1091
|
165 auto col = getFFTColumn(x);
|
Chris@1091
|
166 for (int i = 0; i < count; ++i) {
|
Chris@1091
|
167 values[i] = abs(col[minbin + i]);
|
Chris@1091
|
168 }
|
Chris@1091
|
169 return true;
|
Chris@1091
|
170 }
|
Chris@1091
|
171
|
Chris@1091
|
172 bool
|
Chris@1091
|
173 FFTModel::getPhasesAt(int x, float *values, int minbin, int count) const
|
Chris@1091
|
174 {
|
Chris@1091
|
175 if (count == 0) count = getHeight();
|
Chris@1091
|
176 auto col = getFFTColumn(x);
|
Chris@1091
|
177 for (int i = 0; i < count; ++i) {
|
Chris@1091
|
178 values[i] = arg(col[minbin + i]);
|
Chris@1091
|
179 }
|
Chris@1091
|
180 return true;
|
Chris@1091
|
181 }
|
Chris@1091
|
182
|
Chris@1091
|
183 bool
|
Chris@1091
|
184 FFTModel::getValuesAt(int x, float *reals, float *imags, int minbin, int count) const
|
Chris@1091
|
185 {
|
Chris@1091
|
186 if (count == 0) count = getHeight();
|
Chris@1091
|
187 auto col = getFFTColumn(x);
|
Chris@1091
|
188 for (int i = 0; i < count; ++i) {
|
Chris@1091
|
189 reals[i] = col[minbin + i].real();
|
Chris@1091
|
190 }
|
Chris@1091
|
191 for (int i = 0; i < count; ++i) {
|
Chris@1091
|
192 imags[i] = col[minbin + i].imag();
|
Chris@1091
|
193 }
|
Chris@1091
|
194 return true;
|
Chris@1091
|
195 }
|
Chris@1091
|
196
|
Chris@1326
|
197 FFTModel::fvec
|
Chris@1091
|
198 FFTModel::getSourceSamples(int column) const
|
Chris@1091
|
199 {
|
Chris@1094
|
200 // m_fftSize may be greater than m_windowSize, but not the reverse
|
Chris@1094
|
201
|
Chris@1094
|
202 // cerr << "getSourceSamples(" << column << ")" << endl;
|
Chris@1094
|
203
|
Chris@1091
|
204 auto range = getSourceSampleRange(column);
|
Chris@1094
|
205 auto data = getSourceData(range);
|
Chris@1094
|
206
|
Chris@1091
|
207 int off = (m_fftSize - m_windowSize) / 2;
|
Chris@1094
|
208
|
Chris@1094
|
209 if (off == 0) {
|
Chris@1094
|
210 return data;
|
Chris@1094
|
211 } else {
|
Chris@1094
|
212 vector<float> pad(off, 0.f);
|
Chris@1326
|
213 fvec padded;
|
Chris@1094
|
214 padded.reserve(m_fftSize);
|
Chris@1094
|
215 padded.insert(padded.end(), pad.begin(), pad.end());
|
Chris@1094
|
216 padded.insert(padded.end(), data.begin(), data.end());
|
Chris@1094
|
217 padded.insert(padded.end(), pad.begin(), pad.end());
|
Chris@1094
|
218 return padded;
|
Chris@1094
|
219 }
|
Chris@1094
|
220 }
|
Chris@1094
|
221
|
Chris@1326
|
222 FFTModel::fvec
|
Chris@1094
|
223 FFTModel::getSourceData(pair<sv_frame_t, sv_frame_t> range) const
|
Chris@1094
|
224 {
|
Chris@1094
|
225 // cerr << "getSourceData(" << range.first << "," << range.second
|
Chris@1094
|
226 // << "): saved range is (" << m_savedData.range.first
|
Chris@1094
|
227 // << "," << m_savedData.range.second << ")" << endl;
|
Chris@1094
|
228
|
Chris@1100
|
229 if (m_savedData.range == range) {
|
Chris@1256
|
230 inSourceCache.hit();
|
Chris@1100
|
231 return m_savedData.data;
|
Chris@1100
|
232 }
|
Chris@1094
|
233
|
Chris@1270
|
234 Profiler profiler("FFTModel::getSourceData (cache miss)");
|
Chris@1270
|
235
|
Chris@1094
|
236 if (range.first < m_savedData.range.second &&
|
Chris@1094
|
237 range.first >= m_savedData.range.first &&
|
Chris@1094
|
238 range.second > m_savedData.range.second) {
|
Chris@1094
|
239
|
Chris@1256
|
240 inSourceCache.partial();
|
Chris@1256
|
241
|
Chris@1100
|
242 sv_frame_t discard = range.first - m_savedData.range.first;
|
Chris@1100
|
243
|
Chris@1326
|
244 fvec acc(m_savedData.data.begin() + discard, m_savedData.data.end());
|
Chris@1094
|
245
|
Chris@1326
|
246 fvec rest = getSourceDataUncached({ m_savedData.range.second, range.second });
|
Chris@1100
|
247
|
Chris@1100
|
248 acc.insert(acc.end(), rest.begin(), rest.end());
|
Chris@1094
|
249
|
Chris@1095
|
250 m_savedData = { range, acc };
|
Chris@1095
|
251 return acc;
|
Chris@1095
|
252
|
Chris@1095
|
253 } else {
|
Chris@1095
|
254
|
Chris@1256
|
255 inSourceCache.miss();
|
Chris@1256
|
256
|
Chris@1095
|
257 auto data = getSourceDataUncached(range);
|
Chris@1095
|
258 m_savedData = { range, data };
|
Chris@1095
|
259 return data;
|
Chris@1094
|
260 }
|
Chris@1095
|
261 }
|
Chris@1094
|
262
|
Chris@1326
|
263 FFTModel::fvec
|
Chris@1095
|
264 FFTModel::getSourceDataUncached(pair<sv_frame_t, sv_frame_t> range) const
|
Chris@1095
|
265 {
|
Chris@1091
|
266 decltype(range.first) pfx = 0;
|
Chris@1091
|
267 if (range.first < 0) {
|
Chris@1091
|
268 pfx = -range.first;
|
Chris@1091
|
269 range = { 0, range.second };
|
Chris@1091
|
270 }
|
Chris@1096
|
271
|
Chris@1096
|
272 auto data = m_model->getData(m_channel,
|
Chris@1096
|
273 range.first,
|
Chris@1096
|
274 range.second - range.first);
|
Chris@1096
|
275
|
Chris@1281
|
276 if (data.empty()) {
|
Chris@1281
|
277 SVDEBUG << "NOTE: empty source data for range (" << range.first << ","
|
Chris@1281
|
278 << range.second << ") (model end frame "
|
Chris@1281
|
279 << m_model->getEndFrame() << ")" << endl;
|
Chris@1281
|
280 }
|
Chris@1281
|
281
|
Chris@1096
|
282 // don't return a partial frame
|
Chris@1096
|
283 data.resize(range.second - range.first, 0.f);
|
Chris@1096
|
284
|
Chris@1096
|
285 if (pfx > 0) {
|
Chris@1096
|
286 vector<float> pad(pfx, 0.f);
|
Chris@1096
|
287 data.insert(data.begin(), pad.begin(), pad.end());
|
Chris@1096
|
288 }
|
Chris@1096
|
289
|
Chris@1091
|
290 if (m_channel == -1) {
|
Chris@1091
|
291 int channels = m_model->getChannelCount();
|
Chris@1091
|
292 if (channels > 1) {
|
Chris@1096
|
293 int n = int(data.size());
|
Chris@1096
|
294 float factor = 1.f / float(channels);
|
Chris@1100
|
295 // use mean instead of sum for fft model input
|
Chris@1096
|
296 for (int i = 0; i < n; ++i) {
|
Chris@1096
|
297 data[i] *= factor;
|
Chris@1091
|
298 }
|
Chris@1091
|
299 }
|
Chris@1091
|
300 }
|
Chris@1094
|
301
|
Chris@1094
|
302 return data;
|
Chris@1091
|
303 }
|
Chris@1091
|
304
|
Chris@1371
|
305 const FFTModel::cvec &
|
Chris@1093
|
306 FFTModel::getFFTColumn(int n) const
|
Chris@1091
|
307 {
|
Chris@1258
|
308 // The small cache (i.e. the m_cached deque) is for cases where
|
Chris@1258
|
309 // values are looked up individually, and for e.g. peak-frequency
|
Chris@1258
|
310 // spectrograms where values from two consecutive columns are
|
Chris@1257
|
311 // needed at once. This cache gets essentially no hits when
|
Chris@1258
|
312 // scrolling through a magnitude spectrogram, but 95%+ hits with a
|
Chris@1258
|
313 // peak-frequency spectrogram.
|
Chris@1257
|
314 for (const auto &incache : m_cached) {
|
Chris@1093
|
315 if (incache.n == n) {
|
Chris@1256
|
316 inSmallCache.hit();
|
Chris@1093
|
317 return incache.col;
|
Chris@1093
|
318 }
|
Chris@1093
|
319 }
|
Chris@1256
|
320 inSmallCache.miss();
|
Chris@1258
|
321
|
Chris@1258
|
322 Profiler profiler("FFTModel::getFFTColumn (cache miss)");
|
Chris@1093
|
323
|
Chris@1093
|
324 auto samples = getSourceSamples(n);
|
Chris@1100
|
325 m_windower.cut(samples.data());
|
Chris@1270
|
326 breakfastquay::v_fftshift(samples.data(), m_fftSize);
|
Chris@1270
|
327
|
Chris@1371
|
328 cvec &col = m_cached[m_cacheWriteIndex].col;
|
Chris@1270
|
329
|
Chris@1270
|
330 m_fft.forwardInterleaved(samples.data(),
|
Chris@1270
|
331 reinterpret_cast<float *>(col.data()));
|
Chris@1093
|
332
|
Chris@1371
|
333 m_cached[m_cacheWriteIndex].n = n;
|
Chris@1371
|
334
|
Chris@1371
|
335 m_cacheWriteIndex = (m_cacheWriteIndex + 1) % m_cacheSize;
|
Chris@1093
|
336
|
Chris@1319
|
337 return col;
|
Chris@1091
|
338 }
|
Chris@1091
|
339
|
Chris@275
|
340 bool
|
Chris@1045
|
341 FFTModel::estimateStableFrequency(int x, int y, double &frequency)
|
Chris@275
|
342 {
|
Chris@275
|
343 if (!isOK()) return false;
|
Chris@275
|
344
|
Chris@1090
|
345 frequency = double(y * getSampleRate()) / m_fftSize;
|
Chris@275
|
346
|
Chris@275
|
347 if (x+1 >= getWidth()) return false;
|
Chris@275
|
348
|
Chris@275
|
349 // At frequency f, a phase shift of 2pi (one cycle) happens in 1/f sec.
|
Chris@275
|
350 // At hopsize h and sample rate sr, one hop happens in h/sr sec.
|
Chris@275
|
351 // At window size w, for bin b, f is b*sr/w.
|
Chris@275
|
352 // thus 2pi phase shift happens in w/(b*sr) sec.
|
Chris@275
|
353 // We need to know what phase shift we expect from h/sr sec.
|
Chris@275
|
354 // -> 2pi * ((h/sr) / (w/(b*sr)))
|
Chris@275
|
355 // = 2pi * ((h * b * sr) / (w * sr))
|
Chris@275
|
356 // = 2pi * (h * b) / w.
|
Chris@275
|
357
|
Chris@1038
|
358 double oldPhase = getPhaseAt(x, y);
|
Chris@1038
|
359 double newPhase = getPhaseAt(x+1, y);
|
Chris@275
|
360
|
Chris@929
|
361 int incr = getResolution();
|
Chris@275
|
362
|
Chris@1090
|
363 double expectedPhase = oldPhase + (2.0 * M_PI * y * incr) / m_fftSize;
|
Chris@275
|
364
|
Chris@1038
|
365 double phaseError = princarg(newPhase - expectedPhase);
|
Chris@275
|
366
|
Chris@275
|
367 // The new frequency estimate based on the phase error resulting
|
Chris@275
|
368 // from assuming the "native" frequency of this bin
|
Chris@275
|
369
|
Chris@275
|
370 frequency =
|
Chris@1090
|
371 (getSampleRate() * (expectedPhase + phaseError - oldPhase)) /
|
Chris@1045
|
372 (2.0 * M_PI * incr);
|
Chris@275
|
373
|
Chris@275
|
374 return true;
|
Chris@275
|
375 }
|
Chris@275
|
376
|
Chris@275
|
377 FFTModel::PeakLocationSet
|
Chris@1191
|
378 FFTModel::getPeaks(PeakPickType type, int x, int ymin, int ymax) const
|
Chris@275
|
379 {
|
Chris@551
|
380 Profiler profiler("FFTModel::getPeaks");
|
Chris@551
|
381
|
Chris@275
|
382 FFTModel::PeakLocationSet peaks;
|
Chris@275
|
383 if (!isOK()) return peaks;
|
Chris@275
|
384
|
Chris@275
|
385 if (ymax == 0 || ymax > getHeight() - 1) {
|
Chris@275
|
386 ymax = getHeight() - 1;
|
Chris@275
|
387 }
|
Chris@275
|
388
|
Chris@275
|
389 if (type == AllPeaks) {
|
Chris@551
|
390 int minbin = ymin;
|
Chris@551
|
391 if (minbin > 0) minbin = minbin - 1;
|
Chris@551
|
392 int maxbin = ymax;
|
Chris@551
|
393 if (maxbin < getHeight() - 1) maxbin = maxbin + 1;
|
Chris@551
|
394 const int n = maxbin - minbin + 1;
|
Chris@1218
|
395 float *values = new float[n];
|
Chris@551
|
396 getMagnitudesAt(x, values, minbin, maxbin - minbin + 1);
|
Chris@929
|
397 for (int bin = ymin; bin <= ymax; ++bin) {
|
Chris@551
|
398 if (bin == minbin || bin == maxbin) continue;
|
Chris@551
|
399 if (values[bin - minbin] > values[bin - minbin - 1] &&
|
Chris@551
|
400 values[bin - minbin] > values[bin - minbin + 1]) {
|
Chris@275
|
401 peaks.insert(bin);
|
Chris@275
|
402 }
|
Chris@275
|
403 }
|
Chris@1218
|
404 delete[] values;
|
Chris@275
|
405 return peaks;
|
Chris@275
|
406 }
|
Chris@275
|
407
|
Chris@551
|
408 Column values = getColumn(x);
|
Chris@1154
|
409 int nv = int(values.size());
|
Chris@275
|
410
|
Chris@500
|
411 float mean = 0.f;
|
Chris@1154
|
412 for (int i = 0; i < nv; ++i) mean += values[i];
|
Chris@1154
|
413 if (nv > 0) mean = mean / float(values.size());
|
Chris@1038
|
414
|
Chris@275
|
415 // For peak picking we use a moving median window, picking the
|
Chris@275
|
416 // highest value within each continuous region of values that
|
Chris@275
|
417 // exceed the median. For pitch adaptivity, we adjust the window
|
Chris@275
|
418 // size to a roughly constant pitch range (about four tones).
|
Chris@275
|
419
|
Chris@1040
|
420 sv_samplerate_t sampleRate = getSampleRate();
|
Chris@275
|
421
|
Chris@1090
|
422 deque<float> window;
|
Chris@1090
|
423 vector<int> inrange;
|
Chris@280
|
424 float dist = 0.5;
|
Chris@500
|
425
|
Chris@929
|
426 int medianWinSize = getPeakPickWindowSize(type, sampleRate, ymin, dist);
|
Chris@929
|
427 int halfWin = medianWinSize/2;
|
Chris@275
|
428
|
Chris@929
|
429 int binmin;
|
Chris@275
|
430 if (ymin > halfWin) binmin = ymin - halfWin;
|
Chris@275
|
431 else binmin = 0;
|
Chris@275
|
432
|
Chris@929
|
433 int binmax;
|
Chris@1154
|
434 if (ymax + halfWin < nv) binmax = ymax + halfWin;
|
Chris@1154
|
435 else binmax = nv - 1;
|
Chris@275
|
436
|
Chris@929
|
437 int prevcentre = 0;
|
Chris@500
|
438
|
Chris@929
|
439 for (int bin = binmin; bin <= binmax; ++bin) {
|
Chris@275
|
440
|
Chris@275
|
441 float value = values[bin];
|
Chris@275
|
442
|
Chris@275
|
443 window.push_back(value);
|
Chris@275
|
444
|
Chris@280
|
445 // so-called median will actually be the dist*100'th percentile
|
Chris@280
|
446 medianWinSize = getPeakPickWindowSize(type, sampleRate, bin, dist);
|
Chris@275
|
447 halfWin = medianWinSize/2;
|
Chris@275
|
448
|
Chris@929
|
449 while ((int)window.size() > medianWinSize) {
|
Chris@500
|
450 window.pop_front();
|
Chris@500
|
451 }
|
Chris@500
|
452
|
Chris@1038
|
453 int actualSize = int(window.size());
|
Chris@275
|
454
|
Chris@275
|
455 if (type == MajorPitchAdaptivePeaks) {
|
Chris@1154
|
456 if (ymax + halfWin < nv) binmax = ymax + halfWin;
|
Chris@1154
|
457 else binmax = nv - 1;
|
Chris@275
|
458 }
|
Chris@275
|
459
|
Chris@1090
|
460 deque<float> sorted(window);
|
Chris@1090
|
461 sort(sorted.begin(), sorted.end());
|
Chris@1038
|
462 float median = sorted[int(float(sorted.size()) * dist)];
|
Chris@275
|
463
|
Chris@929
|
464 int centrebin = 0;
|
Chris@500
|
465 if (bin > actualSize/2) centrebin = bin - actualSize/2;
|
Chris@500
|
466
|
Chris@500
|
467 while (centrebin > prevcentre || bin == binmin) {
|
Chris@275
|
468
|
Chris@500
|
469 if (centrebin > prevcentre) ++prevcentre;
|
Chris@500
|
470
|
Chris@500
|
471 float centre = values[prevcentre];
|
Chris@500
|
472
|
Chris@500
|
473 if (centre > median) {
|
Chris@500
|
474 inrange.push_back(centrebin);
|
Chris@500
|
475 }
|
Chris@500
|
476
|
Chris@1154
|
477 if (centre <= median || centrebin+1 == nv) {
|
Chris@500
|
478 if (!inrange.empty()) {
|
Chris@929
|
479 int peakbin = 0;
|
Chris@500
|
480 float peakval = 0.f;
|
Chris@929
|
481 for (int i = 0; i < (int)inrange.size(); ++i) {
|
Chris@500
|
482 if (i == 0 || values[inrange[i]] > peakval) {
|
Chris@500
|
483 peakval = values[inrange[i]];
|
Chris@500
|
484 peakbin = inrange[i];
|
Chris@500
|
485 }
|
Chris@500
|
486 }
|
Chris@500
|
487 inrange.clear();
|
Chris@500
|
488 if (peakbin >= ymin && peakbin <= ymax) {
|
Chris@500
|
489 peaks.insert(peakbin);
|
Chris@275
|
490 }
|
Chris@275
|
491 }
|
Chris@275
|
492 }
|
Chris@500
|
493
|
Chris@500
|
494 if (bin == binmin) break;
|
Chris@275
|
495 }
|
Chris@275
|
496 }
|
Chris@275
|
497
|
Chris@275
|
498 return peaks;
|
Chris@275
|
499 }
|
Chris@275
|
500
|
Chris@929
|
501 int
|
Chris@1040
|
502 FFTModel::getPeakPickWindowSize(PeakPickType type, sv_samplerate_t sampleRate,
|
Chris@929
|
503 int bin, float &percentile) const
|
Chris@275
|
504 {
|
Chris@280
|
505 percentile = 0.5;
|
Chris@275
|
506 if (type == MajorPeaks) return 10;
|
Chris@275
|
507 if (bin == 0) return 3;
|
Chris@280
|
508
|
Chris@1091
|
509 double binfreq = (sampleRate * bin) / m_fftSize;
|
Chris@1038
|
510 double hifreq = Pitch::getFrequencyForPitch(73, 0, binfreq);
|
Chris@280
|
511
|
Chris@1091
|
512 int hibin = int(lrint((hifreq * m_fftSize) / sampleRate));
|
Chris@275
|
513 int medianWinSize = hibin - bin;
|
Chris@275
|
514 if (medianWinSize < 3) medianWinSize = 3;
|
Chris@280
|
515
|
Chris@1091
|
516 percentile = 0.5f + float(binfreq / sampleRate);
|
Chris@280
|
517
|
Chris@275
|
518 return medianWinSize;
|
Chris@275
|
519 }
|
Chris@275
|
520
|
Chris@275
|
521 FFTModel::PeakSet
|
Chris@929
|
522 FFTModel::getPeakFrequencies(PeakPickType type, int x,
|
Chris@1191
|
523 int ymin, int ymax) const
|
Chris@275
|
524 {
|
Chris@551
|
525 Profiler profiler("FFTModel::getPeakFrequencies");
|
Chris@551
|
526
|
Chris@275
|
527 PeakSet peaks;
|
Chris@275
|
528 if (!isOK()) return peaks;
|
Chris@275
|
529 PeakLocationSet locations = getPeaks(type, x, ymin, ymax);
|
Chris@275
|
530
|
Chris@1040
|
531 sv_samplerate_t sampleRate = getSampleRate();
|
Chris@929
|
532 int incr = getResolution();
|
Chris@275
|
533
|
Chris@275
|
534 // This duplicates some of the work of estimateStableFrequency to
|
Chris@275
|
535 // allow us to retrieve the phases in two separate vertical
|
Chris@275
|
536 // columns, instead of jumping back and forth between columns x and
|
Chris@275
|
537 // x+1, which may be significantly slower if re-seeking is needed
|
Chris@275
|
538
|
Chris@1090
|
539 vector<float> phases;
|
Chris@275
|
540 for (PeakLocationSet::iterator i = locations.begin();
|
Chris@275
|
541 i != locations.end(); ++i) {
|
Chris@275
|
542 phases.push_back(getPhaseAt(x, *i));
|
Chris@275
|
543 }
|
Chris@275
|
544
|
Chris@929
|
545 int phaseIndex = 0;
|
Chris@275
|
546 for (PeakLocationSet::iterator i = locations.begin();
|
Chris@275
|
547 i != locations.end(); ++i) {
|
Chris@1038
|
548 double oldPhase = phases[phaseIndex];
|
Chris@1038
|
549 double newPhase = getPhaseAt(x+1, *i);
|
Chris@1090
|
550 double expectedPhase = oldPhase + (2.0 * M_PI * *i * incr) / m_fftSize;
|
Chris@1038
|
551 double phaseError = princarg(newPhase - expectedPhase);
|
Chris@1038
|
552 double frequency =
|
Chris@275
|
553 (sampleRate * (expectedPhase + phaseError - oldPhase))
|
Chris@275
|
554 / (2 * M_PI * incr);
|
Chris@1045
|
555 peaks[*i] = frequency;
|
Chris@275
|
556 ++phaseIndex;
|
Chris@275
|
557 }
|
Chris@275
|
558
|
Chris@275
|
559 return peaks;
|
Chris@275
|
560 }
|
Chris@275
|
561
|