Chris@152
|
1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
|
Chris@152
|
2
|
Chris@152
|
3 /*
|
Chris@152
|
4 Sonic Visualiser
|
Chris@152
|
5 An audio file viewer and annotation editor.
|
Chris@152
|
6 Centre for Digital Music, Queen Mary, University of London.
|
Chris@152
|
7 This file copyright 2006 Chris Cannam.
|
Chris@152
|
8
|
Chris@152
|
9 This program is free software; you can redistribute it and/or
|
Chris@152
|
10 modify it under the terms of the GNU General Public License as
|
Chris@152
|
11 published by the Free Software Foundation; either version 2 of the
|
Chris@152
|
12 License, or (at your option) any later version. See the file
|
Chris@152
|
13 COPYING included with this distribution for more information.
|
Chris@152
|
14 */
|
Chris@152
|
15
|
Chris@152
|
16 #include "FFTModel.h"
|
Chris@152
|
17 #include "DenseTimeValueModel.h"
|
Chris@152
|
18
|
Chris@183
|
19 #include "base/Profiler.h"
|
Chris@275
|
20 #include "base/Pitch.h"
|
Chris@1256
|
21 #include "base/HitCount.h"
|
Chris@1428
|
22 #include "base/Debug.h"
|
Chris@1573
|
23 #include "base/MovingMedian.h"
|
Chris@183
|
24
|
Chris@402
|
25 #include <algorithm>
|
Chris@402
|
26
|
Chris@152
|
27 #include <cassert>
|
Chris@1090
|
28 #include <deque>
|
Chris@152
|
29
|
Chris@1090
|
30 using namespace std;
|
Chris@1090
|
31
|
Chris@1256
|
32 static HitCount inSmallCache("FFTModel: Small FFT cache");
|
Chris@1256
|
33 static HitCount inSourceCache("FFTModel: Source data cache");
|
Chris@1256
|
34
|
Chris@1744
|
35 FFTModel::FFTModel(ModelId modelId,
|
Chris@152
|
36 int channel,
|
Chris@152
|
37 WindowType windowType,
|
Chris@929
|
38 int windowSize,
|
Chris@929
|
39 int windowIncrement,
|
Chris@1090
|
40 int fftSize) :
|
Chris@1744
|
41 m_model(modelId),
|
Chris@1780
|
42 m_sampleRate(0),
|
Chris@1090
|
43 m_channel(channel),
|
Chris@1090
|
44 m_windowType(windowType),
|
Chris@1090
|
45 m_windowSize(windowSize),
|
Chris@1090
|
46 m_windowIncrement(windowIncrement),
|
Chris@1090
|
47 m_fftSize(fftSize),
|
Chris@1091
|
48 m_windower(windowType, windowSize),
|
Chris@1093
|
49 m_fft(fftSize),
|
Chris@1780
|
50 m_maximumFrequency(0.0),
|
Chris@1371
|
51 m_cacheWriteIndex(0),
|
Chris@1093
|
52 m_cacheSize(3)
|
Chris@152
|
53 {
|
Chris@1371
|
54 while (m_cached.size() < m_cacheSize) {
|
Chris@1371
|
55 m_cached.push_back({ -1, cvec(m_fftSize / 2 + 1) });
|
Chris@1371
|
56 }
|
Chris@1371
|
57
|
Chris@1091
|
58 if (m_windowSize > m_fftSize) {
|
Chris@1428
|
59 SVCERR << "ERROR: FFTModel::FFTModel: window size (" << m_windowSize
|
Chris@1680
|
60 << ") may not exceed FFT size (" << m_fftSize << ")" << endl;
|
Chris@1680
|
61 throw invalid_argument("FFTModel window size may not exceed FFT size");
|
Chris@1091
|
62 }
|
Chris@1133
|
63
|
Chris@1270
|
64 m_fft.initFloat();
|
Chris@1270
|
65
|
Chris@1744
|
66 auto model = ModelById::getAs<DenseTimeValueModel>(m_model);
|
Chris@1744
|
67 if (model) {
|
Chris@1780
|
68 m_sampleRate = model->getSampleRate();
|
Chris@1780
|
69
|
Chris@1752
|
70 connect(model.get(), SIGNAL(modelChanged(ModelId)),
|
Chris@1752
|
71 this, SIGNAL(modelChanged(ModelId)));
|
Chris@1752
|
72 connect(model.get(), SIGNAL(modelChangedWithin(ModelId, sv_frame_t, sv_frame_t)),
|
Chris@1752
|
73 this, SIGNAL(modelChangedWithin(ModelId, sv_frame_t, sv_frame_t)));
|
Chris@1744
|
74 }
|
Chris@152
|
75 }
|
Chris@152
|
76
|
Chris@152
|
77 FFTModel::~FFTModel()
|
Chris@152
|
78 {
|
Chris@152
|
79 }
|
Chris@152
|
80
|
Chris@1744
|
81 bool
|
Chris@1744
|
82 FFTModel::isOK() const
|
Chris@360
|
83 {
|
Chris@1744
|
84 auto model = ModelById::getAs<DenseTimeValueModel>(m_model);
|
Chris@1744
|
85 return (model && model->isOK());
|
Chris@1744
|
86 }
|
Chris@1744
|
87
|
Chris@1744
|
88 int
|
Chris@1744
|
89 FFTModel::getCompletion() const
|
Chris@1744
|
90 {
|
Chris@1744
|
91 int c = 100;
|
Chris@1744
|
92 auto model = ModelById::getAs<DenseTimeValueModel>(m_model);
|
Chris@1744
|
93 if (model) {
|
Chris@1744
|
94 if (model->isReady(&c)) return 100;
|
Chris@360
|
95 }
|
Chris@1744
|
96 return c;
|
Chris@1744
|
97 }
|
Chris@1744
|
98
|
Chris@1744
|
99 sv_samplerate_t
|
Chris@1744
|
100 FFTModel::getSampleRate() const
|
Chris@1744
|
101 {
|
Chris@1780
|
102 return m_sampleRate;
|
Chris@1780
|
103 }
|
Chris@1780
|
104
|
Chris@1780
|
105 void
|
Chris@1780
|
106 FFTModel::setMaximumFrequency(double freq)
|
Chris@1780
|
107 {
|
Chris@1780
|
108 m_maximumFrequency = freq;
|
Chris@360
|
109 }
|
Chris@360
|
110
|
Chris@1091
|
111 int
|
Chris@1091
|
112 FFTModel::getWidth() const
|
Chris@1091
|
113 {
|
Chris@1744
|
114 auto model = ModelById::getAs<DenseTimeValueModel>(m_model);
|
Chris@1744
|
115 if (!model) return 0;
|
Chris@1744
|
116 return int((model->getEndFrame() - model->getStartFrame())
|
Chris@1091
|
117 / m_windowIncrement) + 1;
|
Chris@1091
|
118 }
|
Chris@1091
|
119
|
Chris@1091
|
120 int
|
Chris@1091
|
121 FFTModel::getHeight() const
|
Chris@1091
|
122 {
|
Chris@1780
|
123 int height = m_fftSize / 2 + 1;
|
Chris@1780
|
124 if (m_maximumFrequency != 0.0) {
|
Chris@1780
|
125 int maxBin = int(ceil(m_maximumFrequency * m_fftSize) / m_sampleRate);
|
Chris@1780
|
126 if (maxBin >= 0 && maxBin < height) {
|
Chris@1780
|
127 return maxBin + 1;
|
Chris@1780
|
128 }
|
Chris@1780
|
129 }
|
Chris@1780
|
130 return height;
|
Chris@1091
|
131 }
|
Chris@1091
|
132
|
Chris@152
|
133 QString
|
Chris@929
|
134 FFTModel::getBinName(int n) const
|
Chris@152
|
135 {
|
Chris@1040
|
136 sv_samplerate_t sr = getSampleRate();
|
Chris@152
|
137 if (!sr) return "";
|
Chris@1780
|
138 QString name = tr("%1 Hz").arg((double(n) * sr) / m_fftSize);
|
Chris@152
|
139 return name;
|
Chris@152
|
140 }
|
Chris@152
|
141
|
Chris@1091
|
142 FFTModel::Column
|
Chris@1091
|
143 FFTModel::getColumn(int x) const
|
Chris@1091
|
144 {
|
Chris@1091
|
145 auto cplx = getFFTColumn(x);
|
Chris@1091
|
146 Column col;
|
Chris@1154
|
147 col.reserve(cplx.size());
|
Chris@1091
|
148 for (auto c: cplx) col.push_back(abs(c));
|
Chris@1319
|
149 return col;
|
Chris@1091
|
150 }
|
Chris@1091
|
151
|
Chris@1200
|
152 FFTModel::Column
|
Chris@1200
|
153 FFTModel::getPhases(int x) const
|
Chris@1200
|
154 {
|
Chris@1200
|
155 auto cplx = getFFTColumn(x);
|
Chris@1200
|
156 Column col;
|
Chris@1200
|
157 col.reserve(cplx.size());
|
Chris@1201
|
158 for (auto c: cplx) {
|
Chris@1201
|
159 col.push_back(arg(c));
|
Chris@1201
|
160 }
|
Chris@1319
|
161 return col;
|
Chris@1200
|
162 }
|
Chris@1200
|
163
|
Chris@1091
|
164 float
|
Chris@1091
|
165 FFTModel::getMagnitudeAt(int x, int y) const
|
Chris@1091
|
166 {
|
Chris@1569
|
167 if (x < 0 || x >= getWidth() || y < 0 || y >= getHeight()) {
|
Chris@1569
|
168 return 0.f;
|
Chris@1569
|
169 }
|
Chris@1093
|
170 auto col = getFFTColumn(x);
|
Chris@1093
|
171 return abs(col[y]);
|
Chris@1091
|
172 }
|
Chris@1091
|
173
|
Chris@1091
|
174 float
|
Chris@1091
|
175 FFTModel::getMaximumMagnitudeAt(int x) const
|
Chris@1091
|
176 {
|
Chris@1091
|
177 Column col(getColumn(x));
|
Chris@1092
|
178 float max = 0.f;
|
Chris@1154
|
179 int n = int(col.size());
|
Chris@1154
|
180 for (int i = 0; i < n; ++i) {
|
Chris@1092
|
181 if (col[i] > max) max = col[i];
|
Chris@1092
|
182 }
|
Chris@1092
|
183 return max;
|
Chris@1091
|
184 }
|
Chris@1091
|
185
|
Chris@1091
|
186 float
|
Chris@1091
|
187 FFTModel::getPhaseAt(int x, int y) const
|
Chris@1091
|
188 {
|
Chris@1093
|
189 if (x < 0 || x >= getWidth() || y < 0 || y >= getHeight()) return 0.f;
|
Chris@1091
|
190 return arg(getFFTColumn(x)[y]);
|
Chris@1091
|
191 }
|
Chris@1091
|
192
|
Chris@1091
|
193 void
|
Chris@1091
|
194 FFTModel::getValuesAt(int x, int y, float &re, float &im) const
|
Chris@1091
|
195 {
|
Chris@1780
|
196 if (x < 0 || x >= getWidth() || y < 0 || y >= getHeight()) {
|
Chris@1780
|
197 re = 0.f;
|
Chris@1780
|
198 im = 0.f;
|
Chris@1780
|
199 return;
|
Chris@1780
|
200 }
|
Chris@1091
|
201 auto col = getFFTColumn(x);
|
Chris@1091
|
202 re = col[y].real();
|
Chris@1091
|
203 im = col[y].imag();
|
Chris@1091
|
204 }
|
Chris@1091
|
205
|
Chris@1091
|
206 bool
|
Chris@1091
|
207 FFTModel::getMagnitudesAt(int x, float *values, int minbin, int count) const
|
Chris@1091
|
208 {
|
Chris@1091
|
209 if (count == 0) count = getHeight();
|
Chris@1091
|
210 auto col = getFFTColumn(x);
|
Chris@1091
|
211 for (int i = 0; i < count; ++i) {
|
Chris@1091
|
212 values[i] = abs(col[minbin + i]);
|
Chris@1091
|
213 }
|
Chris@1091
|
214 return true;
|
Chris@1091
|
215 }
|
Chris@1091
|
216
|
Chris@1091
|
217 bool
|
Chris@1091
|
218 FFTModel::getPhasesAt(int x, float *values, int minbin, int count) const
|
Chris@1091
|
219 {
|
Chris@1091
|
220 if (count == 0) count = getHeight();
|
Chris@1091
|
221 auto col = getFFTColumn(x);
|
Chris@1091
|
222 for (int i = 0; i < count; ++i) {
|
Chris@1091
|
223 values[i] = arg(col[minbin + i]);
|
Chris@1091
|
224 }
|
Chris@1091
|
225 return true;
|
Chris@1091
|
226 }
|
Chris@1091
|
227
|
Chris@1091
|
228 bool
|
Chris@1091
|
229 FFTModel::getValuesAt(int x, float *reals, float *imags, int minbin, int count) const
|
Chris@1091
|
230 {
|
Chris@1091
|
231 if (count == 0) count = getHeight();
|
Chris@1091
|
232 auto col = getFFTColumn(x);
|
Chris@1091
|
233 for (int i = 0; i < count; ++i) {
|
Chris@1091
|
234 reals[i] = col[minbin + i].real();
|
Chris@1091
|
235 }
|
Chris@1091
|
236 for (int i = 0; i < count; ++i) {
|
Chris@1091
|
237 imags[i] = col[minbin + i].imag();
|
Chris@1091
|
238 }
|
Chris@1091
|
239 return true;
|
Chris@1091
|
240 }
|
Chris@1091
|
241
|
Chris@1326
|
242 FFTModel::fvec
|
Chris@1091
|
243 FFTModel::getSourceSamples(int column) const
|
Chris@1091
|
244 {
|
Chris@1094
|
245 // m_fftSize may be greater than m_windowSize, but not the reverse
|
Chris@1094
|
246
|
Chris@1094
|
247 // cerr << "getSourceSamples(" << column << ")" << endl;
|
Chris@1094
|
248
|
Chris@1091
|
249 auto range = getSourceSampleRange(column);
|
Chris@1094
|
250 auto data = getSourceData(range);
|
Chris@1094
|
251
|
Chris@1091
|
252 int off = (m_fftSize - m_windowSize) / 2;
|
Chris@1094
|
253
|
Chris@1094
|
254 if (off == 0) {
|
Chris@1094
|
255 return data;
|
Chris@1094
|
256 } else {
|
Chris@1094
|
257 vector<float> pad(off, 0.f);
|
Chris@1326
|
258 fvec padded;
|
Chris@1094
|
259 padded.reserve(m_fftSize);
|
Chris@1094
|
260 padded.insert(padded.end(), pad.begin(), pad.end());
|
Chris@1094
|
261 padded.insert(padded.end(), data.begin(), data.end());
|
Chris@1094
|
262 padded.insert(padded.end(), pad.begin(), pad.end());
|
Chris@1094
|
263 return padded;
|
Chris@1094
|
264 }
|
Chris@1094
|
265 }
|
Chris@1094
|
266
|
Chris@1326
|
267 FFTModel::fvec
|
Chris@1094
|
268 FFTModel::getSourceData(pair<sv_frame_t, sv_frame_t> range) const
|
Chris@1094
|
269 {
|
Chris@1094
|
270 // cerr << "getSourceData(" << range.first << "," << range.second
|
Chris@1094
|
271 // << "): saved range is (" << m_savedData.range.first
|
Chris@1094
|
272 // << "," << m_savedData.range.second << ")" << endl;
|
Chris@1094
|
273
|
Chris@1100
|
274 if (m_savedData.range == range) {
|
Chris@1256
|
275 inSourceCache.hit();
|
Chris@1100
|
276 return m_savedData.data;
|
Chris@1100
|
277 }
|
Chris@1094
|
278
|
Chris@1270
|
279 Profiler profiler("FFTModel::getSourceData (cache miss)");
|
Chris@1270
|
280
|
Chris@1094
|
281 if (range.first < m_savedData.range.second &&
|
Chris@1094
|
282 range.first >= m_savedData.range.first &&
|
Chris@1094
|
283 range.second > m_savedData.range.second) {
|
Chris@1094
|
284
|
Chris@1256
|
285 inSourceCache.partial();
|
Chris@1256
|
286
|
Chris@1100
|
287 sv_frame_t discard = range.first - m_savedData.range.first;
|
Chris@1100
|
288
|
Chris@1457
|
289 fvec data;
|
Chris@1457
|
290 data.reserve(range.second - range.first);
|
Chris@1094
|
291
|
Chris@1457
|
292 data.insert(data.end(),
|
Chris@1457
|
293 m_savedData.data.begin() + discard,
|
Chris@1457
|
294 m_savedData.data.end());
|
Chris@1100
|
295
|
Chris@1457
|
296 fvec rest = getSourceDataUncached
|
Chris@1457
|
297 ({ m_savedData.range.second, range.second });
|
Chris@1457
|
298
|
Chris@1457
|
299 data.insert(data.end(), rest.begin(), rest.end());
|
Chris@1094
|
300
|
Chris@1457
|
301 m_savedData = { range, data };
|
Chris@1457
|
302 return data;
|
Chris@1095
|
303
|
Chris@1095
|
304 } else {
|
Chris@1095
|
305
|
Chris@1256
|
306 inSourceCache.miss();
|
Chris@1256
|
307
|
Chris@1095
|
308 auto data = getSourceDataUncached(range);
|
Chris@1095
|
309 m_savedData = { range, data };
|
Chris@1095
|
310 return data;
|
Chris@1094
|
311 }
|
Chris@1095
|
312 }
|
Chris@1094
|
313
|
Chris@1326
|
314 FFTModel::fvec
|
Chris@1095
|
315 FFTModel::getSourceDataUncached(pair<sv_frame_t, sv_frame_t> range) const
|
Chris@1095
|
316 {
|
Chris@1457
|
317 Profiler profiler("FFTModel::getSourceDataUncached");
|
Chris@1688
|
318
|
Chris@1744
|
319 auto model = ModelById::getAs<DenseTimeValueModel>(m_model);
|
Chris@1744
|
320 if (!model) return {};
|
Chris@1457
|
321
|
Chris@1091
|
322 decltype(range.first) pfx = 0;
|
Chris@1091
|
323 if (range.first < 0) {
|
Chris@1091
|
324 pfx = -range.first;
|
Chris@1091
|
325 range = { 0, range.second };
|
Chris@1091
|
326 }
|
Chris@1096
|
327
|
Chris@1744
|
328 auto data = model->getData(m_channel,
|
Chris@1744
|
329 range.first,
|
Chris@1744
|
330 range.second - range.first);
|
Chris@1773
|
331 /*
|
Chris@1281
|
332 if (data.empty()) {
|
Chris@1281
|
333 SVDEBUG << "NOTE: empty source data for range (" << range.first << ","
|
Chris@1281
|
334 << range.second << ") (model end frame "
|
Chris@1744
|
335 << model->getEndFrame() << ")" << endl;
|
Chris@1281
|
336 }
|
Chris@1773
|
337 */
|
Chris@1281
|
338
|
Chris@1096
|
339 // don't return a partial frame
|
Chris@1096
|
340 data.resize(range.second - range.first, 0.f);
|
Chris@1096
|
341
|
Chris@1096
|
342 if (pfx > 0) {
|
Chris@1096
|
343 vector<float> pad(pfx, 0.f);
|
Chris@1096
|
344 data.insert(data.begin(), pad.begin(), pad.end());
|
Chris@1096
|
345 }
|
Chris@1096
|
346
|
Chris@1091
|
347 if (m_channel == -1) {
|
Chris@1744
|
348 int channels = model->getChannelCount();
|
Chris@1429
|
349 if (channels > 1) {
|
Chris@1096
|
350 int n = int(data.size());
|
Chris@1096
|
351 float factor = 1.f / float(channels);
|
Chris@1100
|
352 // use mean instead of sum for fft model input
|
Chris@1429
|
353 for (int i = 0; i < n; ++i) {
|
Chris@1429
|
354 data[i] *= factor;
|
Chris@1429
|
355 }
|
Chris@1429
|
356 }
|
Chris@1091
|
357 }
|
Chris@1094
|
358
|
Chris@1094
|
359 return data;
|
Chris@1091
|
360 }
|
Chris@1091
|
361
|
Chris@1780
|
362 FFTModel::cvec
|
Chris@1093
|
363 FFTModel::getFFTColumn(int n) const
|
Chris@1091
|
364 {
|
Chris@1780
|
365 int h = getHeight();
|
Chris@1780
|
366 bool truncate = (h < m_fftSize / 2 + 1);
|
Chris@1780
|
367
|
Chris@1258
|
368 // The small cache (i.e. the m_cached deque) is for cases where
|
Chris@1258
|
369 // values are looked up individually, and for e.g. peak-frequency
|
Chris@1258
|
370 // spectrograms where values from two consecutive columns are
|
Chris@1257
|
371 // needed at once. This cache gets essentially no hits when
|
Chris@1258
|
372 // scrolling through a magnitude spectrogram, but 95%+ hits with a
|
Chris@1569
|
373 // peak-frequency spectrogram or spectrum.
|
Chris@1257
|
374 for (const auto &incache : m_cached) {
|
Chris@1093
|
375 if (incache.n == n) {
|
Chris@1256
|
376 inSmallCache.hit();
|
Chris@1780
|
377 if (!truncate) {
|
Chris@1780
|
378 return incache.col;
|
Chris@1780
|
379 } else {
|
Chris@1780
|
380 return cvec(incache.col.begin(), incache.col.begin() + h);
|
Chris@1780
|
381 }
|
Chris@1093
|
382 }
|
Chris@1093
|
383 }
|
Chris@1256
|
384 inSmallCache.miss();
|
Chris@1258
|
385
|
Chris@1258
|
386 Profiler profiler("FFTModel::getFFTColumn (cache miss)");
|
Chris@1093
|
387
|
Chris@1093
|
388 auto samples = getSourceSamples(n);
|
Chris@1567
|
389 m_windower.cut(samples.data() + (m_fftSize - m_windowSize) / 2);
|
Chris@1270
|
390 breakfastquay::v_fftshift(samples.data(), m_fftSize);
|
Chris@1270
|
391
|
Chris@1371
|
392 cvec &col = m_cached[m_cacheWriteIndex].col;
|
Chris@1270
|
393
|
Chris@1270
|
394 m_fft.forwardInterleaved(samples.data(),
|
Chris@1270
|
395 reinterpret_cast<float *>(col.data()));
|
Chris@1093
|
396
|
Chris@1371
|
397 m_cached[m_cacheWriteIndex].n = n;
|
Chris@1371
|
398
|
Chris@1371
|
399 m_cacheWriteIndex = (m_cacheWriteIndex + 1) % m_cacheSize;
|
Chris@1093
|
400
|
Chris@1780
|
401 if (!truncate) {
|
Chris@1780
|
402 return col;
|
Chris@1780
|
403 } else {
|
Chris@1780
|
404 return cvec(col.begin(), col.begin() + h);
|
Chris@1780
|
405 }
|
Chris@1091
|
406 }
|
Chris@1091
|
407
|
Chris@275
|
408 bool
|
Chris@1045
|
409 FFTModel::estimateStableFrequency(int x, int y, double &frequency)
|
Chris@275
|
410 {
|
Chris@275
|
411 if (!isOK()) return false;
|
Chris@275
|
412
|
Chris@1090
|
413 frequency = double(y * getSampleRate()) / m_fftSize;
|
Chris@275
|
414
|
Chris@275
|
415 if (x+1 >= getWidth()) return false;
|
Chris@275
|
416
|
Chris@275
|
417 // At frequency f, a phase shift of 2pi (one cycle) happens in 1/f sec.
|
Chris@275
|
418 // At hopsize h and sample rate sr, one hop happens in h/sr sec.
|
Chris@275
|
419 // At window size w, for bin b, f is b*sr/w.
|
Chris@275
|
420 // thus 2pi phase shift happens in w/(b*sr) sec.
|
Chris@275
|
421 // We need to know what phase shift we expect from h/sr sec.
|
Chris@275
|
422 // -> 2pi * ((h/sr) / (w/(b*sr)))
|
Chris@275
|
423 // = 2pi * ((h * b * sr) / (w * sr))
|
Chris@275
|
424 // = 2pi * (h * b) / w.
|
Chris@275
|
425
|
Chris@1038
|
426 double oldPhase = getPhaseAt(x, y);
|
Chris@1038
|
427 double newPhase = getPhaseAt(x+1, y);
|
Chris@275
|
428
|
Chris@929
|
429 int incr = getResolution();
|
Chris@275
|
430
|
Chris@1090
|
431 double expectedPhase = oldPhase + (2.0 * M_PI * y * incr) / m_fftSize;
|
Chris@275
|
432
|
Chris@1038
|
433 double phaseError = princarg(newPhase - expectedPhase);
|
Chris@275
|
434
|
Chris@275
|
435 // The new frequency estimate based on the phase error resulting
|
Chris@275
|
436 // from assuming the "native" frequency of this bin
|
Chris@275
|
437
|
Chris@275
|
438 frequency =
|
Chris@1090
|
439 (getSampleRate() * (expectedPhase + phaseError - oldPhase)) /
|
Chris@1045
|
440 (2.0 * M_PI * incr);
|
Chris@275
|
441
|
Chris@275
|
442 return true;
|
Chris@275
|
443 }
|
Chris@275
|
444
|
Chris@275
|
445 FFTModel::PeakLocationSet
|
Chris@1191
|
446 FFTModel::getPeaks(PeakPickType type, int x, int ymin, int ymax) const
|
Chris@275
|
447 {
|
Chris@551
|
448 Profiler profiler("FFTModel::getPeaks");
|
Chris@1575
|
449
|
Chris@275
|
450 FFTModel::PeakLocationSet peaks;
|
Chris@275
|
451 if (!isOK()) return peaks;
|
Chris@275
|
452
|
Chris@275
|
453 if (ymax == 0 || ymax > getHeight() - 1) {
|
Chris@275
|
454 ymax = getHeight() - 1;
|
Chris@275
|
455 }
|
Chris@275
|
456
|
Chris@275
|
457 if (type == AllPeaks) {
|
Chris@551
|
458 int minbin = ymin;
|
Chris@551
|
459 if (minbin > 0) minbin = minbin - 1;
|
Chris@551
|
460 int maxbin = ymax;
|
Chris@551
|
461 if (maxbin < getHeight() - 1) maxbin = maxbin + 1;
|
Chris@551
|
462 const int n = maxbin - minbin + 1;
|
Chris@1218
|
463 float *values = new float[n];
|
Chris@551
|
464 getMagnitudesAt(x, values, minbin, maxbin - minbin + 1);
|
Chris@929
|
465 for (int bin = ymin; bin <= ymax; ++bin) {
|
Chris@551
|
466 if (bin == minbin || bin == maxbin) continue;
|
Chris@551
|
467 if (values[bin - minbin] > values[bin - minbin - 1] &&
|
Chris@551
|
468 values[bin - minbin] > values[bin - minbin + 1]) {
|
Chris@275
|
469 peaks.insert(bin);
|
Chris@275
|
470 }
|
Chris@275
|
471 }
|
Chris@1218
|
472 delete[] values;
|
Chris@275
|
473 return peaks;
|
Chris@275
|
474 }
|
Chris@275
|
475
|
Chris@551
|
476 Column values = getColumn(x);
|
Chris@1154
|
477 int nv = int(values.size());
|
Chris@275
|
478
|
Chris@500
|
479 float mean = 0.f;
|
Chris@1154
|
480 for (int i = 0; i < nv; ++i) mean += values[i];
|
Chris@1154
|
481 if (nv > 0) mean = mean / float(values.size());
|
Chris@1038
|
482
|
Chris@275
|
483 // For peak picking we use a moving median window, picking the
|
Chris@275
|
484 // highest value within each continuous region of values that
|
Chris@275
|
485 // exceed the median. For pitch adaptivity, we adjust the window
|
Chris@275
|
486 // size to a roughly constant pitch range (about four tones).
|
Chris@275
|
487
|
Chris@1040
|
488 sv_samplerate_t sampleRate = getSampleRate();
|
Chris@275
|
489
|
Chris@1090
|
490 vector<int> inrange;
|
Chris@1576
|
491 double dist = 0.5;
|
Chris@500
|
492
|
Chris@929
|
493 int medianWinSize = getPeakPickWindowSize(type, sampleRate, ymin, dist);
|
Chris@929
|
494 int halfWin = medianWinSize/2;
|
Chris@275
|
495
|
Chris@1573
|
496 MovingMedian<float> window(medianWinSize);
|
Chris@1573
|
497
|
Chris@929
|
498 int binmin;
|
Chris@275
|
499 if (ymin > halfWin) binmin = ymin - halfWin;
|
Chris@275
|
500 else binmin = 0;
|
Chris@275
|
501
|
Chris@929
|
502 int binmax;
|
Chris@1154
|
503 if (ymax + halfWin < nv) binmax = ymax + halfWin;
|
Chris@1154
|
504 else binmax = nv - 1;
|
Chris@275
|
505
|
Chris@929
|
506 int prevcentre = 0;
|
Chris@500
|
507
|
Chris@929
|
508 for (int bin = binmin; bin <= binmax; ++bin) {
|
Chris@275
|
509
|
Chris@275
|
510 float value = values[bin];
|
Chris@275
|
511
|
Chris@280
|
512 // so-called median will actually be the dist*100'th percentile
|
Chris@280
|
513 medianWinSize = getPeakPickWindowSize(type, sampleRate, bin, dist);
|
Chris@275
|
514 halfWin = medianWinSize/2;
|
Chris@275
|
515
|
Chris@1573
|
516 int actualSize = std::min(medianWinSize, bin - binmin + 1);
|
Chris@1573
|
517 window.resize(actualSize);
|
Chris@1573
|
518 window.setPercentile(dist * 100.0);
|
Chris@1573
|
519 window.push(value);
|
Chris@275
|
520
|
Chris@275
|
521 if (type == MajorPitchAdaptivePeaks) {
|
Chris@1154
|
522 if (ymax + halfWin < nv) binmax = ymax + halfWin;
|
Chris@1154
|
523 else binmax = nv - 1;
|
Chris@275
|
524 }
|
Chris@275
|
525
|
Chris@1573
|
526 float median = window.get();
|
Chris@275
|
527
|
Chris@929
|
528 int centrebin = 0;
|
Chris@500
|
529 if (bin > actualSize/2) centrebin = bin - actualSize/2;
|
Chris@500
|
530
|
Chris@500
|
531 while (centrebin > prevcentre || bin == binmin) {
|
Chris@275
|
532
|
Chris@500
|
533 if (centrebin > prevcentre) ++prevcentre;
|
Chris@500
|
534
|
Chris@500
|
535 float centre = values[prevcentre];
|
Chris@500
|
536
|
Chris@500
|
537 if (centre > median) {
|
Chris@500
|
538 inrange.push_back(centrebin);
|
Chris@500
|
539 }
|
Chris@500
|
540
|
Chris@1154
|
541 if (centre <= median || centrebin+1 == nv) {
|
Chris@500
|
542 if (!inrange.empty()) {
|
Chris@929
|
543 int peakbin = 0;
|
Chris@500
|
544 float peakval = 0.f;
|
Chris@929
|
545 for (int i = 0; i < (int)inrange.size(); ++i) {
|
Chris@500
|
546 if (i == 0 || values[inrange[i]] > peakval) {
|
Chris@500
|
547 peakval = values[inrange[i]];
|
Chris@500
|
548 peakbin = inrange[i];
|
Chris@500
|
549 }
|
Chris@500
|
550 }
|
Chris@500
|
551 inrange.clear();
|
Chris@500
|
552 if (peakbin >= ymin && peakbin <= ymax) {
|
Chris@500
|
553 peaks.insert(peakbin);
|
Chris@275
|
554 }
|
Chris@275
|
555 }
|
Chris@275
|
556 }
|
Chris@500
|
557
|
Chris@500
|
558 if (bin == binmin) break;
|
Chris@275
|
559 }
|
Chris@275
|
560 }
|
Chris@275
|
561
|
Chris@275
|
562 return peaks;
|
Chris@275
|
563 }
|
Chris@275
|
564
|
Chris@929
|
565 int
|
Chris@1040
|
566 FFTModel::getPeakPickWindowSize(PeakPickType type, sv_samplerate_t sampleRate,
|
Chris@1576
|
567 int bin, double &dist) const
|
Chris@275
|
568 {
|
Chris@1576
|
569 dist = 0.5; // dist is percentile / 100.0
|
Chris@275
|
570 if (type == MajorPeaks) return 10;
|
Chris@275
|
571 if (bin == 0) return 3;
|
Chris@280
|
572
|
Chris@1091
|
573 double binfreq = (sampleRate * bin) / m_fftSize;
|
Chris@1038
|
574 double hifreq = Pitch::getFrequencyForPitch(73, 0, binfreq);
|
Chris@280
|
575
|
Chris@1091
|
576 int hibin = int(lrint((hifreq * m_fftSize) / sampleRate));
|
Chris@275
|
577 int medianWinSize = hibin - bin;
|
Chris@1576
|
578
|
Chris@1575
|
579 if (medianWinSize < 3) {
|
Chris@1575
|
580 medianWinSize = 3;
|
Chris@1575
|
581 }
|
Chris@1576
|
582
|
Chris@1576
|
583 // We want to avoid the median window size changing too often, as
|
Chris@1576
|
584 // it requires a reallocation. So snap to a nearby round number.
|
Chris@1576
|
585
|
Chris@1575
|
586 if (medianWinSize > 20) {
|
Chris@1575
|
587 medianWinSize = (1 + medianWinSize / 10) * 10;
|
Chris@1575
|
588 }
|
Chris@1576
|
589 if (medianWinSize > 200) {
|
Chris@1576
|
590 medianWinSize = (1 + medianWinSize / 100) * 100;
|
Chris@1576
|
591 }
|
Chris@1576
|
592 if (medianWinSize > 2000) {
|
Chris@1576
|
593 medianWinSize = (1 + medianWinSize / 1000) * 1000;
|
Chris@1576
|
594 }
|
Chris@1576
|
595 if (medianWinSize > 20000) {
|
Chris@1576
|
596 medianWinSize = 20000;
|
Chris@1575
|
597 }
|
Chris@280
|
598
|
Chris@1576
|
599 if (medianWinSize < 100) {
|
Chris@1576
|
600 dist = 1.0 - (4.0 / medianWinSize);
|
Chris@1576
|
601 } else {
|
Chris@1576
|
602 dist = 1.0 - (8.0 / medianWinSize);
|
Chris@1576
|
603 }
|
Chris@1576
|
604 if (dist < 0.5) dist = 0.5;
|
Chris@1575
|
605
|
Chris@275
|
606 return medianWinSize;
|
Chris@275
|
607 }
|
Chris@275
|
608
|
Chris@275
|
609 FFTModel::PeakSet
|
Chris@929
|
610 FFTModel::getPeakFrequencies(PeakPickType type, int x,
|
Chris@1191
|
611 int ymin, int ymax) const
|
Chris@275
|
612 {
|
Chris@551
|
613 Profiler profiler("FFTModel::getPeakFrequencies");
|
Chris@551
|
614
|
Chris@275
|
615 PeakSet peaks;
|
Chris@275
|
616 if (!isOK()) return peaks;
|
Chris@275
|
617 PeakLocationSet locations = getPeaks(type, x, ymin, ymax);
|
Chris@275
|
618
|
Chris@1040
|
619 sv_samplerate_t sampleRate = getSampleRate();
|
Chris@929
|
620 int incr = getResolution();
|
Chris@275
|
621
|
Chris@275
|
622 // This duplicates some of the work of estimateStableFrequency to
|
Chris@275
|
623 // allow us to retrieve the phases in two separate vertical
|
Chris@275
|
624 // columns, instead of jumping back and forth between columns x and
|
Chris@275
|
625 // x+1, which may be significantly slower if re-seeking is needed
|
Chris@275
|
626
|
Chris@1090
|
627 vector<float> phases;
|
Chris@275
|
628 for (PeakLocationSet::iterator i = locations.begin();
|
Chris@275
|
629 i != locations.end(); ++i) {
|
Chris@275
|
630 phases.push_back(getPhaseAt(x, *i));
|
Chris@275
|
631 }
|
Chris@275
|
632
|
Chris@929
|
633 int phaseIndex = 0;
|
Chris@275
|
634 for (PeakLocationSet::iterator i = locations.begin();
|
Chris@275
|
635 i != locations.end(); ++i) {
|
Chris@1038
|
636 double oldPhase = phases[phaseIndex];
|
Chris@1038
|
637 double newPhase = getPhaseAt(x+1, *i);
|
Chris@1090
|
638 double expectedPhase = oldPhase + (2.0 * M_PI * *i * incr) / m_fftSize;
|
Chris@1038
|
639 double phaseError = princarg(newPhase - expectedPhase);
|
Chris@1038
|
640 double frequency =
|
Chris@275
|
641 (sampleRate * (expectedPhase + phaseError - oldPhase))
|
Chris@275
|
642 / (2 * M_PI * incr);
|
Chris@1045
|
643 peaks[*i] = frequency;
|
Chris@275
|
644 ++phaseIndex;
|
Chris@275
|
645 }
|
Chris@275
|
646
|
Chris@275
|
647 return peaks;
|
Chris@275
|
648 }
|
Chris@275
|
649
|