Chris@152
|
1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
|
Chris@152
|
2
|
Chris@152
|
3 /*
|
Chris@152
|
4 Sonic Visualiser
|
Chris@152
|
5 An audio file viewer and annotation editor.
|
Chris@152
|
6 Centre for Digital Music, Queen Mary, University of London.
|
Chris@152
|
7 This file copyright 2006 Chris Cannam.
|
Chris@152
|
8
|
Chris@152
|
9 This program is free software; you can redistribute it and/or
|
Chris@152
|
10 modify it under the terms of the GNU General Public License as
|
Chris@152
|
11 published by the Free Software Foundation; either version 2 of the
|
Chris@152
|
12 License, or (at your option) any later version. See the file
|
Chris@152
|
13 COPYING included with this distribution for more information.
|
Chris@152
|
14 */
|
Chris@152
|
15
|
Chris@152
|
16 #include "FFTModel.h"
|
Chris@152
|
17 #include "DenseTimeValueModel.h"
|
Chris@152
|
18
|
Chris@183
|
19 #include "base/Profiler.h"
|
Chris@275
|
20 #include "base/Pitch.h"
|
Chris@1256
|
21 #include "base/HitCount.h"
|
Chris@1428
|
22 #include "base/Debug.h"
|
Chris@1573
|
23 #include "base/MovingMedian.h"
|
Chris@183
|
24
|
Chris@402
|
25 #include <algorithm>
|
Chris@402
|
26
|
Chris@152
|
27 #include <cassert>
|
Chris@1090
|
28 #include <deque>
|
Chris@152
|
29
|
Chris@1090
|
30 using namespace std;
|
Chris@1090
|
31
|
Chris@1256
|
32 static HitCount inSmallCache("FFTModel: Small FFT cache");
|
Chris@1256
|
33 static HitCount inSourceCache("FFTModel: Source data cache");
|
Chris@1256
|
34
|
Chris@1744
|
35 FFTModel::FFTModel(ModelId modelId,
|
Chris@152
|
36 int channel,
|
Chris@152
|
37 WindowType windowType,
|
Chris@929
|
38 int windowSize,
|
Chris@929
|
39 int windowIncrement,
|
Chris@1090
|
40 int fftSize) :
|
Chris@1744
|
41 m_model(modelId),
|
Chris@1780
|
42 m_sampleRate(0),
|
Chris@1090
|
43 m_channel(channel),
|
Chris@1090
|
44 m_windowType(windowType),
|
Chris@1090
|
45 m_windowSize(windowSize),
|
Chris@1090
|
46 m_windowIncrement(windowIncrement),
|
Chris@1090
|
47 m_fftSize(fftSize),
|
Chris@1091
|
48 m_windower(windowType, windowSize),
|
Chris@1093
|
49 m_fft(fftSize),
|
Chris@1780
|
50 m_maximumFrequency(0.0),
|
Chris@1371
|
51 m_cacheWriteIndex(0),
|
Chris@1093
|
52 m_cacheSize(3)
|
Chris@152
|
53 {
|
Chris@1371
|
54 while (m_cached.size() < m_cacheSize) {
|
Chris@1371
|
55 m_cached.push_back({ -1, cvec(m_fftSize / 2 + 1) });
|
Chris@1371
|
56 }
|
Chris@1371
|
57
|
Chris@1091
|
58 if (m_windowSize > m_fftSize) {
|
Chris@1428
|
59 SVCERR << "ERROR: FFTModel::FFTModel: window size (" << m_windowSize
|
Chris@1680
|
60 << ") may not exceed FFT size (" << m_fftSize << ")" << endl;
|
Chris@1680
|
61 throw invalid_argument("FFTModel window size may not exceed FFT size");
|
Chris@1091
|
62 }
|
Chris@1133
|
63
|
Chris@1270
|
64 m_fft.initFloat();
|
Chris@1270
|
65
|
Chris@1744
|
66 auto model = ModelById::getAs<DenseTimeValueModel>(m_model);
|
Chris@1744
|
67 if (model) {
|
Chris@1780
|
68 m_sampleRate = model->getSampleRate();
|
Chris@1780
|
69
|
Chris@1752
|
70 connect(model.get(), SIGNAL(modelChanged(ModelId)),
|
Chris@1752
|
71 this, SIGNAL(modelChanged(ModelId)));
|
Chris@1752
|
72 connect(model.get(), SIGNAL(modelChangedWithin(ModelId, sv_frame_t, sv_frame_t)),
|
Chris@1752
|
73 this, SIGNAL(modelChangedWithin(ModelId, sv_frame_t, sv_frame_t)));
|
Chris@1784
|
74 } else {
|
Chris@1784
|
75 m_error = QString("Model #%1 is not available").arg(m_model.untyped);
|
Chris@1744
|
76 }
|
Chris@152
|
77 }
|
Chris@152
|
78
|
Chris@152
|
79 FFTModel::~FFTModel()
|
Chris@152
|
80 {
|
Chris@152
|
81 }
|
Chris@152
|
82
|
Chris@1744
|
83 bool
|
Chris@1744
|
84 FFTModel::isOK() const
|
Chris@360
|
85 {
|
Chris@1744
|
86 auto model = ModelById::getAs<DenseTimeValueModel>(m_model);
|
Chris@1784
|
87 if (!model) {
|
Chris@1784
|
88 m_error = QString("Model #%1 is not available").arg(m_model.untyped);
|
Chris@1784
|
89 return false;
|
Chris@1784
|
90 }
|
Chris@1784
|
91 if (!model->isOK()) {
|
Chris@1784
|
92 m_error = QString("Model #%1 is not OK").arg(m_model.untyped);
|
Chris@1784
|
93 return false;
|
Chris@1784
|
94 }
|
Chris@1784
|
95 return true;
|
Chris@1744
|
96 }
|
Chris@1744
|
97
|
Chris@1744
|
98 int
|
Chris@1744
|
99 FFTModel::getCompletion() const
|
Chris@1744
|
100 {
|
Chris@1744
|
101 int c = 100;
|
Chris@1744
|
102 auto model = ModelById::getAs<DenseTimeValueModel>(m_model);
|
Chris@1744
|
103 if (model) {
|
Chris@1744
|
104 if (model->isReady(&c)) return 100;
|
Chris@360
|
105 }
|
Chris@1744
|
106 return c;
|
Chris@1744
|
107 }
|
Chris@1744
|
108
|
Chris@1780
|
109 void
|
Chris@1780
|
110 FFTModel::setMaximumFrequency(double freq)
|
Chris@1780
|
111 {
|
Chris@1780
|
112 m_maximumFrequency = freq;
|
Chris@360
|
113 }
|
Chris@360
|
114
|
Chris@1091
|
115 int
|
Chris@1091
|
116 FFTModel::getWidth() const
|
Chris@1091
|
117 {
|
Chris@1744
|
118 auto model = ModelById::getAs<DenseTimeValueModel>(m_model);
|
Chris@1744
|
119 if (!model) return 0;
|
Chris@1744
|
120 return int((model->getEndFrame() - model->getStartFrame())
|
Chris@1091
|
121 / m_windowIncrement) + 1;
|
Chris@1091
|
122 }
|
Chris@1091
|
123
|
Chris@1091
|
124 int
|
Chris@1091
|
125 FFTModel::getHeight() const
|
Chris@1091
|
126 {
|
Chris@1780
|
127 int height = m_fftSize / 2 + 1;
|
Chris@1780
|
128 if (m_maximumFrequency != 0.0) {
|
Chris@1780
|
129 int maxBin = int(ceil(m_maximumFrequency * m_fftSize) / m_sampleRate);
|
Chris@1780
|
130 if (maxBin >= 0 && maxBin < height) {
|
Chris@1780
|
131 return maxBin + 1;
|
Chris@1780
|
132 }
|
Chris@1780
|
133 }
|
Chris@1780
|
134 return height;
|
Chris@1091
|
135 }
|
Chris@1091
|
136
|
Chris@152
|
137 QString
|
Chris@929
|
138 FFTModel::getBinName(int n) const
|
Chris@152
|
139 {
|
Chris@1790
|
140 return tr("%1 Hz").arg(getBinValue(n));
|
Chris@1790
|
141 }
|
Chris@1790
|
142
|
Chris@1790
|
143 float
|
Chris@1790
|
144 FFTModel::getBinValue(int n) const
|
Chris@1790
|
145 {
|
Chris@1790
|
146 return float((m_sampleRate * n) / m_fftSize);
|
Chris@152
|
147 }
|
Chris@152
|
148
|
Chris@1091
|
149 FFTModel::Column
|
Chris@1091
|
150 FFTModel::getColumn(int x) const
|
Chris@1091
|
151 {
|
Chris@1091
|
152 auto cplx = getFFTColumn(x);
|
Chris@1091
|
153 Column col;
|
Chris@1154
|
154 col.reserve(cplx.size());
|
Chris@1091
|
155 for (auto c: cplx) col.push_back(abs(c));
|
Chris@1319
|
156 return col;
|
Chris@1091
|
157 }
|
Chris@1091
|
158
|
Chris@1200
|
159 FFTModel::Column
|
Chris@1200
|
160 FFTModel::getPhases(int x) const
|
Chris@1200
|
161 {
|
Chris@1200
|
162 auto cplx = getFFTColumn(x);
|
Chris@1200
|
163 Column col;
|
Chris@1200
|
164 col.reserve(cplx.size());
|
Chris@1201
|
165 for (auto c: cplx) {
|
Chris@1201
|
166 col.push_back(arg(c));
|
Chris@1201
|
167 }
|
Chris@1319
|
168 return col;
|
Chris@1200
|
169 }
|
Chris@1200
|
170
|
Chris@1091
|
171 float
|
Chris@1091
|
172 FFTModel::getMagnitudeAt(int x, int y) const
|
Chris@1091
|
173 {
|
Chris@1569
|
174 if (x < 0 || x >= getWidth() || y < 0 || y >= getHeight()) {
|
Chris@1569
|
175 return 0.f;
|
Chris@1569
|
176 }
|
Chris@1093
|
177 auto col = getFFTColumn(x);
|
Chris@1093
|
178 return abs(col[y]);
|
Chris@1091
|
179 }
|
Chris@1091
|
180
|
Chris@1091
|
181 float
|
Chris@1091
|
182 FFTModel::getMaximumMagnitudeAt(int x) const
|
Chris@1091
|
183 {
|
Chris@1091
|
184 Column col(getColumn(x));
|
Chris@1092
|
185 float max = 0.f;
|
Chris@1154
|
186 int n = int(col.size());
|
Chris@1154
|
187 for (int i = 0; i < n; ++i) {
|
Chris@1092
|
188 if (col[i] > max) max = col[i];
|
Chris@1092
|
189 }
|
Chris@1092
|
190 return max;
|
Chris@1091
|
191 }
|
Chris@1091
|
192
|
Chris@1091
|
193 float
|
Chris@1091
|
194 FFTModel::getPhaseAt(int x, int y) const
|
Chris@1091
|
195 {
|
Chris@1093
|
196 if (x < 0 || x >= getWidth() || y < 0 || y >= getHeight()) return 0.f;
|
Chris@1091
|
197 return arg(getFFTColumn(x)[y]);
|
Chris@1091
|
198 }
|
Chris@1091
|
199
|
Chris@1091
|
200 void
|
Chris@1091
|
201 FFTModel::getValuesAt(int x, int y, float &re, float &im) const
|
Chris@1091
|
202 {
|
Chris@1780
|
203 if (x < 0 || x >= getWidth() || y < 0 || y >= getHeight()) {
|
Chris@1780
|
204 re = 0.f;
|
Chris@1780
|
205 im = 0.f;
|
Chris@1780
|
206 return;
|
Chris@1780
|
207 }
|
Chris@1091
|
208 auto col = getFFTColumn(x);
|
Chris@1091
|
209 re = col[y].real();
|
Chris@1091
|
210 im = col[y].imag();
|
Chris@1091
|
211 }
|
Chris@1091
|
212
|
Chris@1091
|
213 bool
|
Chris@1091
|
214 FFTModel::getMagnitudesAt(int x, float *values, int minbin, int count) const
|
Chris@1091
|
215 {
|
Chris@1091
|
216 if (count == 0) count = getHeight();
|
Chris@1091
|
217 auto col = getFFTColumn(x);
|
Chris@1091
|
218 for (int i = 0; i < count; ++i) {
|
Chris@1091
|
219 values[i] = abs(col[minbin + i]);
|
Chris@1091
|
220 }
|
Chris@1091
|
221 return true;
|
Chris@1091
|
222 }
|
Chris@1091
|
223
|
Chris@1091
|
224 bool
|
Chris@1091
|
225 FFTModel::getPhasesAt(int x, float *values, int minbin, int count) const
|
Chris@1091
|
226 {
|
Chris@1091
|
227 if (count == 0) count = getHeight();
|
Chris@1091
|
228 auto col = getFFTColumn(x);
|
Chris@1091
|
229 for (int i = 0; i < count; ++i) {
|
Chris@1091
|
230 values[i] = arg(col[minbin + i]);
|
Chris@1091
|
231 }
|
Chris@1091
|
232 return true;
|
Chris@1091
|
233 }
|
Chris@1091
|
234
|
Chris@1091
|
235 bool
|
Chris@1091
|
236 FFTModel::getValuesAt(int x, float *reals, float *imags, int minbin, int count) const
|
Chris@1091
|
237 {
|
Chris@1091
|
238 if (count == 0) count = getHeight();
|
Chris@1091
|
239 auto col = getFFTColumn(x);
|
Chris@1091
|
240 for (int i = 0; i < count; ++i) {
|
Chris@1091
|
241 reals[i] = col[minbin + i].real();
|
Chris@1091
|
242 }
|
Chris@1091
|
243 for (int i = 0; i < count; ++i) {
|
Chris@1091
|
244 imags[i] = col[minbin + i].imag();
|
Chris@1091
|
245 }
|
Chris@1091
|
246 return true;
|
Chris@1091
|
247 }
|
Chris@1091
|
248
|
Chris@1326
|
249 FFTModel::fvec
|
Chris@1091
|
250 FFTModel::getSourceSamples(int column) const
|
Chris@1091
|
251 {
|
Chris@1094
|
252 // m_fftSize may be greater than m_windowSize, but not the reverse
|
Chris@1094
|
253
|
Chris@1094
|
254 // cerr << "getSourceSamples(" << column << ")" << endl;
|
Chris@1094
|
255
|
Chris@1091
|
256 auto range = getSourceSampleRange(column);
|
Chris@1094
|
257 auto data = getSourceData(range);
|
Chris@1094
|
258
|
Chris@1091
|
259 int off = (m_fftSize - m_windowSize) / 2;
|
Chris@1094
|
260
|
Chris@1094
|
261 if (off == 0) {
|
Chris@1094
|
262 return data;
|
Chris@1094
|
263 } else {
|
Chris@1094
|
264 vector<float> pad(off, 0.f);
|
Chris@1326
|
265 fvec padded;
|
Chris@1094
|
266 padded.reserve(m_fftSize);
|
Chris@1094
|
267 padded.insert(padded.end(), pad.begin(), pad.end());
|
Chris@1094
|
268 padded.insert(padded.end(), data.begin(), data.end());
|
Chris@1094
|
269 padded.insert(padded.end(), pad.begin(), pad.end());
|
Chris@1094
|
270 return padded;
|
Chris@1094
|
271 }
|
Chris@1094
|
272 }
|
Chris@1094
|
273
|
Chris@1326
|
274 FFTModel::fvec
|
Chris@1094
|
275 FFTModel::getSourceData(pair<sv_frame_t, sv_frame_t> range) const
|
Chris@1094
|
276 {
|
Chris@1094
|
277 // cerr << "getSourceData(" << range.first << "," << range.second
|
Chris@1094
|
278 // << "): saved range is (" << m_savedData.range.first
|
Chris@1094
|
279 // << "," << m_savedData.range.second << ")" << endl;
|
Chris@1094
|
280
|
Chris@1100
|
281 if (m_savedData.range == range) {
|
Chris@1256
|
282 inSourceCache.hit();
|
Chris@1100
|
283 return m_savedData.data;
|
Chris@1100
|
284 }
|
Chris@1094
|
285
|
Chris@1270
|
286 Profiler profiler("FFTModel::getSourceData (cache miss)");
|
Chris@1270
|
287
|
Chris@1094
|
288 if (range.first < m_savedData.range.second &&
|
Chris@1094
|
289 range.first >= m_savedData.range.first &&
|
Chris@1094
|
290 range.second > m_savedData.range.second) {
|
Chris@1094
|
291
|
Chris@1256
|
292 inSourceCache.partial();
|
Chris@1256
|
293
|
Chris@1100
|
294 sv_frame_t discard = range.first - m_savedData.range.first;
|
Chris@1100
|
295
|
Chris@1457
|
296 fvec data;
|
Chris@1457
|
297 data.reserve(range.second - range.first);
|
Chris@1094
|
298
|
Chris@1457
|
299 data.insert(data.end(),
|
Chris@1457
|
300 m_savedData.data.begin() + discard,
|
Chris@1457
|
301 m_savedData.data.end());
|
Chris@1100
|
302
|
Chris@1457
|
303 fvec rest = getSourceDataUncached
|
Chris@1457
|
304 ({ m_savedData.range.second, range.second });
|
Chris@1457
|
305
|
Chris@1457
|
306 data.insert(data.end(), rest.begin(), rest.end());
|
Chris@1094
|
307
|
Chris@1457
|
308 m_savedData = { range, data };
|
Chris@1457
|
309 return data;
|
Chris@1095
|
310
|
Chris@1095
|
311 } else {
|
Chris@1095
|
312
|
Chris@1256
|
313 inSourceCache.miss();
|
Chris@1256
|
314
|
Chris@1095
|
315 auto data = getSourceDataUncached(range);
|
Chris@1095
|
316 m_savedData = { range, data };
|
Chris@1095
|
317 return data;
|
Chris@1094
|
318 }
|
Chris@1095
|
319 }
|
Chris@1094
|
320
|
Chris@1326
|
321 FFTModel::fvec
|
Chris@1095
|
322 FFTModel::getSourceDataUncached(pair<sv_frame_t, sv_frame_t> range) const
|
Chris@1095
|
323 {
|
Chris@1457
|
324 Profiler profiler("FFTModel::getSourceDataUncached");
|
Chris@1688
|
325
|
Chris@1744
|
326 auto model = ModelById::getAs<DenseTimeValueModel>(m_model);
|
Chris@1744
|
327 if (!model) return {};
|
Chris@1457
|
328
|
Chris@1091
|
329 decltype(range.first) pfx = 0;
|
Chris@1091
|
330 if (range.first < 0) {
|
Chris@1091
|
331 pfx = -range.first;
|
Chris@1091
|
332 range = { 0, range.second };
|
Chris@1091
|
333 }
|
Chris@1096
|
334
|
Chris@1744
|
335 auto data = model->getData(m_channel,
|
Chris@1744
|
336 range.first,
|
Chris@1744
|
337 range.second - range.first);
|
Chris@1773
|
338 /*
|
Chris@1281
|
339 if (data.empty()) {
|
Chris@1281
|
340 SVDEBUG << "NOTE: empty source data for range (" << range.first << ","
|
Chris@1281
|
341 << range.second << ") (model end frame "
|
Chris@1744
|
342 << model->getEndFrame() << ")" << endl;
|
Chris@1281
|
343 }
|
Chris@1773
|
344 */
|
Chris@1281
|
345
|
Chris@1096
|
346 // don't return a partial frame
|
Chris@1096
|
347 data.resize(range.second - range.first, 0.f);
|
Chris@1096
|
348
|
Chris@1096
|
349 if (pfx > 0) {
|
Chris@1096
|
350 vector<float> pad(pfx, 0.f);
|
Chris@1096
|
351 data.insert(data.begin(), pad.begin(), pad.end());
|
Chris@1096
|
352 }
|
Chris@1096
|
353
|
Chris@1091
|
354 if (m_channel == -1) {
|
Chris@1744
|
355 int channels = model->getChannelCount();
|
Chris@1429
|
356 if (channels > 1) {
|
Chris@1096
|
357 int n = int(data.size());
|
Chris@1096
|
358 float factor = 1.f / float(channels);
|
Chris@1100
|
359 // use mean instead of sum for fft model input
|
Chris@1429
|
360 for (int i = 0; i < n; ++i) {
|
Chris@1429
|
361 data[i] *= factor;
|
Chris@1429
|
362 }
|
Chris@1429
|
363 }
|
Chris@1091
|
364 }
|
Chris@1094
|
365
|
Chris@1094
|
366 return data;
|
Chris@1091
|
367 }
|
Chris@1091
|
368
|
Chris@1780
|
369 FFTModel::cvec
|
Chris@1093
|
370 FFTModel::getFFTColumn(int n) const
|
Chris@1091
|
371 {
|
Chris@1780
|
372 int h = getHeight();
|
Chris@1780
|
373 bool truncate = (h < m_fftSize / 2 + 1);
|
Chris@1780
|
374
|
Chris@1258
|
375 // The small cache (i.e. the m_cached deque) is for cases where
|
Chris@1258
|
376 // values are looked up individually, and for e.g. peak-frequency
|
Chris@1258
|
377 // spectrograms where values from two consecutive columns are
|
Chris@1257
|
378 // needed at once. This cache gets essentially no hits when
|
Chris@1258
|
379 // scrolling through a magnitude spectrogram, but 95%+ hits with a
|
Chris@1569
|
380 // peak-frequency spectrogram or spectrum.
|
Chris@1257
|
381 for (const auto &incache : m_cached) {
|
Chris@1093
|
382 if (incache.n == n) {
|
Chris@1256
|
383 inSmallCache.hit();
|
Chris@1780
|
384 if (!truncate) {
|
Chris@1780
|
385 return incache.col;
|
Chris@1780
|
386 } else {
|
Chris@1780
|
387 return cvec(incache.col.begin(), incache.col.begin() + h);
|
Chris@1780
|
388 }
|
Chris@1093
|
389 }
|
Chris@1093
|
390 }
|
Chris@1256
|
391 inSmallCache.miss();
|
Chris@1258
|
392
|
Chris@1258
|
393 Profiler profiler("FFTModel::getFFTColumn (cache miss)");
|
Chris@1093
|
394
|
Chris@1093
|
395 auto samples = getSourceSamples(n);
|
Chris@1567
|
396 m_windower.cut(samples.data() + (m_fftSize - m_windowSize) / 2);
|
Chris@1270
|
397 breakfastquay::v_fftshift(samples.data(), m_fftSize);
|
Chris@1270
|
398
|
Chris@1371
|
399 cvec &col = m_cached[m_cacheWriteIndex].col;
|
Chris@1270
|
400
|
Chris@1270
|
401 m_fft.forwardInterleaved(samples.data(),
|
Chris@1270
|
402 reinterpret_cast<float *>(col.data()));
|
Chris@1093
|
403
|
Chris@1371
|
404 m_cached[m_cacheWriteIndex].n = n;
|
Chris@1371
|
405
|
Chris@1371
|
406 m_cacheWriteIndex = (m_cacheWriteIndex + 1) % m_cacheSize;
|
Chris@1093
|
407
|
Chris@1780
|
408 if (!truncate) {
|
Chris@1780
|
409 return col;
|
Chris@1780
|
410 } else {
|
Chris@1780
|
411 return cvec(col.begin(), col.begin() + h);
|
Chris@1780
|
412 }
|
Chris@1091
|
413 }
|
Chris@1091
|
414
|
Chris@275
|
415 bool
|
Chris@1045
|
416 FFTModel::estimateStableFrequency(int x, int y, double &frequency)
|
Chris@275
|
417 {
|
Chris@275
|
418 if (!isOK()) return false;
|
Chris@275
|
419
|
Chris@1090
|
420 frequency = double(y * getSampleRate()) / m_fftSize;
|
Chris@275
|
421
|
Chris@275
|
422 if (x+1 >= getWidth()) return false;
|
Chris@275
|
423
|
Chris@275
|
424 // At frequency f, a phase shift of 2pi (one cycle) happens in 1/f sec.
|
Chris@275
|
425 // At hopsize h and sample rate sr, one hop happens in h/sr sec.
|
Chris@275
|
426 // At window size w, for bin b, f is b*sr/w.
|
Chris@275
|
427 // thus 2pi phase shift happens in w/(b*sr) sec.
|
Chris@275
|
428 // We need to know what phase shift we expect from h/sr sec.
|
Chris@275
|
429 // -> 2pi * ((h/sr) / (w/(b*sr)))
|
Chris@275
|
430 // = 2pi * ((h * b * sr) / (w * sr))
|
Chris@275
|
431 // = 2pi * (h * b) / w.
|
Chris@275
|
432
|
Chris@1038
|
433 double oldPhase = getPhaseAt(x, y);
|
Chris@1038
|
434 double newPhase = getPhaseAt(x+1, y);
|
Chris@275
|
435
|
Chris@929
|
436 int incr = getResolution();
|
Chris@275
|
437
|
Chris@1090
|
438 double expectedPhase = oldPhase + (2.0 * M_PI * y * incr) / m_fftSize;
|
Chris@275
|
439
|
Chris@1038
|
440 double phaseError = princarg(newPhase - expectedPhase);
|
Chris@275
|
441
|
Chris@275
|
442 // The new frequency estimate based on the phase error resulting
|
Chris@275
|
443 // from assuming the "native" frequency of this bin
|
Chris@275
|
444
|
Chris@275
|
445 frequency =
|
Chris@1090
|
446 (getSampleRate() * (expectedPhase + phaseError - oldPhase)) /
|
Chris@1045
|
447 (2.0 * M_PI * incr);
|
Chris@275
|
448
|
Chris@275
|
449 return true;
|
Chris@275
|
450 }
|
Chris@275
|
451
|
Chris@275
|
452 FFTModel::PeakLocationSet
|
Chris@1191
|
453 FFTModel::getPeaks(PeakPickType type, int x, int ymin, int ymax) const
|
Chris@275
|
454 {
|
Chris@551
|
455 Profiler profiler("FFTModel::getPeaks");
|
Chris@1575
|
456
|
Chris@275
|
457 FFTModel::PeakLocationSet peaks;
|
Chris@275
|
458 if (!isOK()) return peaks;
|
Chris@275
|
459
|
Chris@275
|
460 if (ymax == 0 || ymax > getHeight() - 1) {
|
Chris@275
|
461 ymax = getHeight() - 1;
|
Chris@275
|
462 }
|
Chris@275
|
463
|
Chris@275
|
464 if (type == AllPeaks) {
|
Chris@551
|
465 int minbin = ymin;
|
Chris@551
|
466 if (minbin > 0) minbin = minbin - 1;
|
Chris@551
|
467 int maxbin = ymax;
|
Chris@551
|
468 if (maxbin < getHeight() - 1) maxbin = maxbin + 1;
|
Chris@551
|
469 const int n = maxbin - minbin + 1;
|
Chris@1218
|
470 float *values = new float[n];
|
Chris@551
|
471 getMagnitudesAt(x, values, minbin, maxbin - minbin + 1);
|
Chris@929
|
472 for (int bin = ymin; bin <= ymax; ++bin) {
|
Chris@551
|
473 if (bin == minbin || bin == maxbin) continue;
|
Chris@551
|
474 if (values[bin - minbin] > values[bin - minbin - 1] &&
|
Chris@551
|
475 values[bin - minbin] > values[bin - minbin + 1]) {
|
Chris@275
|
476 peaks.insert(bin);
|
Chris@275
|
477 }
|
Chris@275
|
478 }
|
Chris@1218
|
479 delete[] values;
|
Chris@275
|
480 return peaks;
|
Chris@275
|
481 }
|
Chris@275
|
482
|
Chris@551
|
483 Column values = getColumn(x);
|
Chris@1154
|
484 int nv = int(values.size());
|
Chris@275
|
485
|
Chris@500
|
486 float mean = 0.f;
|
Chris@1154
|
487 for (int i = 0; i < nv; ++i) mean += values[i];
|
Chris@1154
|
488 if (nv > 0) mean = mean / float(values.size());
|
Chris@1038
|
489
|
Chris@275
|
490 // For peak picking we use a moving median window, picking the
|
Chris@275
|
491 // highest value within each continuous region of values that
|
Chris@275
|
492 // exceed the median. For pitch adaptivity, we adjust the window
|
Chris@275
|
493 // size to a roughly constant pitch range (about four tones).
|
Chris@275
|
494
|
Chris@1040
|
495 sv_samplerate_t sampleRate = getSampleRate();
|
Chris@275
|
496
|
Chris@1090
|
497 vector<int> inrange;
|
Chris@1576
|
498 double dist = 0.5;
|
Chris@500
|
499
|
Chris@929
|
500 int medianWinSize = getPeakPickWindowSize(type, sampleRate, ymin, dist);
|
Chris@929
|
501 int halfWin = medianWinSize/2;
|
Chris@275
|
502
|
Chris@1573
|
503 MovingMedian<float> window(medianWinSize);
|
Chris@1573
|
504
|
Chris@929
|
505 int binmin;
|
Chris@275
|
506 if (ymin > halfWin) binmin = ymin - halfWin;
|
Chris@275
|
507 else binmin = 0;
|
Chris@275
|
508
|
Chris@929
|
509 int binmax;
|
Chris@1154
|
510 if (ymax + halfWin < nv) binmax = ymax + halfWin;
|
Chris@1154
|
511 else binmax = nv - 1;
|
Chris@275
|
512
|
Chris@929
|
513 int prevcentre = 0;
|
Chris@500
|
514
|
Chris@929
|
515 for (int bin = binmin; bin <= binmax; ++bin) {
|
Chris@275
|
516
|
Chris@275
|
517 float value = values[bin];
|
Chris@275
|
518
|
Chris@280
|
519 // so-called median will actually be the dist*100'th percentile
|
Chris@280
|
520 medianWinSize = getPeakPickWindowSize(type, sampleRate, bin, dist);
|
Chris@275
|
521 halfWin = medianWinSize/2;
|
Chris@275
|
522
|
Chris@1573
|
523 int actualSize = std::min(medianWinSize, bin - binmin + 1);
|
Chris@1573
|
524 window.resize(actualSize);
|
Chris@1573
|
525 window.setPercentile(dist * 100.0);
|
Chris@1573
|
526 window.push(value);
|
Chris@275
|
527
|
Chris@275
|
528 if (type == MajorPitchAdaptivePeaks) {
|
Chris@1154
|
529 if (ymax + halfWin < nv) binmax = ymax + halfWin;
|
Chris@1154
|
530 else binmax = nv - 1;
|
Chris@275
|
531 }
|
Chris@275
|
532
|
Chris@1573
|
533 float median = window.get();
|
Chris@275
|
534
|
Chris@929
|
535 int centrebin = 0;
|
Chris@500
|
536 if (bin > actualSize/2) centrebin = bin - actualSize/2;
|
Chris@500
|
537
|
Chris@500
|
538 while (centrebin > prevcentre || bin == binmin) {
|
Chris@275
|
539
|
Chris@500
|
540 if (centrebin > prevcentre) ++prevcentre;
|
Chris@500
|
541
|
Chris@500
|
542 float centre = values[prevcentre];
|
Chris@500
|
543
|
Chris@500
|
544 if (centre > median) {
|
Chris@500
|
545 inrange.push_back(centrebin);
|
Chris@500
|
546 }
|
Chris@500
|
547
|
Chris@1154
|
548 if (centre <= median || centrebin+1 == nv) {
|
Chris@500
|
549 if (!inrange.empty()) {
|
Chris@929
|
550 int peakbin = 0;
|
Chris@500
|
551 float peakval = 0.f;
|
Chris@929
|
552 for (int i = 0; i < (int)inrange.size(); ++i) {
|
Chris@500
|
553 if (i == 0 || values[inrange[i]] > peakval) {
|
Chris@500
|
554 peakval = values[inrange[i]];
|
Chris@500
|
555 peakbin = inrange[i];
|
Chris@500
|
556 }
|
Chris@500
|
557 }
|
Chris@500
|
558 inrange.clear();
|
Chris@500
|
559 if (peakbin >= ymin && peakbin <= ymax) {
|
Chris@500
|
560 peaks.insert(peakbin);
|
Chris@275
|
561 }
|
Chris@275
|
562 }
|
Chris@275
|
563 }
|
Chris@500
|
564
|
Chris@500
|
565 if (bin == binmin) break;
|
Chris@275
|
566 }
|
Chris@275
|
567 }
|
Chris@275
|
568
|
Chris@275
|
569 return peaks;
|
Chris@275
|
570 }
|
Chris@275
|
571
|
Chris@929
|
572 int
|
Chris@1040
|
573 FFTModel::getPeakPickWindowSize(PeakPickType type, sv_samplerate_t sampleRate,
|
Chris@1576
|
574 int bin, double &dist) const
|
Chris@275
|
575 {
|
Chris@1576
|
576 dist = 0.5; // dist is percentile / 100.0
|
Chris@275
|
577 if (type == MajorPeaks) return 10;
|
Chris@275
|
578 if (bin == 0) return 3;
|
Chris@280
|
579
|
Chris@1091
|
580 double binfreq = (sampleRate * bin) / m_fftSize;
|
Chris@1038
|
581 double hifreq = Pitch::getFrequencyForPitch(73, 0, binfreq);
|
Chris@280
|
582
|
Chris@1091
|
583 int hibin = int(lrint((hifreq * m_fftSize) / sampleRate));
|
Chris@275
|
584 int medianWinSize = hibin - bin;
|
Chris@1576
|
585
|
Chris@1575
|
586 if (medianWinSize < 3) {
|
Chris@1575
|
587 medianWinSize = 3;
|
Chris@1575
|
588 }
|
Chris@1576
|
589
|
Chris@1576
|
590 // We want to avoid the median window size changing too often, as
|
Chris@1576
|
591 // it requires a reallocation. So snap to a nearby round number.
|
Chris@1576
|
592
|
Chris@1575
|
593 if (medianWinSize > 20) {
|
Chris@1575
|
594 medianWinSize = (1 + medianWinSize / 10) * 10;
|
Chris@1575
|
595 }
|
Chris@1576
|
596 if (medianWinSize > 200) {
|
Chris@1576
|
597 medianWinSize = (1 + medianWinSize / 100) * 100;
|
Chris@1576
|
598 }
|
Chris@1576
|
599 if (medianWinSize > 2000) {
|
Chris@1576
|
600 medianWinSize = (1 + medianWinSize / 1000) * 1000;
|
Chris@1576
|
601 }
|
Chris@1576
|
602 if (medianWinSize > 20000) {
|
Chris@1576
|
603 medianWinSize = 20000;
|
Chris@1575
|
604 }
|
Chris@280
|
605
|
Chris@1576
|
606 if (medianWinSize < 100) {
|
Chris@1576
|
607 dist = 1.0 - (4.0 / medianWinSize);
|
Chris@1576
|
608 } else {
|
Chris@1576
|
609 dist = 1.0 - (8.0 / medianWinSize);
|
Chris@1576
|
610 }
|
Chris@1576
|
611 if (dist < 0.5) dist = 0.5;
|
Chris@1575
|
612
|
Chris@275
|
613 return medianWinSize;
|
Chris@275
|
614 }
|
Chris@275
|
615
|
Chris@275
|
616 FFTModel::PeakSet
|
Chris@929
|
617 FFTModel::getPeakFrequencies(PeakPickType type, int x,
|
Chris@1191
|
618 int ymin, int ymax) const
|
Chris@275
|
619 {
|
Chris@551
|
620 Profiler profiler("FFTModel::getPeakFrequencies");
|
Chris@551
|
621
|
Chris@275
|
622 PeakSet peaks;
|
Chris@275
|
623 if (!isOK()) return peaks;
|
Chris@275
|
624 PeakLocationSet locations = getPeaks(type, x, ymin, ymax);
|
Chris@275
|
625
|
Chris@1040
|
626 sv_samplerate_t sampleRate = getSampleRate();
|
Chris@929
|
627 int incr = getResolution();
|
Chris@275
|
628
|
Chris@275
|
629 // This duplicates some of the work of estimateStableFrequency to
|
Chris@275
|
630 // allow us to retrieve the phases in two separate vertical
|
Chris@275
|
631 // columns, instead of jumping back and forth between columns x and
|
Chris@275
|
632 // x+1, which may be significantly slower if re-seeking is needed
|
Chris@275
|
633
|
Chris@1090
|
634 vector<float> phases;
|
Chris@275
|
635 for (PeakLocationSet::iterator i = locations.begin();
|
Chris@275
|
636 i != locations.end(); ++i) {
|
Chris@275
|
637 phases.push_back(getPhaseAt(x, *i));
|
Chris@275
|
638 }
|
Chris@275
|
639
|
Chris@929
|
640 int phaseIndex = 0;
|
Chris@275
|
641 for (PeakLocationSet::iterator i = locations.begin();
|
Chris@275
|
642 i != locations.end(); ++i) {
|
Chris@1038
|
643 double oldPhase = phases[phaseIndex];
|
Chris@1038
|
644 double newPhase = getPhaseAt(x+1, *i);
|
Chris@1090
|
645 double expectedPhase = oldPhase + (2.0 * M_PI * *i * incr) / m_fftSize;
|
Chris@1038
|
646 double phaseError = princarg(newPhase - expectedPhase);
|
Chris@1038
|
647 double frequency =
|
Chris@275
|
648 (sampleRate * (expectedPhase + phaseError - oldPhase))
|
Chris@275
|
649 / (2 * M_PI * incr);
|
Chris@1045
|
650 peaks[*i] = frequency;
|
Chris@275
|
651 ++phaseIndex;
|
Chris@275
|
652 }
|
Chris@275
|
653
|
Chris@275
|
654 return peaks;
|
Chris@275
|
655 }
|
Chris@275
|
656
|