annotate data/model/FFTModel.cpp @ 1204:35387a99c236 3.0-integration

Avoid warning
author Chris Cannam
date Mon, 15 Aug 2016 16:42:19 +0100
parents 6f7a440b6218
children 6b847a59d908
rev   line source
Chris@152 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
Chris@152 2
Chris@152 3 /*
Chris@152 4 Sonic Visualiser
Chris@152 5 An audio file viewer and annotation editor.
Chris@152 6 Centre for Digital Music, Queen Mary, University of London.
Chris@152 7 This file copyright 2006 Chris Cannam.
Chris@152 8
Chris@152 9 This program is free software; you can redistribute it and/or
Chris@152 10 modify it under the terms of the GNU General Public License as
Chris@152 11 published by the Free Software Foundation; either version 2 of the
Chris@152 12 License, or (at your option) any later version. See the file
Chris@152 13 COPYING included with this distribution for more information.
Chris@152 14 */
Chris@152 15
Chris@152 16 #include "FFTModel.h"
Chris@152 17 #include "DenseTimeValueModel.h"
Chris@152 18
Chris@183 19 #include "base/Profiler.h"
Chris@275 20 #include "base/Pitch.h"
Chris@183 21
Chris@402 22 #include <algorithm>
Chris@402 23
Chris@152 24 #include <cassert>
Chris@1090 25 #include <deque>
Chris@152 26
Chris@608 27 #ifndef __GNUC__
Chris@608 28 #include <alloca.h>
Chris@608 29 #endif
Chris@608 30
Chris@1090 31 using namespace std;
Chris@1090 32
Chris@152 33 FFTModel::FFTModel(const DenseTimeValueModel *model,
Chris@152 34 int channel,
Chris@152 35 WindowType windowType,
Chris@929 36 int windowSize,
Chris@929 37 int windowIncrement,
Chris@1090 38 int fftSize) :
Chris@1090 39 m_model(model),
Chris@1090 40 m_channel(channel),
Chris@1090 41 m_windowType(windowType),
Chris@1090 42 m_windowSize(windowSize),
Chris@1090 43 m_windowIncrement(windowIncrement),
Chris@1090 44 m_fftSize(fftSize),
Chris@1091 45 m_windower(windowType, windowSize),
Chris@1093 46 m_fft(fftSize),
Chris@1093 47 m_cacheSize(3)
Chris@152 48 {
Chris@1091 49 if (m_windowSize > m_fftSize) {
Chris@1091 50 cerr << "ERROR: FFTModel::FFTModel: window size (" << m_windowSize
Chris@1091 51 << ") must be at least FFT size (" << m_fftSize << ")" << endl;
Chris@1091 52 throw invalid_argument("FFTModel window size must be at least FFT size");
Chris@1091 53 }
Chris@1133 54
Chris@1133 55 connect(model, SIGNAL(modelChanged()), this, SIGNAL(modelChanged()));
Chris@1133 56 connect(model, SIGNAL(modelChangedWithin(sv_frame_t, sv_frame_t)),
Chris@1133 57 this, SIGNAL(modelChangedWithin(sv_frame_t, sv_frame_t)));
Chris@152 58 }
Chris@152 59
Chris@152 60 FFTModel::~FFTModel()
Chris@152 61 {
Chris@152 62 }
Chris@152 63
Chris@360 64 void
Chris@360 65 FFTModel::sourceModelAboutToBeDeleted()
Chris@360 66 {
Chris@1090 67 if (m_model) {
Chris@1090 68 cerr << "FFTModel[" << this << "]::sourceModelAboutToBeDeleted(" << m_model << ")" << endl;
Chris@1090 69 m_model = 0;
Chris@360 70 }
Chris@360 71 }
Chris@360 72
Chris@1091 73 int
Chris@1091 74 FFTModel::getWidth() const
Chris@1091 75 {
Chris@1091 76 if (!m_model) return 0;
Chris@1091 77 return int((m_model->getEndFrame() - m_model->getStartFrame())
Chris@1091 78 / m_windowIncrement) + 1;
Chris@1091 79 }
Chris@1091 80
Chris@1091 81 int
Chris@1091 82 FFTModel::getHeight() const
Chris@1091 83 {
Chris@1091 84 return m_fftSize / 2 + 1;
Chris@1091 85 }
Chris@1091 86
Chris@152 87 QString
Chris@929 88 FFTModel::getBinName(int n) const
Chris@152 89 {
Chris@1040 90 sv_samplerate_t sr = getSampleRate();
Chris@152 91 if (!sr) return "";
Chris@204 92 QString name = tr("%1 Hz").arg((n * sr) / ((getHeight()-1) * 2));
Chris@152 93 return name;
Chris@152 94 }
Chris@152 95
Chris@1091 96 FFTModel::Column
Chris@1091 97 FFTModel::getColumn(int x) const
Chris@1091 98 {
Chris@1091 99 auto cplx = getFFTColumn(x);
Chris@1091 100 Column col;
Chris@1154 101 col.reserve(cplx.size());
Chris@1091 102 for (auto c: cplx) col.push_back(abs(c));
Chris@1154 103 return move(col);
Chris@1091 104 }
Chris@1091 105
Chris@1200 106 FFTModel::Column
Chris@1200 107 FFTModel::getPhases(int x) const
Chris@1200 108 {
Chris@1200 109 auto cplx = getFFTColumn(x);
Chris@1200 110 Column col;
Chris@1200 111 col.reserve(cplx.size());
Chris@1201 112 for (auto c: cplx) {
Chris@1201 113 col.push_back(arg(c));
Chris@1201 114 }
Chris@1200 115 return move(col);
Chris@1200 116 }
Chris@1200 117
Chris@1091 118 float
Chris@1091 119 FFTModel::getMagnitudeAt(int x, int y) const
Chris@1091 120 {
Chris@1093 121 if (x < 0 || x >= getWidth() || y < 0 || y >= getHeight()) return 0.f;
Chris@1093 122 auto col = getFFTColumn(x);
Chris@1093 123 return abs(col[y]);
Chris@1091 124 }
Chris@1091 125
Chris@1091 126 float
Chris@1091 127 FFTModel::getMaximumMagnitudeAt(int x) const
Chris@1091 128 {
Chris@1091 129 Column col(getColumn(x));
Chris@1092 130 float max = 0.f;
Chris@1154 131 int n = int(col.size());
Chris@1154 132 for (int i = 0; i < n; ++i) {
Chris@1092 133 if (col[i] > max) max = col[i];
Chris@1092 134 }
Chris@1092 135 return max;
Chris@1091 136 }
Chris@1091 137
Chris@1091 138 float
Chris@1091 139 FFTModel::getPhaseAt(int x, int y) const
Chris@1091 140 {
Chris@1093 141 if (x < 0 || x >= getWidth() || y < 0 || y >= getHeight()) return 0.f;
Chris@1091 142 return arg(getFFTColumn(x)[y]);
Chris@1091 143 }
Chris@1091 144
Chris@1091 145 void
Chris@1091 146 FFTModel::getValuesAt(int x, int y, float &re, float &im) const
Chris@1091 147 {
Chris@1091 148 auto col = getFFTColumn(x);
Chris@1091 149 re = col[y].real();
Chris@1091 150 im = col[y].imag();
Chris@1091 151 }
Chris@1091 152
Chris@1091 153 bool
Chris@1091 154 FFTModel::getMagnitudesAt(int x, float *values, int minbin, int count) const
Chris@1091 155 {
Chris@1091 156 if (count == 0) count = getHeight();
Chris@1091 157 auto col = getFFTColumn(x);
Chris@1091 158 for (int i = 0; i < count; ++i) {
Chris@1091 159 values[i] = abs(col[minbin + i]);
Chris@1091 160 }
Chris@1091 161 return true;
Chris@1091 162 }
Chris@1091 163
Chris@1091 164 bool
Chris@1091 165 FFTModel::getPhasesAt(int x, float *values, int minbin, int count) const
Chris@1091 166 {
Chris@1091 167 if (count == 0) count = getHeight();
Chris@1091 168 auto col = getFFTColumn(x);
Chris@1091 169 for (int i = 0; i < count; ++i) {
Chris@1091 170 values[i] = arg(col[minbin + i]);
Chris@1091 171 }
Chris@1091 172 return true;
Chris@1091 173 }
Chris@1091 174
Chris@1091 175 bool
Chris@1091 176 FFTModel::getValuesAt(int x, float *reals, float *imags, int minbin, int count) const
Chris@1091 177 {
Chris@1091 178 if (count == 0) count = getHeight();
Chris@1091 179 auto col = getFFTColumn(x);
Chris@1091 180 for (int i = 0; i < count; ++i) {
Chris@1091 181 reals[i] = col[minbin + i].real();
Chris@1091 182 }
Chris@1091 183 for (int i = 0; i < count; ++i) {
Chris@1091 184 imags[i] = col[minbin + i].imag();
Chris@1091 185 }
Chris@1091 186 return true;
Chris@1091 187 }
Chris@1091 188
Chris@1091 189 vector<float>
Chris@1091 190 FFTModel::getSourceSamples(int column) const
Chris@1091 191 {
Chris@1094 192 // m_fftSize may be greater than m_windowSize, but not the reverse
Chris@1094 193
Chris@1094 194 // cerr << "getSourceSamples(" << column << ")" << endl;
Chris@1094 195
Chris@1091 196 auto range = getSourceSampleRange(column);
Chris@1094 197 auto data = getSourceData(range);
Chris@1094 198
Chris@1091 199 int off = (m_fftSize - m_windowSize) / 2;
Chris@1094 200
Chris@1094 201 if (off == 0) {
Chris@1094 202 return data;
Chris@1094 203 } else {
Chris@1094 204 vector<float> pad(off, 0.f);
Chris@1094 205 vector<float> padded;
Chris@1094 206 padded.reserve(m_fftSize);
Chris@1094 207 padded.insert(padded.end(), pad.begin(), pad.end());
Chris@1094 208 padded.insert(padded.end(), data.begin(), data.end());
Chris@1094 209 padded.insert(padded.end(), pad.begin(), pad.end());
Chris@1094 210 return padded;
Chris@1094 211 }
Chris@1094 212 }
Chris@1094 213
Chris@1094 214 vector<float>
Chris@1094 215 FFTModel::getSourceData(pair<sv_frame_t, sv_frame_t> range) const
Chris@1094 216 {
Chris@1094 217 // cerr << "getSourceData(" << range.first << "," << range.second
Chris@1094 218 // << "): saved range is (" << m_savedData.range.first
Chris@1094 219 // << "," << m_savedData.range.second << ")" << endl;
Chris@1094 220
Chris@1100 221 if (m_savedData.range == range) {
Chris@1100 222 return m_savedData.data;
Chris@1100 223 }
Chris@1094 224
Chris@1094 225 if (range.first < m_savedData.range.second &&
Chris@1094 226 range.first >= m_savedData.range.first &&
Chris@1094 227 range.second > m_savedData.range.second) {
Chris@1094 228
Chris@1100 229 sv_frame_t discard = range.first - m_savedData.range.first;
Chris@1100 230
Chris@1100 231 vector<float> acc(m_savedData.data.begin() + discard,
Chris@1100 232 m_savedData.data.end());
Chris@1094 233
Chris@1095 234 vector<float> rest =
Chris@1095 235 getSourceDataUncached({ m_savedData.range.second, range.second });
Chris@1100 236
Chris@1100 237 acc.insert(acc.end(), rest.begin(), rest.end());
Chris@1094 238
Chris@1095 239 m_savedData = { range, acc };
Chris@1095 240 return acc;
Chris@1095 241
Chris@1095 242 } else {
Chris@1095 243
Chris@1095 244 auto data = getSourceDataUncached(range);
Chris@1095 245 m_savedData = { range, data };
Chris@1095 246 return data;
Chris@1094 247 }
Chris@1095 248 }
Chris@1094 249
Chris@1095 250 vector<float>
Chris@1095 251 FFTModel::getSourceDataUncached(pair<sv_frame_t, sv_frame_t> range) const
Chris@1095 252 {
Chris@1091 253 decltype(range.first) pfx = 0;
Chris@1091 254 if (range.first < 0) {
Chris@1091 255 pfx = -range.first;
Chris@1091 256 range = { 0, range.second };
Chris@1091 257 }
Chris@1096 258
Chris@1096 259 auto data = m_model->getData(m_channel,
Chris@1096 260 range.first,
Chris@1096 261 range.second - range.first);
Chris@1096 262
Chris@1096 263 // don't return a partial frame
Chris@1096 264 data.resize(range.second - range.first, 0.f);
Chris@1096 265
Chris@1096 266 if (pfx > 0) {
Chris@1096 267 vector<float> pad(pfx, 0.f);
Chris@1096 268 data.insert(data.begin(), pad.begin(), pad.end());
Chris@1096 269 }
Chris@1096 270
Chris@1091 271 if (m_channel == -1) {
Chris@1091 272 int channels = m_model->getChannelCount();
Chris@1091 273 if (channels > 1) {
Chris@1096 274 int n = int(data.size());
Chris@1096 275 float factor = 1.f / float(channels);
Chris@1100 276 // use mean instead of sum for fft model input
Chris@1096 277 for (int i = 0; i < n; ++i) {
Chris@1096 278 data[i] *= factor;
Chris@1091 279 }
Chris@1091 280 }
Chris@1091 281 }
Chris@1094 282
Chris@1094 283 return data;
Chris@1091 284 }
Chris@1091 285
Chris@1091 286 vector<complex<float>>
Chris@1093 287 FFTModel::getFFTColumn(int n) const
Chris@1091 288 {
Chris@1093 289 for (auto &incache : m_cached) {
Chris@1093 290 if (incache.n == n) {
Chris@1093 291 return incache.col;
Chris@1093 292 }
Chris@1093 293 }
Chris@1093 294
Chris@1093 295 auto samples = getSourceSamples(n);
Chris@1100 296 m_windower.cut(samples.data());
Chris@1093 297 auto col = m_fft.process(samples);
Chris@1093 298
Chris@1093 299 SavedColumn sc { n, col };
Chris@1093 300 if (m_cached.size() >= m_cacheSize) {
Chris@1093 301 m_cached.pop_front();
Chris@1093 302 }
Chris@1093 303 m_cached.push_back(sc);
Chris@1093 304
Chris@1154 305 return move(col);
Chris@1091 306 }
Chris@1091 307
Chris@275 308 bool
Chris@1045 309 FFTModel::estimateStableFrequency(int x, int y, double &frequency)
Chris@275 310 {
Chris@275 311 if (!isOK()) return false;
Chris@275 312
Chris@1090 313 frequency = double(y * getSampleRate()) / m_fftSize;
Chris@275 314
Chris@275 315 if (x+1 >= getWidth()) return false;
Chris@275 316
Chris@275 317 // At frequency f, a phase shift of 2pi (one cycle) happens in 1/f sec.
Chris@275 318 // At hopsize h and sample rate sr, one hop happens in h/sr sec.
Chris@275 319 // At window size w, for bin b, f is b*sr/w.
Chris@275 320 // thus 2pi phase shift happens in w/(b*sr) sec.
Chris@275 321 // We need to know what phase shift we expect from h/sr sec.
Chris@275 322 // -> 2pi * ((h/sr) / (w/(b*sr)))
Chris@275 323 // = 2pi * ((h * b * sr) / (w * sr))
Chris@275 324 // = 2pi * (h * b) / w.
Chris@275 325
Chris@1038 326 double oldPhase = getPhaseAt(x, y);
Chris@1038 327 double newPhase = getPhaseAt(x+1, y);
Chris@275 328
Chris@929 329 int incr = getResolution();
Chris@275 330
Chris@1090 331 double expectedPhase = oldPhase + (2.0 * M_PI * y * incr) / m_fftSize;
Chris@275 332
Chris@1038 333 double phaseError = princarg(newPhase - expectedPhase);
Chris@275 334
Chris@275 335 // The new frequency estimate based on the phase error resulting
Chris@275 336 // from assuming the "native" frequency of this bin
Chris@275 337
Chris@275 338 frequency =
Chris@1090 339 (getSampleRate() * (expectedPhase + phaseError - oldPhase)) /
Chris@1045 340 (2.0 * M_PI * incr);
Chris@275 341
Chris@275 342 return true;
Chris@275 343 }
Chris@275 344
Chris@275 345 FFTModel::PeakLocationSet
Chris@1191 346 FFTModel::getPeaks(PeakPickType type, int x, int ymin, int ymax) const
Chris@275 347 {
Chris@551 348 Profiler profiler("FFTModel::getPeaks");
Chris@551 349
Chris@275 350 FFTModel::PeakLocationSet peaks;
Chris@275 351 if (!isOK()) return peaks;
Chris@275 352
Chris@275 353 if (ymax == 0 || ymax > getHeight() - 1) {
Chris@275 354 ymax = getHeight() - 1;
Chris@275 355 }
Chris@275 356
Chris@275 357 if (type == AllPeaks) {
Chris@551 358 int minbin = ymin;
Chris@551 359 if (minbin > 0) minbin = minbin - 1;
Chris@551 360 int maxbin = ymax;
Chris@551 361 if (maxbin < getHeight() - 1) maxbin = maxbin + 1;
Chris@551 362 const int n = maxbin - minbin + 1;
Chris@608 363 #ifdef __GNUC__
Chris@551 364 float values[n];
Chris@608 365 #else
Chris@608 366 float *values = (float *)alloca(n * sizeof(float));
Chris@608 367 #endif
Chris@551 368 getMagnitudesAt(x, values, minbin, maxbin - minbin + 1);
Chris@929 369 for (int bin = ymin; bin <= ymax; ++bin) {
Chris@551 370 if (bin == minbin || bin == maxbin) continue;
Chris@551 371 if (values[bin - minbin] > values[bin - minbin - 1] &&
Chris@551 372 values[bin - minbin] > values[bin - minbin + 1]) {
Chris@275 373 peaks.insert(bin);
Chris@275 374 }
Chris@275 375 }
Chris@275 376 return peaks;
Chris@275 377 }
Chris@275 378
Chris@551 379 Column values = getColumn(x);
Chris@1154 380 int nv = int(values.size());
Chris@275 381
Chris@500 382 float mean = 0.f;
Chris@1154 383 for (int i = 0; i < nv; ++i) mean += values[i];
Chris@1154 384 if (nv > 0) mean = mean / float(values.size());
Chris@1038 385
Chris@275 386 // For peak picking we use a moving median window, picking the
Chris@275 387 // highest value within each continuous region of values that
Chris@275 388 // exceed the median. For pitch adaptivity, we adjust the window
Chris@275 389 // size to a roughly constant pitch range (about four tones).
Chris@275 390
Chris@1040 391 sv_samplerate_t sampleRate = getSampleRate();
Chris@275 392
Chris@1090 393 deque<float> window;
Chris@1090 394 vector<int> inrange;
Chris@280 395 float dist = 0.5;
Chris@500 396
Chris@929 397 int medianWinSize = getPeakPickWindowSize(type, sampleRate, ymin, dist);
Chris@929 398 int halfWin = medianWinSize/2;
Chris@275 399
Chris@929 400 int binmin;
Chris@275 401 if (ymin > halfWin) binmin = ymin - halfWin;
Chris@275 402 else binmin = 0;
Chris@275 403
Chris@929 404 int binmax;
Chris@1154 405 if (ymax + halfWin < nv) binmax = ymax + halfWin;
Chris@1154 406 else binmax = nv - 1;
Chris@275 407
Chris@929 408 int prevcentre = 0;
Chris@500 409
Chris@929 410 for (int bin = binmin; bin <= binmax; ++bin) {
Chris@275 411
Chris@275 412 float value = values[bin];
Chris@275 413
Chris@275 414 window.push_back(value);
Chris@275 415
Chris@280 416 // so-called median will actually be the dist*100'th percentile
Chris@280 417 medianWinSize = getPeakPickWindowSize(type, sampleRate, bin, dist);
Chris@275 418 halfWin = medianWinSize/2;
Chris@275 419
Chris@929 420 while ((int)window.size() > medianWinSize) {
Chris@500 421 window.pop_front();
Chris@500 422 }
Chris@500 423
Chris@1038 424 int actualSize = int(window.size());
Chris@275 425
Chris@275 426 if (type == MajorPitchAdaptivePeaks) {
Chris@1154 427 if (ymax + halfWin < nv) binmax = ymax + halfWin;
Chris@1154 428 else binmax = nv - 1;
Chris@275 429 }
Chris@275 430
Chris@1090 431 deque<float> sorted(window);
Chris@1090 432 sort(sorted.begin(), sorted.end());
Chris@1038 433 float median = sorted[int(float(sorted.size()) * dist)];
Chris@275 434
Chris@929 435 int centrebin = 0;
Chris@500 436 if (bin > actualSize/2) centrebin = bin - actualSize/2;
Chris@500 437
Chris@500 438 while (centrebin > prevcentre || bin == binmin) {
Chris@275 439
Chris@500 440 if (centrebin > prevcentre) ++prevcentre;
Chris@500 441
Chris@500 442 float centre = values[prevcentre];
Chris@500 443
Chris@500 444 if (centre > median) {
Chris@500 445 inrange.push_back(centrebin);
Chris@500 446 }
Chris@500 447
Chris@1154 448 if (centre <= median || centrebin+1 == nv) {
Chris@500 449 if (!inrange.empty()) {
Chris@929 450 int peakbin = 0;
Chris@500 451 float peakval = 0.f;
Chris@929 452 for (int i = 0; i < (int)inrange.size(); ++i) {
Chris@500 453 if (i == 0 || values[inrange[i]] > peakval) {
Chris@500 454 peakval = values[inrange[i]];
Chris@500 455 peakbin = inrange[i];
Chris@500 456 }
Chris@500 457 }
Chris@500 458 inrange.clear();
Chris@500 459 if (peakbin >= ymin && peakbin <= ymax) {
Chris@500 460 peaks.insert(peakbin);
Chris@275 461 }
Chris@275 462 }
Chris@275 463 }
Chris@500 464
Chris@500 465 if (bin == binmin) break;
Chris@275 466 }
Chris@275 467 }
Chris@275 468
Chris@275 469 return peaks;
Chris@275 470 }
Chris@275 471
Chris@929 472 int
Chris@1040 473 FFTModel::getPeakPickWindowSize(PeakPickType type, sv_samplerate_t sampleRate,
Chris@929 474 int bin, float &percentile) const
Chris@275 475 {
Chris@280 476 percentile = 0.5;
Chris@275 477 if (type == MajorPeaks) return 10;
Chris@275 478 if (bin == 0) return 3;
Chris@280 479
Chris@1091 480 double binfreq = (sampleRate * bin) / m_fftSize;
Chris@1038 481 double hifreq = Pitch::getFrequencyForPitch(73, 0, binfreq);
Chris@280 482
Chris@1091 483 int hibin = int(lrint((hifreq * m_fftSize) / sampleRate));
Chris@275 484 int medianWinSize = hibin - bin;
Chris@275 485 if (medianWinSize < 3) medianWinSize = 3;
Chris@280 486
Chris@1091 487 percentile = 0.5f + float(binfreq / sampleRate);
Chris@280 488
Chris@275 489 return medianWinSize;
Chris@275 490 }
Chris@275 491
Chris@275 492 FFTModel::PeakSet
Chris@929 493 FFTModel::getPeakFrequencies(PeakPickType type, int x,
Chris@1191 494 int ymin, int ymax) const
Chris@275 495 {
Chris@551 496 Profiler profiler("FFTModel::getPeakFrequencies");
Chris@551 497
Chris@275 498 PeakSet peaks;
Chris@275 499 if (!isOK()) return peaks;
Chris@275 500 PeakLocationSet locations = getPeaks(type, x, ymin, ymax);
Chris@275 501
Chris@1040 502 sv_samplerate_t sampleRate = getSampleRate();
Chris@929 503 int incr = getResolution();
Chris@275 504
Chris@275 505 // This duplicates some of the work of estimateStableFrequency to
Chris@275 506 // allow us to retrieve the phases in two separate vertical
Chris@275 507 // columns, instead of jumping back and forth between columns x and
Chris@275 508 // x+1, which may be significantly slower if re-seeking is needed
Chris@275 509
Chris@1090 510 vector<float> phases;
Chris@275 511 for (PeakLocationSet::iterator i = locations.begin();
Chris@275 512 i != locations.end(); ++i) {
Chris@275 513 phases.push_back(getPhaseAt(x, *i));
Chris@275 514 }
Chris@275 515
Chris@929 516 int phaseIndex = 0;
Chris@275 517 for (PeakLocationSet::iterator i = locations.begin();
Chris@275 518 i != locations.end(); ++i) {
Chris@1038 519 double oldPhase = phases[phaseIndex];
Chris@1038 520 double newPhase = getPhaseAt(x+1, *i);
Chris@1090 521 double expectedPhase = oldPhase + (2.0 * M_PI * *i * incr) / m_fftSize;
Chris@1038 522 double phaseError = princarg(newPhase - expectedPhase);
Chris@1038 523 double frequency =
Chris@275 524 (sampleRate * (expectedPhase + phaseError - oldPhase))
Chris@275 525 / (2 * M_PI * incr);
Chris@1045 526 peaks[*i] = frequency;
Chris@275 527 ++phaseIndex;
Chris@275 528 }
Chris@275 529
Chris@275 530 return peaks;
Chris@275 531 }
Chris@275 532