annotate data/model/FFTModel.cpp @ 1288:5ef9b4d4bbdb 3.0-integration

Filter out Xing/LAME info frames, rather than letting them go to the mp3 decoder as if they were audio frames. Fixes the 1152-sample zero pad at start of some decoded mp3 files (distinct from decoder delay). The logic here is based on the madplay code.
author Chris Cannam
date Thu, 24 Nov 2016 13:32:04 +0000
parents 6463046bd21d
children 12a1da4719c7
rev   line source
Chris@152 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
Chris@152 2
Chris@152 3 /*
Chris@152 4 Sonic Visualiser
Chris@152 5 An audio file viewer and annotation editor.
Chris@152 6 Centre for Digital Music, Queen Mary, University of London.
Chris@152 7 This file copyright 2006 Chris Cannam.
Chris@152 8
Chris@152 9 This program is free software; you can redistribute it and/or
Chris@152 10 modify it under the terms of the GNU General Public License as
Chris@152 11 published by the Free Software Foundation; either version 2 of the
Chris@152 12 License, or (at your option) any later version. See the file
Chris@152 13 COPYING included with this distribution for more information.
Chris@152 14 */
Chris@152 15
Chris@152 16 #include "FFTModel.h"
Chris@152 17 #include "DenseTimeValueModel.h"
Chris@152 18
Chris@183 19 #include "base/Profiler.h"
Chris@275 20 #include "base/Pitch.h"
Chris@1256 21 #include "base/HitCount.h"
Chris@183 22
Chris@402 23 #include <algorithm>
Chris@402 24
Chris@152 25 #include <cassert>
Chris@1090 26 #include <deque>
Chris@152 27
Chris@1090 28 using namespace std;
Chris@1090 29
Chris@1256 30 static HitCount inSmallCache("FFTModel: Small FFT cache");
Chris@1256 31 static HitCount inSourceCache("FFTModel: Source data cache");
Chris@1256 32
Chris@152 33 FFTModel::FFTModel(const DenseTimeValueModel *model,
Chris@152 34 int channel,
Chris@152 35 WindowType windowType,
Chris@929 36 int windowSize,
Chris@929 37 int windowIncrement,
Chris@1090 38 int fftSize) :
Chris@1090 39 m_model(model),
Chris@1090 40 m_channel(channel),
Chris@1090 41 m_windowType(windowType),
Chris@1090 42 m_windowSize(windowSize),
Chris@1090 43 m_windowIncrement(windowIncrement),
Chris@1090 44 m_fftSize(fftSize),
Chris@1091 45 m_windower(windowType, windowSize),
Chris@1093 46 m_fft(fftSize),
Chris@1093 47 m_cacheSize(3)
Chris@152 48 {
Chris@1091 49 if (m_windowSize > m_fftSize) {
Chris@1091 50 cerr << "ERROR: FFTModel::FFTModel: window size (" << m_windowSize
Chris@1091 51 << ") must be at least FFT size (" << m_fftSize << ")" << endl;
Chris@1091 52 throw invalid_argument("FFTModel window size must be at least FFT size");
Chris@1091 53 }
Chris@1133 54
Chris@1270 55 m_fft.initFloat();
Chris@1270 56
Chris@1133 57 connect(model, SIGNAL(modelChanged()), this, SIGNAL(modelChanged()));
Chris@1133 58 connect(model, SIGNAL(modelChangedWithin(sv_frame_t, sv_frame_t)),
Chris@1133 59 this, SIGNAL(modelChangedWithin(sv_frame_t, sv_frame_t)));
Chris@152 60 }
Chris@152 61
Chris@152 62 FFTModel::~FFTModel()
Chris@152 63 {
Chris@152 64 }
Chris@152 65
Chris@360 66 void
Chris@360 67 FFTModel::sourceModelAboutToBeDeleted()
Chris@360 68 {
Chris@1090 69 if (m_model) {
Chris@1090 70 cerr << "FFTModel[" << this << "]::sourceModelAboutToBeDeleted(" << m_model << ")" << endl;
Chris@1090 71 m_model = 0;
Chris@360 72 }
Chris@360 73 }
Chris@360 74
Chris@1091 75 int
Chris@1091 76 FFTModel::getWidth() const
Chris@1091 77 {
Chris@1091 78 if (!m_model) return 0;
Chris@1091 79 return int((m_model->getEndFrame() - m_model->getStartFrame())
Chris@1091 80 / m_windowIncrement) + 1;
Chris@1091 81 }
Chris@1091 82
Chris@1091 83 int
Chris@1091 84 FFTModel::getHeight() const
Chris@1091 85 {
Chris@1091 86 return m_fftSize / 2 + 1;
Chris@1091 87 }
Chris@1091 88
Chris@152 89 QString
Chris@929 90 FFTModel::getBinName(int n) const
Chris@152 91 {
Chris@1040 92 sv_samplerate_t sr = getSampleRate();
Chris@152 93 if (!sr) return "";
Chris@204 94 QString name = tr("%1 Hz").arg((n * sr) / ((getHeight()-1) * 2));
Chris@152 95 return name;
Chris@152 96 }
Chris@152 97
Chris@1091 98 FFTModel::Column
Chris@1091 99 FFTModel::getColumn(int x) const
Chris@1091 100 {
Chris@1091 101 auto cplx = getFFTColumn(x);
Chris@1091 102 Column col;
Chris@1154 103 col.reserve(cplx.size());
Chris@1091 104 for (auto c: cplx) col.push_back(abs(c));
Chris@1154 105 return move(col);
Chris@1091 106 }
Chris@1091 107
Chris@1200 108 FFTModel::Column
Chris@1200 109 FFTModel::getPhases(int x) const
Chris@1200 110 {
Chris@1200 111 auto cplx = getFFTColumn(x);
Chris@1200 112 Column col;
Chris@1200 113 col.reserve(cplx.size());
Chris@1201 114 for (auto c: cplx) {
Chris@1201 115 col.push_back(arg(c));
Chris@1201 116 }
Chris@1200 117 return move(col);
Chris@1200 118 }
Chris@1200 119
Chris@1091 120 float
Chris@1091 121 FFTModel::getMagnitudeAt(int x, int y) const
Chris@1091 122 {
Chris@1093 123 if (x < 0 || x >= getWidth() || y < 0 || y >= getHeight()) return 0.f;
Chris@1093 124 auto col = getFFTColumn(x);
Chris@1093 125 return abs(col[y]);
Chris@1091 126 }
Chris@1091 127
Chris@1091 128 float
Chris@1091 129 FFTModel::getMaximumMagnitudeAt(int x) const
Chris@1091 130 {
Chris@1091 131 Column col(getColumn(x));
Chris@1092 132 float max = 0.f;
Chris@1154 133 int n = int(col.size());
Chris@1154 134 for (int i = 0; i < n; ++i) {
Chris@1092 135 if (col[i] > max) max = col[i];
Chris@1092 136 }
Chris@1092 137 return max;
Chris@1091 138 }
Chris@1091 139
Chris@1091 140 float
Chris@1091 141 FFTModel::getPhaseAt(int x, int y) const
Chris@1091 142 {
Chris@1093 143 if (x < 0 || x >= getWidth() || y < 0 || y >= getHeight()) return 0.f;
Chris@1091 144 return arg(getFFTColumn(x)[y]);
Chris@1091 145 }
Chris@1091 146
Chris@1091 147 void
Chris@1091 148 FFTModel::getValuesAt(int x, int y, float &re, float &im) const
Chris@1091 149 {
Chris@1091 150 auto col = getFFTColumn(x);
Chris@1091 151 re = col[y].real();
Chris@1091 152 im = col[y].imag();
Chris@1091 153 }
Chris@1091 154
Chris@1091 155 bool
Chris@1091 156 FFTModel::getMagnitudesAt(int x, float *values, int minbin, int count) const
Chris@1091 157 {
Chris@1091 158 if (count == 0) count = getHeight();
Chris@1091 159 auto col = getFFTColumn(x);
Chris@1091 160 for (int i = 0; i < count; ++i) {
Chris@1091 161 values[i] = abs(col[minbin + i]);
Chris@1091 162 }
Chris@1091 163 return true;
Chris@1091 164 }
Chris@1091 165
Chris@1091 166 bool
Chris@1091 167 FFTModel::getPhasesAt(int x, float *values, int minbin, int count) const
Chris@1091 168 {
Chris@1091 169 if (count == 0) count = getHeight();
Chris@1091 170 auto col = getFFTColumn(x);
Chris@1091 171 for (int i = 0; i < count; ++i) {
Chris@1091 172 values[i] = arg(col[minbin + i]);
Chris@1091 173 }
Chris@1091 174 return true;
Chris@1091 175 }
Chris@1091 176
Chris@1091 177 bool
Chris@1091 178 FFTModel::getValuesAt(int x, float *reals, float *imags, int minbin, int count) const
Chris@1091 179 {
Chris@1091 180 if (count == 0) count = getHeight();
Chris@1091 181 auto col = getFFTColumn(x);
Chris@1091 182 for (int i = 0; i < count; ++i) {
Chris@1091 183 reals[i] = col[minbin + i].real();
Chris@1091 184 }
Chris@1091 185 for (int i = 0; i < count; ++i) {
Chris@1091 186 imags[i] = col[minbin + i].imag();
Chris@1091 187 }
Chris@1091 188 return true;
Chris@1091 189 }
Chris@1091 190
Chris@1091 191 vector<float>
Chris@1091 192 FFTModel::getSourceSamples(int column) const
Chris@1091 193 {
Chris@1094 194 // m_fftSize may be greater than m_windowSize, but not the reverse
Chris@1094 195
Chris@1094 196 // cerr << "getSourceSamples(" << column << ")" << endl;
Chris@1094 197
Chris@1091 198 auto range = getSourceSampleRange(column);
Chris@1094 199 auto data = getSourceData(range);
Chris@1094 200
Chris@1091 201 int off = (m_fftSize - m_windowSize) / 2;
Chris@1094 202
Chris@1094 203 if (off == 0) {
Chris@1094 204 return data;
Chris@1094 205 } else {
Chris@1094 206 vector<float> pad(off, 0.f);
Chris@1094 207 vector<float> padded;
Chris@1094 208 padded.reserve(m_fftSize);
Chris@1094 209 padded.insert(padded.end(), pad.begin(), pad.end());
Chris@1094 210 padded.insert(padded.end(), data.begin(), data.end());
Chris@1094 211 padded.insert(padded.end(), pad.begin(), pad.end());
Chris@1094 212 return padded;
Chris@1094 213 }
Chris@1094 214 }
Chris@1094 215
Chris@1094 216 vector<float>
Chris@1094 217 FFTModel::getSourceData(pair<sv_frame_t, sv_frame_t> range) const
Chris@1094 218 {
Chris@1094 219 // cerr << "getSourceData(" << range.first << "," << range.second
Chris@1094 220 // << "): saved range is (" << m_savedData.range.first
Chris@1094 221 // << "," << m_savedData.range.second << ")" << endl;
Chris@1094 222
Chris@1100 223 if (m_savedData.range == range) {
Chris@1256 224 inSourceCache.hit();
Chris@1100 225 return m_savedData.data;
Chris@1100 226 }
Chris@1094 227
Chris@1270 228 Profiler profiler("FFTModel::getSourceData (cache miss)");
Chris@1270 229
Chris@1094 230 if (range.first < m_savedData.range.second &&
Chris@1094 231 range.first >= m_savedData.range.first &&
Chris@1094 232 range.second > m_savedData.range.second) {
Chris@1094 233
Chris@1256 234 inSourceCache.partial();
Chris@1256 235
Chris@1100 236 sv_frame_t discard = range.first - m_savedData.range.first;
Chris@1100 237
Chris@1100 238 vector<float> acc(m_savedData.data.begin() + discard,
Chris@1100 239 m_savedData.data.end());
Chris@1094 240
Chris@1095 241 vector<float> rest =
Chris@1095 242 getSourceDataUncached({ m_savedData.range.second, range.second });
Chris@1100 243
Chris@1100 244 acc.insert(acc.end(), rest.begin(), rest.end());
Chris@1094 245
Chris@1095 246 m_savedData = { range, acc };
Chris@1095 247 return acc;
Chris@1095 248
Chris@1095 249 } else {
Chris@1095 250
Chris@1256 251 inSourceCache.miss();
Chris@1256 252
Chris@1095 253 auto data = getSourceDataUncached(range);
Chris@1095 254 m_savedData = { range, data };
Chris@1095 255 return data;
Chris@1094 256 }
Chris@1095 257 }
Chris@1094 258
Chris@1095 259 vector<float>
Chris@1095 260 FFTModel::getSourceDataUncached(pair<sv_frame_t, sv_frame_t> range) const
Chris@1095 261 {
Chris@1091 262 decltype(range.first) pfx = 0;
Chris@1091 263 if (range.first < 0) {
Chris@1091 264 pfx = -range.first;
Chris@1091 265 range = { 0, range.second };
Chris@1091 266 }
Chris@1096 267
Chris@1096 268 auto data = m_model->getData(m_channel,
Chris@1096 269 range.first,
Chris@1096 270 range.second - range.first);
Chris@1096 271
Chris@1281 272 if (data.empty()) {
Chris@1281 273 SVDEBUG << "NOTE: empty source data for range (" << range.first << ","
Chris@1281 274 << range.second << ") (model end frame "
Chris@1281 275 << m_model->getEndFrame() << ")" << endl;
Chris@1281 276 }
Chris@1281 277
Chris@1096 278 // don't return a partial frame
Chris@1096 279 data.resize(range.second - range.first, 0.f);
Chris@1096 280
Chris@1096 281 if (pfx > 0) {
Chris@1096 282 vector<float> pad(pfx, 0.f);
Chris@1096 283 data.insert(data.begin(), pad.begin(), pad.end());
Chris@1096 284 }
Chris@1096 285
Chris@1091 286 if (m_channel == -1) {
Chris@1091 287 int channels = m_model->getChannelCount();
Chris@1091 288 if (channels > 1) {
Chris@1096 289 int n = int(data.size());
Chris@1096 290 float factor = 1.f / float(channels);
Chris@1100 291 // use mean instead of sum for fft model input
Chris@1096 292 for (int i = 0; i < n; ++i) {
Chris@1096 293 data[i] *= factor;
Chris@1091 294 }
Chris@1091 295 }
Chris@1091 296 }
Chris@1094 297
Chris@1094 298 return data;
Chris@1091 299 }
Chris@1091 300
Chris@1091 301 vector<complex<float>>
Chris@1093 302 FFTModel::getFFTColumn(int n) const
Chris@1091 303 {
Chris@1258 304 // The small cache (i.e. the m_cached deque) is for cases where
Chris@1258 305 // values are looked up individually, and for e.g. peak-frequency
Chris@1258 306 // spectrograms where values from two consecutive columns are
Chris@1257 307 // needed at once. This cache gets essentially no hits when
Chris@1258 308 // scrolling through a magnitude spectrogram, but 95%+ hits with a
Chris@1258 309 // peak-frequency spectrogram.
Chris@1257 310 for (const auto &incache : m_cached) {
Chris@1093 311 if (incache.n == n) {
Chris@1256 312 inSmallCache.hit();
Chris@1093 313 return incache.col;
Chris@1093 314 }
Chris@1093 315 }
Chris@1256 316 inSmallCache.miss();
Chris@1258 317
Chris@1258 318 Profiler profiler("FFTModel::getFFTColumn (cache miss)");
Chris@1093 319
Chris@1093 320 auto samples = getSourceSamples(n);
Chris@1100 321 m_windower.cut(samples.data());
Chris@1270 322 breakfastquay::v_fftshift(samples.data(), m_fftSize);
Chris@1270 323
Chris@1270 324 vector<complex<float>> col(m_fftSize/2 + 1);
Chris@1270 325
Chris@1270 326 m_fft.forwardInterleaved(samples.data(),
Chris@1270 327 reinterpret_cast<float *>(col.data()));
Chris@1093 328
Chris@1093 329 SavedColumn sc { n, col };
Chris@1093 330 if (m_cached.size() >= m_cacheSize) {
Chris@1093 331 m_cached.pop_front();
Chris@1093 332 }
Chris@1093 333 m_cached.push_back(sc);
Chris@1093 334
Chris@1154 335 return move(col);
Chris@1091 336 }
Chris@1091 337
Chris@275 338 bool
Chris@1045 339 FFTModel::estimateStableFrequency(int x, int y, double &frequency)
Chris@275 340 {
Chris@275 341 if (!isOK()) return false;
Chris@275 342
Chris@1090 343 frequency = double(y * getSampleRate()) / m_fftSize;
Chris@275 344
Chris@275 345 if (x+1 >= getWidth()) return false;
Chris@275 346
Chris@275 347 // At frequency f, a phase shift of 2pi (one cycle) happens in 1/f sec.
Chris@275 348 // At hopsize h and sample rate sr, one hop happens in h/sr sec.
Chris@275 349 // At window size w, for bin b, f is b*sr/w.
Chris@275 350 // thus 2pi phase shift happens in w/(b*sr) sec.
Chris@275 351 // We need to know what phase shift we expect from h/sr sec.
Chris@275 352 // -> 2pi * ((h/sr) / (w/(b*sr)))
Chris@275 353 // = 2pi * ((h * b * sr) / (w * sr))
Chris@275 354 // = 2pi * (h * b) / w.
Chris@275 355
Chris@1038 356 double oldPhase = getPhaseAt(x, y);
Chris@1038 357 double newPhase = getPhaseAt(x+1, y);
Chris@275 358
Chris@929 359 int incr = getResolution();
Chris@275 360
Chris@1090 361 double expectedPhase = oldPhase + (2.0 * M_PI * y * incr) / m_fftSize;
Chris@275 362
Chris@1038 363 double phaseError = princarg(newPhase - expectedPhase);
Chris@275 364
Chris@275 365 // The new frequency estimate based on the phase error resulting
Chris@275 366 // from assuming the "native" frequency of this bin
Chris@275 367
Chris@275 368 frequency =
Chris@1090 369 (getSampleRate() * (expectedPhase + phaseError - oldPhase)) /
Chris@1045 370 (2.0 * M_PI * incr);
Chris@275 371
Chris@275 372 return true;
Chris@275 373 }
Chris@275 374
Chris@275 375 FFTModel::PeakLocationSet
Chris@1191 376 FFTModel::getPeaks(PeakPickType type, int x, int ymin, int ymax) const
Chris@275 377 {
Chris@551 378 Profiler profiler("FFTModel::getPeaks");
Chris@551 379
Chris@275 380 FFTModel::PeakLocationSet peaks;
Chris@275 381 if (!isOK()) return peaks;
Chris@275 382
Chris@275 383 if (ymax == 0 || ymax > getHeight() - 1) {
Chris@275 384 ymax = getHeight() - 1;
Chris@275 385 }
Chris@275 386
Chris@275 387 if (type == AllPeaks) {
Chris@551 388 int minbin = ymin;
Chris@551 389 if (minbin > 0) minbin = minbin - 1;
Chris@551 390 int maxbin = ymax;
Chris@551 391 if (maxbin < getHeight() - 1) maxbin = maxbin + 1;
Chris@551 392 const int n = maxbin - minbin + 1;
Chris@1218 393 float *values = new float[n];
Chris@551 394 getMagnitudesAt(x, values, minbin, maxbin - minbin + 1);
Chris@929 395 for (int bin = ymin; bin <= ymax; ++bin) {
Chris@551 396 if (bin == minbin || bin == maxbin) continue;
Chris@551 397 if (values[bin - minbin] > values[bin - minbin - 1] &&
Chris@551 398 values[bin - minbin] > values[bin - minbin + 1]) {
Chris@275 399 peaks.insert(bin);
Chris@275 400 }
Chris@275 401 }
Chris@1218 402 delete[] values;
Chris@275 403 return peaks;
Chris@275 404 }
Chris@275 405
Chris@551 406 Column values = getColumn(x);
Chris@1154 407 int nv = int(values.size());
Chris@275 408
Chris@500 409 float mean = 0.f;
Chris@1154 410 for (int i = 0; i < nv; ++i) mean += values[i];
Chris@1154 411 if (nv > 0) mean = mean / float(values.size());
Chris@1038 412
Chris@275 413 // For peak picking we use a moving median window, picking the
Chris@275 414 // highest value within each continuous region of values that
Chris@275 415 // exceed the median. For pitch adaptivity, we adjust the window
Chris@275 416 // size to a roughly constant pitch range (about four tones).
Chris@275 417
Chris@1040 418 sv_samplerate_t sampleRate = getSampleRate();
Chris@275 419
Chris@1090 420 deque<float> window;
Chris@1090 421 vector<int> inrange;
Chris@280 422 float dist = 0.5;
Chris@500 423
Chris@929 424 int medianWinSize = getPeakPickWindowSize(type, sampleRate, ymin, dist);
Chris@929 425 int halfWin = medianWinSize/2;
Chris@275 426
Chris@929 427 int binmin;
Chris@275 428 if (ymin > halfWin) binmin = ymin - halfWin;
Chris@275 429 else binmin = 0;
Chris@275 430
Chris@929 431 int binmax;
Chris@1154 432 if (ymax + halfWin < nv) binmax = ymax + halfWin;
Chris@1154 433 else binmax = nv - 1;
Chris@275 434
Chris@929 435 int prevcentre = 0;
Chris@500 436
Chris@929 437 for (int bin = binmin; bin <= binmax; ++bin) {
Chris@275 438
Chris@275 439 float value = values[bin];
Chris@275 440
Chris@275 441 window.push_back(value);
Chris@275 442
Chris@280 443 // so-called median will actually be the dist*100'th percentile
Chris@280 444 medianWinSize = getPeakPickWindowSize(type, sampleRate, bin, dist);
Chris@275 445 halfWin = medianWinSize/2;
Chris@275 446
Chris@929 447 while ((int)window.size() > medianWinSize) {
Chris@500 448 window.pop_front();
Chris@500 449 }
Chris@500 450
Chris@1038 451 int actualSize = int(window.size());
Chris@275 452
Chris@275 453 if (type == MajorPitchAdaptivePeaks) {
Chris@1154 454 if (ymax + halfWin < nv) binmax = ymax + halfWin;
Chris@1154 455 else binmax = nv - 1;
Chris@275 456 }
Chris@275 457
Chris@1090 458 deque<float> sorted(window);
Chris@1090 459 sort(sorted.begin(), sorted.end());
Chris@1038 460 float median = sorted[int(float(sorted.size()) * dist)];
Chris@275 461
Chris@929 462 int centrebin = 0;
Chris@500 463 if (bin > actualSize/2) centrebin = bin - actualSize/2;
Chris@500 464
Chris@500 465 while (centrebin > prevcentre || bin == binmin) {
Chris@275 466
Chris@500 467 if (centrebin > prevcentre) ++prevcentre;
Chris@500 468
Chris@500 469 float centre = values[prevcentre];
Chris@500 470
Chris@500 471 if (centre > median) {
Chris@500 472 inrange.push_back(centrebin);
Chris@500 473 }
Chris@500 474
Chris@1154 475 if (centre <= median || centrebin+1 == nv) {
Chris@500 476 if (!inrange.empty()) {
Chris@929 477 int peakbin = 0;
Chris@500 478 float peakval = 0.f;
Chris@929 479 for (int i = 0; i < (int)inrange.size(); ++i) {
Chris@500 480 if (i == 0 || values[inrange[i]] > peakval) {
Chris@500 481 peakval = values[inrange[i]];
Chris@500 482 peakbin = inrange[i];
Chris@500 483 }
Chris@500 484 }
Chris@500 485 inrange.clear();
Chris@500 486 if (peakbin >= ymin && peakbin <= ymax) {
Chris@500 487 peaks.insert(peakbin);
Chris@275 488 }
Chris@275 489 }
Chris@275 490 }
Chris@500 491
Chris@500 492 if (bin == binmin) break;
Chris@275 493 }
Chris@275 494 }
Chris@275 495
Chris@275 496 return peaks;
Chris@275 497 }
Chris@275 498
Chris@929 499 int
Chris@1040 500 FFTModel::getPeakPickWindowSize(PeakPickType type, sv_samplerate_t sampleRate,
Chris@929 501 int bin, float &percentile) const
Chris@275 502 {
Chris@280 503 percentile = 0.5;
Chris@275 504 if (type == MajorPeaks) return 10;
Chris@275 505 if (bin == 0) return 3;
Chris@280 506
Chris@1091 507 double binfreq = (sampleRate * bin) / m_fftSize;
Chris@1038 508 double hifreq = Pitch::getFrequencyForPitch(73, 0, binfreq);
Chris@280 509
Chris@1091 510 int hibin = int(lrint((hifreq * m_fftSize) / sampleRate));
Chris@275 511 int medianWinSize = hibin - bin;
Chris@275 512 if (medianWinSize < 3) medianWinSize = 3;
Chris@280 513
Chris@1091 514 percentile = 0.5f + float(binfreq / sampleRate);
Chris@280 515
Chris@275 516 return medianWinSize;
Chris@275 517 }
Chris@275 518
Chris@275 519 FFTModel::PeakSet
Chris@929 520 FFTModel::getPeakFrequencies(PeakPickType type, int x,
Chris@1191 521 int ymin, int ymax) const
Chris@275 522 {
Chris@551 523 Profiler profiler("FFTModel::getPeakFrequencies");
Chris@551 524
Chris@275 525 PeakSet peaks;
Chris@275 526 if (!isOK()) return peaks;
Chris@275 527 PeakLocationSet locations = getPeaks(type, x, ymin, ymax);
Chris@275 528
Chris@1040 529 sv_samplerate_t sampleRate = getSampleRate();
Chris@929 530 int incr = getResolution();
Chris@275 531
Chris@275 532 // This duplicates some of the work of estimateStableFrequency to
Chris@275 533 // allow us to retrieve the phases in two separate vertical
Chris@275 534 // columns, instead of jumping back and forth between columns x and
Chris@275 535 // x+1, which may be significantly slower if re-seeking is needed
Chris@275 536
Chris@1090 537 vector<float> phases;
Chris@275 538 for (PeakLocationSet::iterator i = locations.begin();
Chris@275 539 i != locations.end(); ++i) {
Chris@275 540 phases.push_back(getPhaseAt(x, *i));
Chris@275 541 }
Chris@275 542
Chris@929 543 int phaseIndex = 0;
Chris@275 544 for (PeakLocationSet::iterator i = locations.begin();
Chris@275 545 i != locations.end(); ++i) {
Chris@1038 546 double oldPhase = phases[phaseIndex];
Chris@1038 547 double newPhase = getPhaseAt(x+1, *i);
Chris@1090 548 double expectedPhase = oldPhase + (2.0 * M_PI * *i * incr) / m_fftSize;
Chris@1038 549 double phaseError = princarg(newPhase - expectedPhase);
Chris@1038 550 double frequency =
Chris@275 551 (sampleRate * (expectedPhase + phaseError - oldPhase))
Chris@275 552 / (2 * M_PI * incr);
Chris@1045 553 peaks[*i] = frequency;
Chris@275 554 ++phaseIndex;
Chris@275 555 }
Chris@275 556
Chris@275 557 return peaks;
Chris@275 558 }
Chris@275 559