Chris@152
|
1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
|
Chris@152
|
2
|
Chris@152
|
3 /*
|
Chris@152
|
4 Sonic Visualiser
|
Chris@152
|
5 An audio file viewer and annotation editor.
|
Chris@152
|
6 Centre for Digital Music, Queen Mary, University of London.
|
Chris@152
|
7 This file copyright 2006 Chris Cannam.
|
Chris@152
|
8
|
Chris@152
|
9 This program is free software; you can redistribute it and/or
|
Chris@152
|
10 modify it under the terms of the GNU General Public License as
|
Chris@152
|
11 published by the Free Software Foundation; either version 2 of the
|
Chris@152
|
12 License, or (at your option) any later version. See the file
|
Chris@152
|
13 COPYING included with this distribution for more information.
|
Chris@152
|
14 */
|
Chris@152
|
15
|
Chris@152
|
16 #include "FFTModel.h"
|
Chris@152
|
17 #include "DenseTimeValueModel.h"
|
Chris@152
|
18
|
Chris@183
|
19 #include "base/Profiler.h"
|
Chris@275
|
20 #include "base/Pitch.h"
|
Chris@1256
|
21 #include "base/HitCount.h"
|
Chris@1428
|
22 #include "base/Debug.h"
|
Chris@1573
|
23 #include "base/MovingMedian.h"
|
Chris@183
|
24
|
Chris@402
|
25 #include <algorithm>
|
Chris@402
|
26
|
Chris@152
|
27 #include <cassert>
|
Chris@1090
|
28 #include <deque>
|
Chris@152
|
29
|
Chris@1090
|
30 using namespace std;
|
Chris@1090
|
31
|
Chris@1256
|
32 static HitCount inSmallCache("FFTModel: Small FFT cache");
|
Chris@1256
|
33 static HitCount inSourceCache("FFTModel: Source data cache");
|
Chris@1256
|
34
|
Chris@1744
|
35 FFTModel::FFTModel(ModelId modelId,
|
Chris@152
|
36 int channel,
|
Chris@152
|
37 WindowType windowType,
|
Chris@929
|
38 int windowSize,
|
Chris@929
|
39 int windowIncrement,
|
Chris@1090
|
40 int fftSize) :
|
Chris@1744
|
41 m_model(modelId),
|
Chris@1780
|
42 m_sampleRate(0),
|
Chris@1090
|
43 m_channel(channel),
|
Chris@1090
|
44 m_windowType(windowType),
|
Chris@1090
|
45 m_windowSize(windowSize),
|
Chris@1090
|
46 m_windowIncrement(windowIncrement),
|
Chris@1090
|
47 m_fftSize(fftSize),
|
Chris@1091
|
48 m_windower(windowType, windowSize),
|
Chris@1093
|
49 m_fft(fftSize),
|
Chris@1780
|
50 m_maximumFrequency(0.0),
|
Chris@1371
|
51 m_cacheWriteIndex(0),
|
Chris@1093
|
52 m_cacheSize(3)
|
Chris@152
|
53 {
|
Chris@1371
|
54 while (m_cached.size() < m_cacheSize) {
|
Chris@1371
|
55 m_cached.push_back({ -1, cvec(m_fftSize / 2 + 1) });
|
Chris@1371
|
56 }
|
Chris@1371
|
57
|
Chris@1091
|
58 if (m_windowSize > m_fftSize) {
|
Chris@1428
|
59 SVCERR << "ERROR: FFTModel::FFTModel: window size (" << m_windowSize
|
Chris@1680
|
60 << ") may not exceed FFT size (" << m_fftSize << ")" << endl;
|
Chris@1680
|
61 throw invalid_argument("FFTModel window size may not exceed FFT size");
|
Chris@1091
|
62 }
|
Chris@1133
|
63
|
Chris@1270
|
64 m_fft.initFloat();
|
Chris@1270
|
65
|
Chris@1744
|
66 auto model = ModelById::getAs<DenseTimeValueModel>(m_model);
|
Chris@1744
|
67 if (model) {
|
Chris@1780
|
68 m_sampleRate = model->getSampleRate();
|
Chris@1780
|
69
|
Chris@1752
|
70 connect(model.get(), SIGNAL(modelChanged(ModelId)),
|
Chris@1752
|
71 this, SIGNAL(modelChanged(ModelId)));
|
Chris@1752
|
72 connect(model.get(), SIGNAL(modelChangedWithin(ModelId, sv_frame_t, sv_frame_t)),
|
Chris@1752
|
73 this, SIGNAL(modelChangedWithin(ModelId, sv_frame_t, sv_frame_t)));
|
Chris@1784
|
74 } else {
|
Chris@1784
|
75 m_error = QString("Model #%1 is not available").arg(m_model.untyped);
|
Chris@1744
|
76 }
|
Chris@152
|
77 }
|
Chris@152
|
78
|
Chris@152
|
79 FFTModel::~FFTModel()
|
Chris@152
|
80 {
|
Chris@152
|
81 }
|
Chris@152
|
82
|
Chris@1744
|
83 bool
|
Chris@1744
|
84 FFTModel::isOK() const
|
Chris@360
|
85 {
|
Chris@1744
|
86 auto model = ModelById::getAs<DenseTimeValueModel>(m_model);
|
Chris@1784
|
87 if (!model) {
|
Chris@1784
|
88 m_error = QString("Model #%1 is not available").arg(m_model.untyped);
|
Chris@1784
|
89 return false;
|
Chris@1784
|
90 }
|
Chris@1784
|
91 if (!model->isOK()) {
|
Chris@1784
|
92 m_error = QString("Model #%1 is not OK").arg(m_model.untyped);
|
Chris@1784
|
93 return false;
|
Chris@1784
|
94 }
|
Chris@1784
|
95 return true;
|
Chris@1744
|
96 }
|
Chris@1744
|
97
|
Chris@1744
|
98 int
|
Chris@1744
|
99 FFTModel::getCompletion() const
|
Chris@1744
|
100 {
|
Chris@1744
|
101 int c = 100;
|
Chris@1744
|
102 auto model = ModelById::getAs<DenseTimeValueModel>(m_model);
|
Chris@1744
|
103 if (model) {
|
Chris@1744
|
104 if (model->isReady(&c)) return 100;
|
Chris@360
|
105 }
|
Chris@1744
|
106 return c;
|
Chris@1744
|
107 }
|
Chris@1744
|
108
|
Chris@1744
|
109 sv_samplerate_t
|
Chris@1744
|
110 FFTModel::getSampleRate() const
|
Chris@1744
|
111 {
|
Chris@1780
|
112 return m_sampleRate;
|
Chris@1780
|
113 }
|
Chris@1780
|
114
|
Chris@1780
|
115 void
|
Chris@1780
|
116 FFTModel::setMaximumFrequency(double freq)
|
Chris@1780
|
117 {
|
Chris@1780
|
118 m_maximumFrequency = freq;
|
Chris@360
|
119 }
|
Chris@360
|
120
|
Chris@1091
|
121 int
|
Chris@1091
|
122 FFTModel::getWidth() const
|
Chris@1091
|
123 {
|
Chris@1744
|
124 auto model = ModelById::getAs<DenseTimeValueModel>(m_model);
|
Chris@1744
|
125 if (!model) return 0;
|
Chris@1744
|
126 return int((model->getEndFrame() - model->getStartFrame())
|
Chris@1091
|
127 / m_windowIncrement) + 1;
|
Chris@1091
|
128 }
|
Chris@1091
|
129
|
Chris@1091
|
130 int
|
Chris@1091
|
131 FFTModel::getHeight() const
|
Chris@1091
|
132 {
|
Chris@1780
|
133 int height = m_fftSize / 2 + 1;
|
Chris@1780
|
134 if (m_maximumFrequency != 0.0) {
|
Chris@1780
|
135 int maxBin = int(ceil(m_maximumFrequency * m_fftSize) / m_sampleRate);
|
Chris@1780
|
136 if (maxBin >= 0 && maxBin < height) {
|
Chris@1780
|
137 return maxBin + 1;
|
Chris@1780
|
138 }
|
Chris@1780
|
139 }
|
Chris@1780
|
140 return height;
|
Chris@1091
|
141 }
|
Chris@1091
|
142
|
Chris@152
|
143 QString
|
Chris@929
|
144 FFTModel::getBinName(int n) const
|
Chris@152
|
145 {
|
Chris@1040
|
146 sv_samplerate_t sr = getSampleRate();
|
Chris@152
|
147 if (!sr) return "";
|
Chris@1780
|
148 QString name = tr("%1 Hz").arg((double(n) * sr) / m_fftSize);
|
Chris@152
|
149 return name;
|
Chris@152
|
150 }
|
Chris@152
|
151
|
Chris@1091
|
152 FFTModel::Column
|
Chris@1091
|
153 FFTModel::getColumn(int x) const
|
Chris@1091
|
154 {
|
Chris@1091
|
155 auto cplx = getFFTColumn(x);
|
Chris@1091
|
156 Column col;
|
Chris@1154
|
157 col.reserve(cplx.size());
|
Chris@1091
|
158 for (auto c: cplx) col.push_back(abs(c));
|
Chris@1319
|
159 return col;
|
Chris@1091
|
160 }
|
Chris@1091
|
161
|
Chris@1200
|
162 FFTModel::Column
|
Chris@1200
|
163 FFTModel::getPhases(int x) const
|
Chris@1200
|
164 {
|
Chris@1200
|
165 auto cplx = getFFTColumn(x);
|
Chris@1200
|
166 Column col;
|
Chris@1200
|
167 col.reserve(cplx.size());
|
Chris@1201
|
168 for (auto c: cplx) {
|
Chris@1201
|
169 col.push_back(arg(c));
|
Chris@1201
|
170 }
|
Chris@1319
|
171 return col;
|
Chris@1200
|
172 }
|
Chris@1200
|
173
|
Chris@1091
|
174 float
|
Chris@1091
|
175 FFTModel::getMagnitudeAt(int x, int y) const
|
Chris@1091
|
176 {
|
Chris@1569
|
177 if (x < 0 || x >= getWidth() || y < 0 || y >= getHeight()) {
|
Chris@1569
|
178 return 0.f;
|
Chris@1569
|
179 }
|
Chris@1093
|
180 auto col = getFFTColumn(x);
|
Chris@1093
|
181 return abs(col[y]);
|
Chris@1091
|
182 }
|
Chris@1091
|
183
|
Chris@1091
|
184 float
|
Chris@1091
|
185 FFTModel::getMaximumMagnitudeAt(int x) const
|
Chris@1091
|
186 {
|
Chris@1091
|
187 Column col(getColumn(x));
|
Chris@1092
|
188 float max = 0.f;
|
Chris@1154
|
189 int n = int(col.size());
|
Chris@1154
|
190 for (int i = 0; i < n; ++i) {
|
Chris@1092
|
191 if (col[i] > max) max = col[i];
|
Chris@1092
|
192 }
|
Chris@1092
|
193 return max;
|
Chris@1091
|
194 }
|
Chris@1091
|
195
|
Chris@1091
|
196 float
|
Chris@1091
|
197 FFTModel::getPhaseAt(int x, int y) const
|
Chris@1091
|
198 {
|
Chris@1093
|
199 if (x < 0 || x >= getWidth() || y < 0 || y >= getHeight()) return 0.f;
|
Chris@1091
|
200 return arg(getFFTColumn(x)[y]);
|
Chris@1091
|
201 }
|
Chris@1091
|
202
|
Chris@1091
|
203 void
|
Chris@1091
|
204 FFTModel::getValuesAt(int x, int y, float &re, float &im) const
|
Chris@1091
|
205 {
|
Chris@1780
|
206 if (x < 0 || x >= getWidth() || y < 0 || y >= getHeight()) {
|
Chris@1780
|
207 re = 0.f;
|
Chris@1780
|
208 im = 0.f;
|
Chris@1780
|
209 return;
|
Chris@1780
|
210 }
|
Chris@1091
|
211 auto col = getFFTColumn(x);
|
Chris@1091
|
212 re = col[y].real();
|
Chris@1091
|
213 im = col[y].imag();
|
Chris@1091
|
214 }
|
Chris@1091
|
215
|
Chris@1091
|
216 bool
|
Chris@1091
|
217 FFTModel::getMagnitudesAt(int x, float *values, int minbin, int count) const
|
Chris@1091
|
218 {
|
Chris@1091
|
219 if (count == 0) count = getHeight();
|
Chris@1091
|
220 auto col = getFFTColumn(x);
|
Chris@1091
|
221 for (int i = 0; i < count; ++i) {
|
Chris@1091
|
222 values[i] = abs(col[minbin + i]);
|
Chris@1091
|
223 }
|
Chris@1091
|
224 return true;
|
Chris@1091
|
225 }
|
Chris@1091
|
226
|
Chris@1091
|
227 bool
|
Chris@1091
|
228 FFTModel::getPhasesAt(int x, float *values, int minbin, int count) const
|
Chris@1091
|
229 {
|
Chris@1091
|
230 if (count == 0) count = getHeight();
|
Chris@1091
|
231 auto col = getFFTColumn(x);
|
Chris@1091
|
232 for (int i = 0; i < count; ++i) {
|
Chris@1091
|
233 values[i] = arg(col[minbin + i]);
|
Chris@1091
|
234 }
|
Chris@1091
|
235 return true;
|
Chris@1091
|
236 }
|
Chris@1091
|
237
|
Chris@1091
|
238 bool
|
Chris@1091
|
239 FFTModel::getValuesAt(int x, float *reals, float *imags, int minbin, int count) const
|
Chris@1091
|
240 {
|
Chris@1091
|
241 if (count == 0) count = getHeight();
|
Chris@1091
|
242 auto col = getFFTColumn(x);
|
Chris@1091
|
243 for (int i = 0; i < count; ++i) {
|
Chris@1091
|
244 reals[i] = col[minbin + i].real();
|
Chris@1091
|
245 }
|
Chris@1091
|
246 for (int i = 0; i < count; ++i) {
|
Chris@1091
|
247 imags[i] = col[minbin + i].imag();
|
Chris@1091
|
248 }
|
Chris@1091
|
249 return true;
|
Chris@1091
|
250 }
|
Chris@1091
|
251
|
Chris@1326
|
252 FFTModel::fvec
|
Chris@1091
|
253 FFTModel::getSourceSamples(int column) const
|
Chris@1091
|
254 {
|
Chris@1094
|
255 // m_fftSize may be greater than m_windowSize, but not the reverse
|
Chris@1094
|
256
|
Chris@1094
|
257 // cerr << "getSourceSamples(" << column << ")" << endl;
|
Chris@1094
|
258
|
Chris@1091
|
259 auto range = getSourceSampleRange(column);
|
Chris@1094
|
260 auto data = getSourceData(range);
|
Chris@1094
|
261
|
Chris@1091
|
262 int off = (m_fftSize - m_windowSize) / 2;
|
Chris@1094
|
263
|
Chris@1094
|
264 if (off == 0) {
|
Chris@1094
|
265 return data;
|
Chris@1094
|
266 } else {
|
Chris@1094
|
267 vector<float> pad(off, 0.f);
|
Chris@1326
|
268 fvec padded;
|
Chris@1094
|
269 padded.reserve(m_fftSize);
|
Chris@1094
|
270 padded.insert(padded.end(), pad.begin(), pad.end());
|
Chris@1094
|
271 padded.insert(padded.end(), data.begin(), data.end());
|
Chris@1094
|
272 padded.insert(padded.end(), pad.begin(), pad.end());
|
Chris@1094
|
273 return padded;
|
Chris@1094
|
274 }
|
Chris@1094
|
275 }
|
Chris@1094
|
276
|
Chris@1326
|
277 FFTModel::fvec
|
Chris@1094
|
278 FFTModel::getSourceData(pair<sv_frame_t, sv_frame_t> range) const
|
Chris@1094
|
279 {
|
Chris@1094
|
280 // cerr << "getSourceData(" << range.first << "," << range.second
|
Chris@1094
|
281 // << "): saved range is (" << m_savedData.range.first
|
Chris@1094
|
282 // << "," << m_savedData.range.second << ")" << endl;
|
Chris@1094
|
283
|
Chris@1100
|
284 if (m_savedData.range == range) {
|
Chris@1256
|
285 inSourceCache.hit();
|
Chris@1100
|
286 return m_savedData.data;
|
Chris@1100
|
287 }
|
Chris@1094
|
288
|
Chris@1270
|
289 Profiler profiler("FFTModel::getSourceData (cache miss)");
|
Chris@1270
|
290
|
Chris@1094
|
291 if (range.first < m_savedData.range.second &&
|
Chris@1094
|
292 range.first >= m_savedData.range.first &&
|
Chris@1094
|
293 range.second > m_savedData.range.second) {
|
Chris@1094
|
294
|
Chris@1256
|
295 inSourceCache.partial();
|
Chris@1256
|
296
|
Chris@1100
|
297 sv_frame_t discard = range.first - m_savedData.range.first;
|
Chris@1100
|
298
|
Chris@1457
|
299 fvec data;
|
Chris@1457
|
300 data.reserve(range.second - range.first);
|
Chris@1094
|
301
|
Chris@1457
|
302 data.insert(data.end(),
|
Chris@1457
|
303 m_savedData.data.begin() + discard,
|
Chris@1457
|
304 m_savedData.data.end());
|
Chris@1100
|
305
|
Chris@1457
|
306 fvec rest = getSourceDataUncached
|
Chris@1457
|
307 ({ m_savedData.range.second, range.second });
|
Chris@1457
|
308
|
Chris@1457
|
309 data.insert(data.end(), rest.begin(), rest.end());
|
Chris@1094
|
310
|
Chris@1457
|
311 m_savedData = { range, data };
|
Chris@1457
|
312 return data;
|
Chris@1095
|
313
|
Chris@1095
|
314 } else {
|
Chris@1095
|
315
|
Chris@1256
|
316 inSourceCache.miss();
|
Chris@1256
|
317
|
Chris@1095
|
318 auto data = getSourceDataUncached(range);
|
Chris@1095
|
319 m_savedData = { range, data };
|
Chris@1095
|
320 return data;
|
Chris@1094
|
321 }
|
Chris@1095
|
322 }
|
Chris@1094
|
323
|
Chris@1326
|
324 FFTModel::fvec
|
Chris@1095
|
325 FFTModel::getSourceDataUncached(pair<sv_frame_t, sv_frame_t> range) const
|
Chris@1095
|
326 {
|
Chris@1457
|
327 Profiler profiler("FFTModel::getSourceDataUncached");
|
Chris@1688
|
328
|
Chris@1744
|
329 auto model = ModelById::getAs<DenseTimeValueModel>(m_model);
|
Chris@1744
|
330 if (!model) return {};
|
Chris@1457
|
331
|
Chris@1091
|
332 decltype(range.first) pfx = 0;
|
Chris@1091
|
333 if (range.first < 0) {
|
Chris@1091
|
334 pfx = -range.first;
|
Chris@1091
|
335 range = { 0, range.second };
|
Chris@1091
|
336 }
|
Chris@1096
|
337
|
Chris@1744
|
338 auto data = model->getData(m_channel,
|
Chris@1744
|
339 range.first,
|
Chris@1744
|
340 range.second - range.first);
|
Chris@1773
|
341 /*
|
Chris@1281
|
342 if (data.empty()) {
|
Chris@1281
|
343 SVDEBUG << "NOTE: empty source data for range (" << range.first << ","
|
Chris@1281
|
344 << range.second << ") (model end frame "
|
Chris@1744
|
345 << model->getEndFrame() << ")" << endl;
|
Chris@1281
|
346 }
|
Chris@1773
|
347 */
|
Chris@1281
|
348
|
Chris@1096
|
349 // don't return a partial frame
|
Chris@1096
|
350 data.resize(range.second - range.first, 0.f);
|
Chris@1096
|
351
|
Chris@1096
|
352 if (pfx > 0) {
|
Chris@1096
|
353 vector<float> pad(pfx, 0.f);
|
Chris@1096
|
354 data.insert(data.begin(), pad.begin(), pad.end());
|
Chris@1096
|
355 }
|
Chris@1096
|
356
|
Chris@1091
|
357 if (m_channel == -1) {
|
Chris@1744
|
358 int channels = model->getChannelCount();
|
Chris@1429
|
359 if (channels > 1) {
|
Chris@1096
|
360 int n = int(data.size());
|
Chris@1096
|
361 float factor = 1.f / float(channels);
|
Chris@1100
|
362 // use mean instead of sum for fft model input
|
Chris@1429
|
363 for (int i = 0; i < n; ++i) {
|
Chris@1429
|
364 data[i] *= factor;
|
Chris@1429
|
365 }
|
Chris@1429
|
366 }
|
Chris@1091
|
367 }
|
Chris@1094
|
368
|
Chris@1094
|
369 return data;
|
Chris@1091
|
370 }
|
Chris@1091
|
371
|
Chris@1780
|
372 FFTModel::cvec
|
Chris@1093
|
373 FFTModel::getFFTColumn(int n) const
|
Chris@1091
|
374 {
|
Chris@1780
|
375 int h = getHeight();
|
Chris@1780
|
376 bool truncate = (h < m_fftSize / 2 + 1);
|
Chris@1780
|
377
|
Chris@1258
|
378 // The small cache (i.e. the m_cached deque) is for cases where
|
Chris@1258
|
379 // values are looked up individually, and for e.g. peak-frequency
|
Chris@1258
|
380 // spectrograms where values from two consecutive columns are
|
Chris@1257
|
381 // needed at once. This cache gets essentially no hits when
|
Chris@1258
|
382 // scrolling through a magnitude spectrogram, but 95%+ hits with a
|
Chris@1569
|
383 // peak-frequency spectrogram or spectrum.
|
Chris@1257
|
384 for (const auto &incache : m_cached) {
|
Chris@1093
|
385 if (incache.n == n) {
|
Chris@1256
|
386 inSmallCache.hit();
|
Chris@1780
|
387 if (!truncate) {
|
Chris@1780
|
388 return incache.col;
|
Chris@1780
|
389 } else {
|
Chris@1780
|
390 return cvec(incache.col.begin(), incache.col.begin() + h);
|
Chris@1780
|
391 }
|
Chris@1093
|
392 }
|
Chris@1093
|
393 }
|
Chris@1256
|
394 inSmallCache.miss();
|
Chris@1258
|
395
|
Chris@1258
|
396 Profiler profiler("FFTModel::getFFTColumn (cache miss)");
|
Chris@1093
|
397
|
Chris@1093
|
398 auto samples = getSourceSamples(n);
|
Chris@1567
|
399 m_windower.cut(samples.data() + (m_fftSize - m_windowSize) / 2);
|
Chris@1270
|
400 breakfastquay::v_fftshift(samples.data(), m_fftSize);
|
Chris@1270
|
401
|
Chris@1371
|
402 cvec &col = m_cached[m_cacheWriteIndex].col;
|
Chris@1270
|
403
|
Chris@1270
|
404 m_fft.forwardInterleaved(samples.data(),
|
Chris@1270
|
405 reinterpret_cast<float *>(col.data()));
|
Chris@1093
|
406
|
Chris@1371
|
407 m_cached[m_cacheWriteIndex].n = n;
|
Chris@1371
|
408
|
Chris@1371
|
409 m_cacheWriteIndex = (m_cacheWriteIndex + 1) % m_cacheSize;
|
Chris@1093
|
410
|
Chris@1780
|
411 if (!truncate) {
|
Chris@1780
|
412 return col;
|
Chris@1780
|
413 } else {
|
Chris@1780
|
414 return cvec(col.begin(), col.begin() + h);
|
Chris@1780
|
415 }
|
Chris@1091
|
416 }
|
Chris@1091
|
417
|
Chris@275
|
418 bool
|
Chris@1045
|
419 FFTModel::estimateStableFrequency(int x, int y, double &frequency)
|
Chris@275
|
420 {
|
Chris@275
|
421 if (!isOK()) return false;
|
Chris@275
|
422
|
Chris@1090
|
423 frequency = double(y * getSampleRate()) / m_fftSize;
|
Chris@275
|
424
|
Chris@275
|
425 if (x+1 >= getWidth()) return false;
|
Chris@275
|
426
|
Chris@275
|
427 // At frequency f, a phase shift of 2pi (one cycle) happens in 1/f sec.
|
Chris@275
|
428 // At hopsize h and sample rate sr, one hop happens in h/sr sec.
|
Chris@275
|
429 // At window size w, for bin b, f is b*sr/w.
|
Chris@275
|
430 // thus 2pi phase shift happens in w/(b*sr) sec.
|
Chris@275
|
431 // We need to know what phase shift we expect from h/sr sec.
|
Chris@275
|
432 // -> 2pi * ((h/sr) / (w/(b*sr)))
|
Chris@275
|
433 // = 2pi * ((h * b * sr) / (w * sr))
|
Chris@275
|
434 // = 2pi * (h * b) / w.
|
Chris@275
|
435
|
Chris@1038
|
436 double oldPhase = getPhaseAt(x, y);
|
Chris@1038
|
437 double newPhase = getPhaseAt(x+1, y);
|
Chris@275
|
438
|
Chris@929
|
439 int incr = getResolution();
|
Chris@275
|
440
|
Chris@1090
|
441 double expectedPhase = oldPhase + (2.0 * M_PI * y * incr) / m_fftSize;
|
Chris@275
|
442
|
Chris@1038
|
443 double phaseError = princarg(newPhase - expectedPhase);
|
Chris@275
|
444
|
Chris@275
|
445 // The new frequency estimate based on the phase error resulting
|
Chris@275
|
446 // from assuming the "native" frequency of this bin
|
Chris@275
|
447
|
Chris@275
|
448 frequency =
|
Chris@1090
|
449 (getSampleRate() * (expectedPhase + phaseError - oldPhase)) /
|
Chris@1045
|
450 (2.0 * M_PI * incr);
|
Chris@275
|
451
|
Chris@275
|
452 return true;
|
Chris@275
|
453 }
|
Chris@275
|
454
|
Chris@275
|
455 FFTModel::PeakLocationSet
|
Chris@1191
|
456 FFTModel::getPeaks(PeakPickType type, int x, int ymin, int ymax) const
|
Chris@275
|
457 {
|
Chris@551
|
458 Profiler profiler("FFTModel::getPeaks");
|
Chris@1575
|
459
|
Chris@275
|
460 FFTModel::PeakLocationSet peaks;
|
Chris@275
|
461 if (!isOK()) return peaks;
|
Chris@275
|
462
|
Chris@275
|
463 if (ymax == 0 || ymax > getHeight() - 1) {
|
Chris@275
|
464 ymax = getHeight() - 1;
|
Chris@275
|
465 }
|
Chris@275
|
466
|
Chris@275
|
467 if (type == AllPeaks) {
|
Chris@551
|
468 int minbin = ymin;
|
Chris@551
|
469 if (minbin > 0) minbin = minbin - 1;
|
Chris@551
|
470 int maxbin = ymax;
|
Chris@551
|
471 if (maxbin < getHeight() - 1) maxbin = maxbin + 1;
|
Chris@551
|
472 const int n = maxbin - minbin + 1;
|
Chris@1218
|
473 float *values = new float[n];
|
Chris@551
|
474 getMagnitudesAt(x, values, minbin, maxbin - minbin + 1);
|
Chris@929
|
475 for (int bin = ymin; bin <= ymax; ++bin) {
|
Chris@551
|
476 if (bin == minbin || bin == maxbin) continue;
|
Chris@551
|
477 if (values[bin - minbin] > values[bin - minbin - 1] &&
|
Chris@551
|
478 values[bin - minbin] > values[bin - minbin + 1]) {
|
Chris@275
|
479 peaks.insert(bin);
|
Chris@275
|
480 }
|
Chris@275
|
481 }
|
Chris@1218
|
482 delete[] values;
|
Chris@275
|
483 return peaks;
|
Chris@275
|
484 }
|
Chris@275
|
485
|
Chris@551
|
486 Column values = getColumn(x);
|
Chris@1154
|
487 int nv = int(values.size());
|
Chris@275
|
488
|
Chris@500
|
489 float mean = 0.f;
|
Chris@1154
|
490 for (int i = 0; i < nv; ++i) mean += values[i];
|
Chris@1154
|
491 if (nv > 0) mean = mean / float(values.size());
|
Chris@1038
|
492
|
Chris@275
|
493 // For peak picking we use a moving median window, picking the
|
Chris@275
|
494 // highest value within each continuous region of values that
|
Chris@275
|
495 // exceed the median. For pitch adaptivity, we adjust the window
|
Chris@275
|
496 // size to a roughly constant pitch range (about four tones).
|
Chris@275
|
497
|
Chris@1040
|
498 sv_samplerate_t sampleRate = getSampleRate();
|
Chris@275
|
499
|
Chris@1090
|
500 vector<int> inrange;
|
Chris@1576
|
501 double dist = 0.5;
|
Chris@500
|
502
|
Chris@929
|
503 int medianWinSize = getPeakPickWindowSize(type, sampleRate, ymin, dist);
|
Chris@929
|
504 int halfWin = medianWinSize/2;
|
Chris@275
|
505
|
Chris@1573
|
506 MovingMedian<float> window(medianWinSize);
|
Chris@1573
|
507
|
Chris@929
|
508 int binmin;
|
Chris@275
|
509 if (ymin > halfWin) binmin = ymin - halfWin;
|
Chris@275
|
510 else binmin = 0;
|
Chris@275
|
511
|
Chris@929
|
512 int binmax;
|
Chris@1154
|
513 if (ymax + halfWin < nv) binmax = ymax + halfWin;
|
Chris@1154
|
514 else binmax = nv - 1;
|
Chris@275
|
515
|
Chris@929
|
516 int prevcentre = 0;
|
Chris@500
|
517
|
Chris@929
|
518 for (int bin = binmin; bin <= binmax; ++bin) {
|
Chris@275
|
519
|
Chris@275
|
520 float value = values[bin];
|
Chris@275
|
521
|
Chris@280
|
522 // so-called median will actually be the dist*100'th percentile
|
Chris@280
|
523 medianWinSize = getPeakPickWindowSize(type, sampleRate, bin, dist);
|
Chris@275
|
524 halfWin = medianWinSize/2;
|
Chris@275
|
525
|
Chris@1573
|
526 int actualSize = std::min(medianWinSize, bin - binmin + 1);
|
Chris@1573
|
527 window.resize(actualSize);
|
Chris@1573
|
528 window.setPercentile(dist * 100.0);
|
Chris@1573
|
529 window.push(value);
|
Chris@275
|
530
|
Chris@275
|
531 if (type == MajorPitchAdaptivePeaks) {
|
Chris@1154
|
532 if (ymax + halfWin < nv) binmax = ymax + halfWin;
|
Chris@1154
|
533 else binmax = nv - 1;
|
Chris@275
|
534 }
|
Chris@275
|
535
|
Chris@1573
|
536 float median = window.get();
|
Chris@275
|
537
|
Chris@929
|
538 int centrebin = 0;
|
Chris@500
|
539 if (bin > actualSize/2) centrebin = bin - actualSize/2;
|
Chris@500
|
540
|
Chris@500
|
541 while (centrebin > prevcentre || bin == binmin) {
|
Chris@275
|
542
|
Chris@500
|
543 if (centrebin > prevcentre) ++prevcentre;
|
Chris@500
|
544
|
Chris@500
|
545 float centre = values[prevcentre];
|
Chris@500
|
546
|
Chris@500
|
547 if (centre > median) {
|
Chris@500
|
548 inrange.push_back(centrebin);
|
Chris@500
|
549 }
|
Chris@500
|
550
|
Chris@1154
|
551 if (centre <= median || centrebin+1 == nv) {
|
Chris@500
|
552 if (!inrange.empty()) {
|
Chris@929
|
553 int peakbin = 0;
|
Chris@500
|
554 float peakval = 0.f;
|
Chris@929
|
555 for (int i = 0; i < (int)inrange.size(); ++i) {
|
Chris@500
|
556 if (i == 0 || values[inrange[i]] > peakval) {
|
Chris@500
|
557 peakval = values[inrange[i]];
|
Chris@500
|
558 peakbin = inrange[i];
|
Chris@500
|
559 }
|
Chris@500
|
560 }
|
Chris@500
|
561 inrange.clear();
|
Chris@500
|
562 if (peakbin >= ymin && peakbin <= ymax) {
|
Chris@500
|
563 peaks.insert(peakbin);
|
Chris@275
|
564 }
|
Chris@275
|
565 }
|
Chris@275
|
566 }
|
Chris@500
|
567
|
Chris@500
|
568 if (bin == binmin) break;
|
Chris@275
|
569 }
|
Chris@275
|
570 }
|
Chris@275
|
571
|
Chris@275
|
572 return peaks;
|
Chris@275
|
573 }
|
Chris@275
|
574
|
Chris@929
|
575 int
|
Chris@1040
|
576 FFTModel::getPeakPickWindowSize(PeakPickType type, sv_samplerate_t sampleRate,
|
Chris@1576
|
577 int bin, double &dist) const
|
Chris@275
|
578 {
|
Chris@1576
|
579 dist = 0.5; // dist is percentile / 100.0
|
Chris@275
|
580 if (type == MajorPeaks) return 10;
|
Chris@275
|
581 if (bin == 0) return 3;
|
Chris@280
|
582
|
Chris@1091
|
583 double binfreq = (sampleRate * bin) / m_fftSize;
|
Chris@1038
|
584 double hifreq = Pitch::getFrequencyForPitch(73, 0, binfreq);
|
Chris@280
|
585
|
Chris@1091
|
586 int hibin = int(lrint((hifreq * m_fftSize) / sampleRate));
|
Chris@275
|
587 int medianWinSize = hibin - bin;
|
Chris@1576
|
588
|
Chris@1575
|
589 if (medianWinSize < 3) {
|
Chris@1575
|
590 medianWinSize = 3;
|
Chris@1575
|
591 }
|
Chris@1576
|
592
|
Chris@1576
|
593 // We want to avoid the median window size changing too often, as
|
Chris@1576
|
594 // it requires a reallocation. So snap to a nearby round number.
|
Chris@1576
|
595
|
Chris@1575
|
596 if (medianWinSize > 20) {
|
Chris@1575
|
597 medianWinSize = (1 + medianWinSize / 10) * 10;
|
Chris@1575
|
598 }
|
Chris@1576
|
599 if (medianWinSize > 200) {
|
Chris@1576
|
600 medianWinSize = (1 + medianWinSize / 100) * 100;
|
Chris@1576
|
601 }
|
Chris@1576
|
602 if (medianWinSize > 2000) {
|
Chris@1576
|
603 medianWinSize = (1 + medianWinSize / 1000) * 1000;
|
Chris@1576
|
604 }
|
Chris@1576
|
605 if (medianWinSize > 20000) {
|
Chris@1576
|
606 medianWinSize = 20000;
|
Chris@1575
|
607 }
|
Chris@280
|
608
|
Chris@1576
|
609 if (medianWinSize < 100) {
|
Chris@1576
|
610 dist = 1.0 - (4.0 / medianWinSize);
|
Chris@1576
|
611 } else {
|
Chris@1576
|
612 dist = 1.0 - (8.0 / medianWinSize);
|
Chris@1576
|
613 }
|
Chris@1576
|
614 if (dist < 0.5) dist = 0.5;
|
Chris@1575
|
615
|
Chris@275
|
616 return medianWinSize;
|
Chris@275
|
617 }
|
Chris@275
|
618
|
Chris@275
|
619 FFTModel::PeakSet
|
Chris@929
|
620 FFTModel::getPeakFrequencies(PeakPickType type, int x,
|
Chris@1191
|
621 int ymin, int ymax) const
|
Chris@275
|
622 {
|
Chris@551
|
623 Profiler profiler("FFTModel::getPeakFrequencies");
|
Chris@551
|
624
|
Chris@275
|
625 PeakSet peaks;
|
Chris@275
|
626 if (!isOK()) return peaks;
|
Chris@275
|
627 PeakLocationSet locations = getPeaks(type, x, ymin, ymax);
|
Chris@275
|
628
|
Chris@1040
|
629 sv_samplerate_t sampleRate = getSampleRate();
|
Chris@929
|
630 int incr = getResolution();
|
Chris@275
|
631
|
Chris@275
|
632 // This duplicates some of the work of estimateStableFrequency to
|
Chris@275
|
633 // allow us to retrieve the phases in two separate vertical
|
Chris@275
|
634 // columns, instead of jumping back and forth between columns x and
|
Chris@275
|
635 // x+1, which may be significantly slower if re-seeking is needed
|
Chris@275
|
636
|
Chris@1090
|
637 vector<float> phases;
|
Chris@275
|
638 for (PeakLocationSet::iterator i = locations.begin();
|
Chris@275
|
639 i != locations.end(); ++i) {
|
Chris@275
|
640 phases.push_back(getPhaseAt(x, *i));
|
Chris@275
|
641 }
|
Chris@275
|
642
|
Chris@929
|
643 int phaseIndex = 0;
|
Chris@275
|
644 for (PeakLocationSet::iterator i = locations.begin();
|
Chris@275
|
645 i != locations.end(); ++i) {
|
Chris@1038
|
646 double oldPhase = phases[phaseIndex];
|
Chris@1038
|
647 double newPhase = getPhaseAt(x+1, *i);
|
Chris@1090
|
648 double expectedPhase = oldPhase + (2.0 * M_PI * *i * incr) / m_fftSize;
|
Chris@1038
|
649 double phaseError = princarg(newPhase - expectedPhase);
|
Chris@1038
|
650 double frequency =
|
Chris@275
|
651 (sampleRate * (expectedPhase + phaseError - oldPhase))
|
Chris@275
|
652 / (2 * M_PI * incr);
|
Chris@1045
|
653 peaks[*i] = frequency;
|
Chris@275
|
654 ++phaseIndex;
|
Chris@275
|
655 }
|
Chris@275
|
656
|
Chris@275
|
657 return peaks;
|
Chris@275
|
658 }
|
Chris@275
|
659
|